While every effort has been made to ensure that this catalog is accurate and up to date, it may include typographical or other errors. The Institute reserves the right to change its policies, rules, regulations, requirements for graduation, course offerings, and any other contents of this catalog at any time.

The contents of the Web sites linked to course entries are not part of the official Caltech Catalog.
ACADEMIC CALENDAR
2001–02

FIRST TERM 2001

September 23
New-student registration for undergraduates—Braun Athletic Center, 10:00 a.m.–4 p.m.

September 24–26
New-student orientation for undergraduates—Astro Camp, Idyllwild, CA

September 25
New-student registration for graduate students—Braun Athletic Center, 8:30 a.m.–noon
Orientation, 2:30–4:00 p.m.
Welcome and Information Fair, 4:00–7:00 p.m.

September 27
Beginning of instruction—8:00 a.m.

October 1
Beginning of instruction—8:00 a.m.

October 2
Undergraduate Academic Standards and Honors Committee—9:00 a.m.

October 19
Last day for adding courses and removing conditions and incompletes

October 31–November 6
Midterm examination period

November 12
Midterm deficiency notices due—9:00 a.m.
Last day for admission to candidacy for the degrees of Master of Science and Engineer

November 21
Last day for dropping courses and changing sections

November 22–23
Thanksgiving holidays

November 22–25
Thanksgiving recess

November 26–December 7
Mail registration for second term, 2001–02

December 7
Last day of classes

December 8–11
Study period

December 12–14
Final examinations, first term, 2001–02

*First due date for final examinations

December 14
Last day to register for second term, 2001–02, without a $50 late fee

December 15
End of first term, 2001–02

December 16–January 6
Winter recess

December 17
Instructors' final grade reports due—9:00 a.m.

December 18–25
Christmas holidays

First Term 2002

January 7
Beginning of instruction—8:00 a.m.

January 8
Undergraduate Academic Standards and Honors Committee—9:00 a.m.

January 21
Martin Luther King Day holiday
Instructional recess day—classes do not meet

January 25
Last day for adding courses and removing conditions and incompletes

February 6–12
Midterm examination period

February 18
Presidents' Day holiday
Instructional recess day—classes do not meet

February 19
Midterm deficiency notices due—9:00 a.m.

February 25–March 8
Mail registration for third term, 2001–02

February 27
Last day for dropping courses and changing sections

March 13
Last day of classes

March 14–17
Study period

March 15
Last day to register for third term, 2001–02, without a $50 late fee

March 18
Last day for admission to candidacy

for the degree of Doctor of Philosophy

March 18–20
Final examinations, second term, 2001–02

March 21
End of second term, 2001–02

March 22–31
Spring recess

March 25
Instructors' final grade reports due—9:00 a.m.

Third Term 2002

April 1
Beginning of instruction—8:00 a.m.

April 2
Undergraduate Academic Standards and Honors Committee—9:00 a.m.

April 19
Last day for adding courses and removing conditions and incompletes

May 1–7
Midterm examination period

May 13
Midterm deficiency notices due—9:00 a.m.
Last day for seniors to remove conditions and incompletes

May 20–31
Mail registration for third term, 2001–02, and registration for summer research

May 22
Last day for dropping courses and changing sections

May 24
Last day for presenting theses for the degree of Doctor of Philosophy and Engineer

May 27
Memorial Day holiday

May 31
Last day of classes—seniors and graduate students

June 1–4
Study period for seniors and graduate students

June 5–7
Final examinations for seniors and graduate students, third term, 2001–02

*First due date for final examinations

June 7
Last day of classes—undergraduates
Last day to register for first term, 2002–03, without a $50 late fee

June 8–11
Study period for undergraduates

June 10
Instructors' final grade reports due for seniors and graduate students—9:00 a.m.

June 12
Undergraduate Academic Standards and Honors Committee—9:00 a.m. (Commencement meeting)
Curriculum Committee—10:00 a.m.
Faculty meeting—2:00 p.m.

June 12–14
Final examinations for undergraduates, third term, 2001–02

June 14
Commencement—10:00 a.m.

June 15
End of third term, 2001–02

June 17
Instructors' final grade reports due for undergraduates—9:00 a.m.

June 26
Undergraduate Academic Standards and Honors Committee—9:00 a.m.

July 4
Independence Day holiday

September 2
Labor Day holiday

FIRST TERM 2002–03

September 22
New-student registration for undergraduates, location and time TBA

September 23–25
New-student orientation for undergraduate students

September 24
New-student registration for graduate students, location and time TBA
Orientation, 2:30–4:00 p.m.
Welcome and Information Fair, 4:00–7:00 p.m.

September 30
Beginning of instruction—8:00 a.m.

October 1
Undergraduate Academic Standards and Honors Committee—9:00 a.m.
The California Institute of Technology is an independent, privately supported university, whose educational mission has not changed since it was stated by the original trustees on November 29, 1921: “To train the creative type of scientist or engineer urgently needed in our educational, governmental, and industrial development.”

Its mission in research was expressed by President Emeritus Thomas E. Everhart in his 1988 inaugural address: “There need to be a few places that look ahead and still dare to do the most ambitious things that human beings can accomplish. Caltech still has that ambition and that daring.”

Caltech conducts instruction at both the undergraduate and graduate levels and, including its off-campus facilities, is one of the world’s major research institutions. Its mission to train creative scientists and engineers is achieved by conducting instruction in an atmosphere of research, accomplished by the close contacts between a relatively small group of students (approximately 900 undergraduate and 1,100 graduate students) and the members of a relatively large faculty (approximately 285 professorial faculty, 65 research faculty, and 560 postdoctoral scholars). “Caltech has achieved international influence far disproportionate to its size,” according to *Time* magazine.

The Institute is organized into six divisions: Biology; Chemistry and Chemical Engineering; Engineering and Applied Science; Geological and Planetary Sciences; the Humanities and Social Sciences; and Physics, Mathematics and Astronomy. It is accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges, 985 Atlantic Ave., Ste. 100, Alameda, CA 94501; (510) 748-9001.

Undergraduate Program

Caltech offers a four-year undergraduate course with options available in applied and computational mathematics; applied physics; astronomy; biology; business economics and management; chemical engineering; chemistry; economics; electrical and computer engineering; electrical engineering; engineering and applied science; geobiology; geochemistry; geology; geophysics; history; independent studies; literature; mathematics; physics; planetary science; science, ethics, and society; and social science. Each leads to the degree of Bachelor of Science.

All options require students to take courses in biology, chemistry, humanities, mathematics, physics, and the social sciences. Course work is rigorous and students are encouraged to participate in research. The undergraduate program is thus designed to provide an intensive exposure to a wide spectrum of intellectual pursuits.
Near the end of the first year, students select an option, and during the second year they begin to specialize. However, the major concentration in chosen fields and professional subjects occurs during the third and fourth years.

Caltech also encourages a reasonable participation in extracurricular activities, which are largely managed by the students themselves. Three terms of physical education are required, and intercollegiate and intramural sports are encouraged.

In short, every effort is made to provide undergraduate students with well-rounded, integrated programs that will not only give them sound training in their professional fields, but that will also develop character, intellectual breadth, and physical well-being.

Graduate Program
Graduate students constitute approximately 55 percent of the total student body at Caltech. Jointly engaged in research problems with faculty members, they contribute materially to the general atmosphere of intellectual curiosity and creative activity generated on the Institute campus.

Caltech offers courses leading to the degree of Master of Science, which normally involves one year of graduate work; the degree of Engineer in certain branches of engineering, with a minimum of two years; and the degree of Doctor of Philosophy. In all the graduate work, research is strongly emphasized, not only because of its importance in contributing to the advancement of science and thus to the intellectual and material welfare of humankind, but also because research activities add vitality to the educational work of Caltech.

The graduate options are aeronautics, applied and computational mathematics, applied mechanics, applied physics, astronomy, biochemistry and molecular biophysics, bioengineering, biology, chemical engineering, chemistry, civil engineering, computer and neural systems, computer science, control and dynamical systems, electrical engineering, environmental science and engineering, geological and planetary sciences, materials science, mathematics, mechanical engineering, physics, and social science.

Postdoctoral and Senior Postdoctoral Scholars
Postdoctoral scholars form a vital part of the research community at Caltech and JPL. They advance knowledge through research and scholarship in science and technology; add to their own experience and education; and contribute to the education of Caltech undergraduates and graduate students. Postdoctoral scholars on campus always work under the close supervision of one or more Caltech professorial faculty members. In virtually all circumstances they must have an earned doctorate from a duly accredited institution. Upon arrival at the Institute, postdoctoral scholars should check in immediately at the Human Resources Office at 399 South Holliston Avenue.

Betty and Gordon Moore Distinguished Visitors
The Moore Distinguished Visitors program brings to the Caltech campus scientists, scholars, technologists, and artists of distinguished or of great promise. Through this program, Caltech faculty and students and the Moore Distinguished Visitors will have the opportunity to inform, inspire, and invigorate one another through discussions, seminars, lectures, and research. Appointments will be made in all academic divisions, and will normally last from two to nine months.

HISTORICAL SKETCH

The California Institute of Technology developed from a local school of arts and crafts founded in Pasadena in 1891 by the Honorable Amos G. Throop. Initially named Throop University, it was later renamed Throop Polytechnic Institute. Known as the California Institute of Technology since 1920, it has enjoyed the support of the citizens of Pasadena, and as early as 1908 the Board of Trustees had as members Dr. Norman Bridge, Arthur H. Fleming, Henry M. Robinson, J. A. Culbertson, C. W. Gates, and Dr. George Ellery Hale. The dedication by these men, of their time, their minds, and their fortunes, transformed a modest vocational school into a university capable of attracting to its faculty some of the most eminent of the world’s scholars and scientists.

George Ellery Hale, astronomer and first director of the Mount Wilson Observatory, foresaw the development in Pasadena of a distinguished institution of engineering and scientific research. Hale well knew that a prime necessity was modern well-equipped laboratories, but he stressed to his fellow trustees that the aim was not machines, but men. “We must not forget,” he wrote in 1907, “that the greatest engineer is not the man who is trained merely to understand machines and apply formulas, but is the man who, while knowing these things, has not failed to develop his breadth of view and the highest qualities of his imagination. No creative work, whether in engineering or in art, in literature or in science, has been the work of a man devoid of the imaginative faculty.”

The realization of these aims meant specializing, so the trustees decided in 1907 to discontinue the elementary school, the business school, the teacher-training program, and the high school, leaving only a college of science and technology that conferred Bachelor of Science degrees in electrical, mechanical, and civil engineering.

In 1910 Throop Polytechnic Institute moved from its crowded quarters in the center of Pasadena to a new campus of 22 acres on the southeastern edge of town, the gift of Arthur H. Fleming and his daughter Marjorie. The president, Dr. James A. B. Scherer, and his faculty of 16 members, opened the doors to 31 students that September. When, on March 21, 1911, Theodore Roosevelt deliv-
ered an address at Throop Institute, he declared, “I want to see institutions like Throop turn out perhaps ninety-nine of every hundred students as men who are to do given pieces of industrial work better than any one else can do them; I want to see those men do the kind of work that is now being done on the Panama Canal and on the great irrigation projects in the interior of this country—and the one-hundredth man I want to see with the kind of cultural scientific training that will make him and his fellows the matrix out of which you can occasionally develop a man like your great astronomer, George Ellery Hale.”

It would have surprised Roosevelt to know that within a decade the little Institute, known from 1913 as Throop College of Technology, would have again raised its sights, leaving to others the training of more efficient technicians and concentrating its own efforts on Roosevelt’s “hundredth man.” On November 29, 1921, the trustees declared it to be the express policy of the Institute to pursue scientific researches of the greatest importance and at the same time “to continue to conduct thorough courses in engineering and pure science, basing the work of these courses on exceptionally strong instruction in the fundamental sciences of mathematics, physics, and chemistry; broadening and enriching the curriculum by a liberal amount of instruction in such subjects as English, history, and economics; and vitalizing all the work of the Institute by the infusion in generous measure of the spirit of research.”

Three men were responsible for the change in the Institute. George Ellery Hale still held to his dream. Arthur Amos Noyes, professor of physical chemistry and former acting president of the Massachusetts Institute of Technology, served part of each year from 1913 to 1919 as professor of general chemistry and as research associate; then, in 1919, he resigned from MIT to devote full time to Throop as director of chemical research. In a similar way Robert Andrews Millikan began, in 1916–17, to spend a few months a year at Throop as director of physical research. Shortly after the school was renamed in 1920, Scherer resigned as president. In 1921, when Dr. Norman Bridge agreed to provide a research laboratory in physics, Millikan resigned from the University of Chicago and became administrative head of the Institute as well as director of the Norman Bridge Laboratory.

The great period of the Institute’s life began, then, under the guidance of three men of vision—Hale, Noyes, and Millikan. They were distinguished research scientists who soon attracted graduate students. In 1920 the enrollment was nine graduate students and 359 undergraduates with a faculty of 60; a decade later there were 138 graduate students, 510 undergraduates, and a faculty of 180. At the present time there are about 900 undergraduates, 1,100 graduate students, and 900 faculty (including postdoctoral fellows).

The Institute also attracted financial support from individuals, corporations, and foundations. In January 1920 the endowment had reached half a million dollars. In February of that year it was announced that $200,000 had been secured for research in chemistry and a like amount for research in physics. Other gifts followed from trustees and friends who could now feel pride in the Institute as well as hope for its future. The Southern California Edison Company provided a high-voltage laboratory, with the million-volt Sorensen transformer. Philanthropic foundations bearing the names of Carnegie, Rockefeller, and Guggenheim came forth with needed help when new departments or projects were organized.

In 1923 Millikan received the Nobel Prize in physics. He had attracted to the Institute such men as Charles Galton Darwin, Paul Epstein, and Richard C. Tolman. In 1924 the Ph.D. degree was awarded to nine candidates.

It was inevitable that the Institute would enlarge its fields; it could not continue to be merely a research and instructional center in physics, chemistry, and engineering. But the trustees pursued a cautious and conservative policy, not undertaking to add new departments except when the work done in them would be at the same high level as that in physics and chemistry. In 1925 a gift of $25,000 from the Carnegie Corporation of New York made possible the opening of a department of instruction and research in geology. A seismological laboratory was constructed, and Professors John P. Buwalda and Chester Stock came from the University of California to lead the work in the new division.

That same year William Bennett Munro, chairman of the Division of History, Government, and Economics at Harvard, joined the Institute faculty. Offerings in economics, history, and literature were added to the core of undergraduate instruction.

In 1928 Caltech began its program of research and instruction in biology. Thomas Hunt Morgan became the first chairman of the new Division of Biology and a member of Caltech’s Executive Council. Under Morgan’s direction the work in biology developed rapidly, especially in genetics and biochemistry. Morgan received the Nobel Prize in 1933.

The Guggenheim Graduate School of Aeronautics was founded at Caltech in the summer of 1926 and a laboratory was built in 1929, but courses in theoretical aerodynamics had been given at the Institute for many years by Professors Harry Bateman and P. S. Epstein. As early as 1917 the Throop Institute had constructed a wind tunnel in which, the catalog proudly boasted, constant velocities of 4 to 40 miles an hour could be maintained, “the controls being very sensitive.” The new program, under the leadership of Theodore von Kármán, included graduate study and research at the level of the other scientific work at the Institute, and what is now known as GALCIT (Graduate Aeronautical Laboratories at the California Institute of Technology) was soon a world-famous research center in aeronautics.
In 1928 George Ellery Hale and his associates at the Mount Wilson Observatory developed a proposal for a 200-inch telescope and attracted the interest of the General Education Board in providing $6,000,000 for its construction. The Board proposed that the gift be made, and Caltech agreed to be responsible for the construction and operation. The huge instrument was erected on Palomar Mountain. Teaching and research in astronomy and astrophysics thus became a part of the Caltech program.

From the summer of 1940 until 1945, Caltech devoted an increasingly large part of its personnel and facilities to the furthering of the national defense and war effort. Caltech’s work during this period fell mainly into two categories: special instructional programs and weapons research. The research and development work was carried on, for the most part, under nonprofit contracts with the Office of Scientific Research and Development. Rockets, jet propulsion, and antisubmarine warfare were the chief fields of endeavor. The Jet Propulsion Laboratory in the upper Arroyo Seco continues under Institute management to carry on a large-scale program of research for the National Aeronautics and Space Administration in the science and technology of robotic space exploration. The Laboratory launched the U.S. space age in 1958 when it built Explorer I, the first American satellite. Now, in the new millennium, JPL is sending out a new generation of space explorers for NASA that build upon JPL’s heritage of lunar and planetary missions such as Ranger, Mariner, Viking, and Voyager.

Missions have been launched or are being planned to Mars, comets, asteroids, the outer planets, and other targets of interest. New technologies are being proven in flight as JPL strives for smaller spacecraft using innovative power and propulsion systems. The Stardust mission to intercept a comet and return a sample of comet dust to Earth has already collected interstellar dust for future return. Among other missions, Galileo to Jupiter has returned a wealth of new knowledge about the Jovian system, completing two extended missions. Last year Galileo joined sibling spacecraft Cassini to study the Jovian system in tandem as Cassini flew past Jupiter on its way to Saturn. Arriving at Saturn in 2004, Cassini promises years of discoveries. JPL also continues to manage NASA’s worldwide Deep Space Network for spacecraft telecommunications, controlling spacecraft at the moon’s distance and beyond.

JPL produced the Wide-Field Planetary 1 and 2 cameras for the Hubble Space Telescope, and brought astronomers a new view of the sky with the Infrared Astronomical Satellite (IRAS). The Space Infrared Telescope Facility, or SIRTF, is now being built for launch in 2002, and will be operated by the SIRTF team from the Caltech campus.

The Laboratory conducts a wide range of highly productive Earth observation experiments and missions studying the ocean, atmosphere, and land, including the U.S.-French TOPEX/Poseidon oceanographic satellite and follow-on mission, Jason, due for launch this year, the QuikScat/Seawinds mission to measure near-surface wind speeds over the ocean surface, and the highly successful Shuttle Radar Topography Mission, which produced a high-resolution database of Earth’s topography.

The Laboratory’s program of research and development in space science and engineering has given rise to a dynamic commercialization and technology-transfer program to move space program innovations into the private sector.

In the 1950s, in response to the growing technological component of societal problems, the Institute began to expand the fields in which it had substantial expertise. In the late 1960s and early 1970s the Institute added to its faculty several economists and political scientists who initiated theoretical and applied studies of interdisciplinary issues. A graduate program in social sciences was added in 1972. Caltech students could now engage their talents in the development of the basic scientific aspects of economics and political science, and begin to use the principles from these sciences together with those from the physical sciences to formulate and address public policies.

In 1945 Robert A. Millikan retired as chairman of the Executive Council but served as vice chairman of the Board of Trustees until his death in 1953. Dr. Lee A. DuBridge became president of Caltech on September 1, 1946. Formerly chairman of the physics department and dean of the faculty at the University of Rochester, he came to the Institute after working five years as wartime director of the MIT Radiation Laboratory—and remained for 22 years.

DuBridge was also committed to the concept of a small, select institution offering excellence in education. Facts and figures are only part of the story, but the statistical record of change during the DuBridge administration indicates how he held to that concept. The 30-acre campus of 1946 grew to 80 acres; the $17 million endowment grew to more than $100 million; the faculty of 260 became 550; the number of campus buildings increased from 20 to 64; and the budget went from something less than $6 million to $30 million. But enrollment remained relatively constant. In 1946 the total number of students, graduate and undergraduate, was 1,391. In 1968, the year DuBridge left, it was 1,492.

Dr. Harold Brown came to Caltech as president in 1969. A physicist who had received his Ph.D. from Columbia in 1949, he had succeeded Dr. Edward Teller as director of the University of California’s Lawrence Radiation Laboratory in Livermore in 1960. President Lyndon Johnson named Brown Secretary of the Air Force in 1965, and he came to the Institute from that office. Six new campus buildings were dedicated under Brown’s administration, and a major development campaign for $130 million was under way when he resigned in 1977 to become Secretary of Defense under President Carter.
Dr. Marvin L. Goldberger was appointed president in 1978. He had received his B.S. at the Carnegie Institute of Technology (now Carnegie Mellon University) and his Ph.D. at the University of Chicago. He came to Caltech from Princeton University, where he was the Joseph Henry Professor of Physics. Among the major accomplishments of the Goldberger administration were the addition of three new laboratories; the acquisition of a $70 million grant for construction of the W. M. Keck Observatory to house the world's most powerful optical telescope; and a $50 million pledge for the establishment of the Beckman Institute. Goldberger resigned in 1987 to become director of the Institute for Advanced Study, in Princeton, New Jersey.

In fall 1987 Dr. Thomas E. Everhart became president, coming to Caltech from his position as chancellor at the University of Illinois at Urbana-Champaign. Everhart graduated magna cum laude with an A.B. in physics from Harvard, received his M.Sc. in applied physics from UCLA, and earned a Ph.D. in engineering from Cambridge University. He had gained international recognition for his work in the development of electron microscopy, and he had also done research on electron beams as applied to the analysis and fabrication of semiconductors. Everhart retired as president in October 1997, but he retains his position as professor of electrical engineering and applied physics. During his tenure in office, he oversaw construction of the Keck Observatory in Hawaii, the Moore Laboratory of Engineering, Avery House, the Braun Athletic Center, the Sherman Fairchild Library, and the Beckman Institute, and he directed the successful completion of a $350 million campaign for Caltech.

In October 1997, Dr. David Baltimore assumed the presidency of the Institute. Baltimore, one of the world’s leading biologists, was the winner of the 1975 Nobel Prize for his work in virology. He was previously Ivan R. Cottrell Professor of Molecular Biology and Immunology at the Massachusetts Institute of Technology, and founding director of MIT’s Whitehead Institute for Biomedical Research, serving from 1982 to 1990, when he became president of Rockefeller University. He had also earned his doctorate at Rockefeller in 1964. During the 1970s, he played a pivotal role with several other eminent biologists in creating a consensus on national science policy regarding recombinant DNA research, establishing research standards that are followed by the genetics community to this day. More recently, Baltimore has been a major figure in Washington as chair of the National Institutes of Health AIDS Vaccine Research Committee. In 1999, he was awarded the National Medal of Science by President Clinton.

As Caltech has developed in effectiveness and prestige, it has attracted a steady flow of gifts for buildings, endowment, and current operations. In addition, substantial grants and contracts from the federal government and private sources support many research activities.

Caltech has more than 19,000 living alumni all over the world, many of them eminent in their fields of engineering and science.

Caltech Nobel Laureates

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert A. Millikan</td>
<td>physics</td>
<td>1923</td>
</tr>
<tr>
<td>Thomas Hunt Morgan</td>
<td>physiology</td>
<td>1933</td>
</tr>
<tr>
<td>Carl D. Anderson, B.S. '27, Ph.D. '30</td>
<td>physics or medicine</td>
<td>1936</td>
</tr>
<tr>
<td>Edwin M. McMillan, B.S. '28, M.S. '29</td>
<td>chemistry</td>
<td>1951</td>
</tr>
<tr>
<td>Linus Pauling, Ph.D. '25</td>
<td>chemistry</td>
<td>1954</td>
</tr>
<tr>
<td>William Shockley, B.S. '32</td>
<td>physics</td>
<td>1956</td>
</tr>
<tr>
<td>George W. Beadle</td>
<td>physiology</td>
<td>1958</td>
</tr>
<tr>
<td>Donald A. Glaser, Ph.D. '50</td>
<td>medicine</td>
<td>1960</td>
</tr>
<tr>
<td>Rudolf Mössbauer</td>
<td>physics</td>
<td>1961</td>
</tr>
<tr>
<td>Charles H. Townes, Ph.D. '39</td>
<td>physics</td>
<td>1964</td>
</tr>
<tr>
<td>Richard Feynman</td>
<td>physics</td>
<td>1965</td>
</tr>
<tr>
<td>Murray Gell-Mann</td>
<td>medicine</td>
<td>1969</td>
</tr>
<tr>
<td>Max Delbrück</td>
<td>medicine</td>
<td>1969</td>
</tr>
<tr>
<td>* David Baltimore (president)</td>
<td>physiology</td>
<td>1975</td>
</tr>
<tr>
<td>Renato Dulbecco</td>
<td>medicine</td>
<td>1975</td>
</tr>
<tr>
<td>Leo James Rainwater, B.S. '39</td>
<td>medicine</td>
<td>1975</td>
</tr>
<tr>
<td>Howard M. Temin, Ph.D. '60</td>
<td>medicine</td>
<td>1975</td>
</tr>
<tr>
<td>William N. Lipscomb, Ph.D. '46</td>
<td>medicine</td>
<td>1976</td>
</tr>
<tr>
<td>Robert W. Wilson, Ph.D. '62</td>
<td>medicine</td>
<td>1978</td>
</tr>
<tr>
<td>Roger W. Sperry</td>
<td>medicine</td>
<td>1981</td>
</tr>
<tr>
<td>Kenneth G. Wilson, Ph.D. '61</td>
<td>medicine</td>
<td>1982</td>
</tr>
<tr>
<td>William A. Fowler, Ph.D. '36</td>
<td>medicine</td>
<td>1983</td>
</tr>
<tr>
<td>* Rudolph A. Marcus</td>
<td>medicine</td>
<td>1992</td>
</tr>
<tr>
<td>* Edward B. Lewis, Ph.D. '42</td>
<td>medicine</td>
<td>1995</td>
</tr>
<tr>
<td>Douglas D. Osheroff, B.S. '67</td>
<td>medicine</td>
<td>1996</td>
</tr>
<tr>
<td>Robert C. Merton, M.S. '67</td>
<td>medicine</td>
<td>1997</td>
</tr>
<tr>
<td>* Ahmed H. Zewail</td>
<td>medicine</td>
<td>1999</td>
</tr>
</tbody>
</table>

Caltech Crafoord Laureates

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Gerald J. Wasserburg</td>
<td>geochemistry</td>
<td>1986</td>
</tr>
<tr>
<td>Allan R. Sandage, Ph.D. '53</td>
<td>astronomy</td>
<td>1991</td>
</tr>
<tr>
<td>* Seymour Benzer</td>
<td>biosciences</td>
<td>1993</td>
</tr>
<tr>
<td>* Don L. Anderson, M.S. '58, Ph.D. '62</td>
<td>geosciences</td>
<td>1998</td>
</tr>
</tbody>
</table>

* In residence
Undergraduate Houses, 1931:

- *Blacker House.* The gift of Mr. and Mrs. R. R. Blacker of Pasadena.
- *Dabney House.* The gift of Mr. and Mrs. Joseph B. Dabney of Los Angeles.
- *Fleming House.* Built with funds provided by some 20 donors and named in honor of Mr. Arthur H. Fleming of Pasadena, president of the Board of Trustees, 1917–33.
- *Ricketts House.* The gift of Dr. and Mrs. Louis D. Ricketts of Pasadena.

W. K. Kellogg Radiation Laboratory, 1932. The gift of Mr. W. K. Kellogg of Battle Creek, Michigan.

Henry M. Robinson Laboratory of Astrophysics, 1932. Built with funds provided by the International Education Board and the General Education Board, and named in honor of Mr. Henry M. Robinson of Pasadena, member of the Board of Trustees, 1907–37, and of the Executive Council of the Institute.

Charles Arms Laboratory of the Geological Sciences, 1938. The gift of Mr. and Mrs. Henry M. Robinson of Pasadena, in memory of Mrs. Robinson's father, Mr. Charles Arms.

Seeley W. Mudd Laboratory of the Geological Sciences, 1938. The gift of Mrs. Seeley W. Mudd of Los Angeles, in memory of her husband.

Franklin Thomas Laboratory of Engineering: first unit, 1945; second unit, 1950. Funds for the first unit were allocated from the Eudora Hull Spalding Trust with the approval of Mr. Keith Spalding, trustee. Named in honor of Dean Franklin Thomas, professor of civil engineering and first chair of the Division of Engineering, 1924–45.

Alumni Swimming Pool, 1954. Provided by the Alumni Fund through contributions from the alumni of the Institute.

Scott Brown Gymnasium, 1954. Built with funds provided by the trust established by Mr. Scott Brown of Pasadena and Chicago, who was a member and director of the Caltech Associates.

Norman W. Church Laboratory for Chemical Biology, 1955. Built with funds provided through a gift and bequest by Mr. Norman W. Church of Los Angeles, who was a member of the Caltech Associates.

Buildings and Facilities

On-Campus Buildings

- **Gates and Crellin Laboratories of Chemistry**: first unit, 1917; second unit, 1927; third unit, 1937. The first two units were the gifts of Messrs. C. W. Gates and P. G. Gates of Pasadena; the third unit was the gift of Mr. and Mrs. E. W. Crellin of Pasadena. Gates (first unit), which was retired after suffering extensive damage in the 1971 earthquake, was rebuilt in 1983 as the Parsons-Gates Hall of Administration. The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, 1986, occupying portions of Crellin Laboratory (as well as portions of Church Laboratory for Chemical Biology), was built with funds provided by the Arnold and Mabel Beckman Foundation.

- **Norman Bridge Laboratory of Physics**: first unit, 1922; second unit, 1924; third unit, 1925. The gift of Dr. Norman Bridge of Los Angeles, president of the Board of Trustees, 1896–1917.

- **High Voltage Research Laboratory**, 1923. Built with funds provided by the Southern California Edison Company. Retired in 1959 with basic research completed and rebuilt in 1960 as the Alfred P. Sloan Laboratory of Mathematics and Physics.

- **Dabney Hall**, 1928. The gift of Mr. and Mrs. Joseph B. Dabney of Los Angeles.

- **William G. Kerckhoff Laboratories of the Biological Sciences**: first unit, 1928; second unit, 1939; annex, 1948. The gift of Mr. and Mrs. William G. Kerckhoff of Los Angeles. He was a trustee during 1928.

- **Guggenheim Aeronautical Laboratory**, 1929. Built with funds provided by the Daniel Guggenheim Fund for the Promotion of Aeronautics. A substantial addition was built in 1947.

- **Athenaeum**, 1930. A clubhouse for the teaching, research, and administrative staffs of the Institute and the Huntington Library and Art Gallery, for the Associates of the California Institute of Technology, and for others who have demonstrated their interest in advancing the objectives of the Institute. The gift of Mr. and Mrs. Allan C. Balch of Los Angeles. He was president of the Board of Trustees, 1933–43.
Eudora Hull Spalding Laboratory of Engineering, 1957. Built with funds allocated from the Eudora Hull Spalding Trust.

Archibald Young Health Center, 1957. The gift of Mrs. Archibald Young of Pasadena, in memory of her husband, who was a life member and officer of the Caltech Associates, 1926–56.

Physical Plant Building and Shops, 1959. Built with funds provided by many donors.

Gordon A. Alles Laboratory for Molecular Biology, 1960. Erected with the gift of Dr. Gordon A. Alles of Pasadena, research associate in biology at the Institute, an alumnus, and a member of the Caltech Associates, 1947–63; and with funds provided by the Health Research Facilities Branch of the National Institutes of Health.

Undergraduate Houses, 1960. Built with funds provided by the Lloyd Foundation and other donors.

Lloyd House. Named in memory of Mr. Ralph B. Lloyd and his wife, Mrs. Lulu Hull Lloyd, of Beverly Hills. He was a member of the Board of Trustees, 1939–52.

Ruddock House. Named in honor of Mr. Albert B. Ruddock of Santa Barbara, a member of the Board of Trustees, 1938–71, and chairman, 1954–61.

Harry Chandler Dining Hall, 1960. The gift of the Chandler family, the Pfaffinger Foundation, and the Times Mirror Company of Los Angeles.

Alfred P. Sloan Laboratory of Mathematics and Physics, 1960. Formerly the High Voltage Research Laboratory, 1923. Rebuilt in 1960 with funds provided by the Alfred P. Sloan Foundation.

Graduate Houses, 1961:

Braun House. Built with funds provided by the trustees of the Carl F. Braun Trust Estate, in his memory.

Marks House. The gift of Dr. David X. Marks of Los Angeles.

Mosher-Jorgensen House. The gift of Mr. Samuel B. Mosher and Mr. Earle M. Jorgensen, both of Los Angeles. Mr. Jorgensen was a member of the Board of Trustees, 1957–99.

Karman Laboratory of Fluid Mechanics and Jet Propulsion, 1961. The gift of the Aerojet-General Corporation, named in honor of Dr. Theodore von Kármán, professor of aeronautics at the Institute, 1929–49.

Firestone Flight Sciences Laboratory, 1962. The gift of the Firestone Tire and Rubber Company.

Winnett Student Center, 1962. The gift of Mr. P. G. Winnett of Los Angeles, a member of the Board of Trustees, 1939–68. Winnett houses the bookstore, the Red Door Café, and Caltech Wired.

Beckman Auditorium, 1964. The gift of Dr. and Mrs. Arnold O. Beckman. Dr. Beckman, an alumnus, was a member of the Institute’s faculty from 1928 to 1939. He has been a member of the Board of Trustees since 1953, was chairman of the Board, 1964–74, and is now chairman emeritus.

Harry G. Steele Laboratory of Electrical Sciences, 1965. Built with funds provided by the Harry G. Steele Foundation and the National Science Foundation.

Central Engineering Services Building, 1966.

Robert A. Millikan Memorial Library, 1967. Built with a gift from Dr. Seeley G. Mudd and named in honor of Dr. Robert Andrews Millikan, director of the Bridge Laboratory of Physics and chair of the Executive Council of the Institute, 1921–45.

Arthur Amos Noyes Laboratory of Chemical Physics, 1967. Built with funds provided by the National Science Foundation and Mr. Chester F. Carlson, an alumnus, and named in honor of Dr. Arthur Amos Noyes, director of the Gates and Crellin Laboratories of Chemistry and chair of the Division of Chemistry and Chemical Engineering, 1919–36.

Central Plant, 1967.

George W. Downs Laboratory of Physics and Charles C. Lauritsen Laboratory of High Energy Physics, 1969. The Downs wing was built with funds provided by Mr. George W. Downs and the National Science Foundation. The Lauritsen wing was built with Atomic Energy Commission funds and named in honor of Dr. Charles C. Lauritsen, a member of the Institute faculty, 1930–68.

Donald E. Baxter, M.D., Hall of the Humanities and Social Sciences, 1971. Built with funds provided by Mrs. Delia B. Baxter of Atherton and named in honor of her late husband, Donald E. Baxter, M.D. Additional funds were given by the U.S. Department of Health, Education and Welfare. Dr. and Mrs. Simon Ramo provided funds for the completion of Ramo Auditorium within the hall. Dr. Ramo is a life member of the Board of Trustees.

The Earle M. Jorgensen Laboratory of Information Science, 1971. Built with the gift of Mr. and Mrs. Earle M. Jorgensen, with additional funds provided by the Booth-Ferris Foundation and other private donors. Mr. Jorgensen was a member of the Board of Trustees, 1957–99.

The Mabel and Arnold Beckman Laboratories of Behavioral Biology, 1974. The gift of Dr. and Mrs. Arnold O. Beckman of Corona del Mar. Dr. Beckman is chairman emeritus of the Board of Trustees.

Seeley G. Mudd Building of Geophysics and Planetary Science, 1974. Built with funds provided by Dr. Seeley G. Mudd, Mrs. Roland Lindhurst, Mr. and Mrs. Ross McCollum, Mr. and Mrs. Henry Salvatori, and the U.S. Department of Health, Education and Welfare.

Clifford S. and Ruth A. Mead Memorial Undergraduate Chemistry Laboratory, 1981. Built with funds allocated from the Clifford S. and Ruth A. Mead Memorial Building Fund.

Thomas J. Watson, Sr., Laboratories of Applied Physics, 1982. Built with funds provided by the Watson family and other private donors. Thomas J. Watson, Jr., was a member of the Board of Trustees, 1961–92.

Braun Laboratories in Memory of Carl F and Winifred H Braun, 1982. Built with funds provided by the Braun family, other private donors, and the National Cancer Institute. Various members of the Braun family have served on Caltech’s Board of Trustees.

Parsons-Gates Hall of Administration, 1983. Formerly Gates Laboratory of Chemistry, 1917. Rebuilt in 1983 with funds provided by the Ralph M. Parsons Foundation and the James Irvine Foundation.

Athletic Facility, 1984. Built with funds provided by the Carl F Braun Trust and the Braun Foundation.

Catalina Graduate Apartment Complex, 1984, 1986, 1988. Four of the buildings have been named for Max and Ruth Alcorn, Frank and Elizabeth Gilloon, Fred and Marvis Maloney, and William C. and Verna Rockefeller, in recognition of their generosity to the Institute.

Infrared Processing and Analysis Center, 1986. Renamed the David W. Morrisroe Astroscience Laboratory, 1995. Second-floor addition built with funds provided by Dr. Arnold O. Beckman, chairman emeritus of the Board of Trustees.

Beckman Institute, 1989. Built with funds provided by the Arnold and Mabel Beckman Foundation and other private donors. Dr. Arnold O. Beckman is chairman emeritus of the Board of Trustees.

Braun Athletic Center, 1992. Built with funds provided by the Braun family.

The Gordon and Betty Moore Laboratory of Engineering, 1996. Built with funds provided by Dr. and Mrs. Gordon Moore. Dr. Moore is an alumnus and chairman emeritus of the Board of Trustees.

Avery House, 1996. Built with funds provided by Mr. R. Stanton Avery, who was a member of the Board of Trustees from 1971 until his death in 1997. He had been chairman, 1974–85, and chairman emeritus since 1986.

Space Infrared Telescope Facility Science Center, 1998. Located within the Keith Spalding Building of Business Services.

Powell-Booth Laboratory for Computational Science, 1999. Formerly the Willis H. Booth Computing Center, 1963, constructed with support from the Booth-Ferris Foundation and the National Science Foundation. Renovated in 1999 with grants from the Charles Lee Powell Foundation, the National Science Foundation, and the Booth-Ferris Foundation.

Beckman Institute

Opening its doors in 1990, the Beckman Institute represented a major new addition to Caltech. The mission of the scientists working there is to invent new methods, new materials, and new instrumentation for fundamental research in biology and chemistry. Their results will open the way for new applications of scientific discoveries to human needs.

Center for Advanced Computing Research

In 1995, the Center for Advanced Computing Research (CACR) was established to ensure that Caltech and its Jet Propulsion Laboratory will be at the forefront in computational science and engineering (CS&E). CS&E is the practice of computer-based modeling for the study of scientific phenomena and engineering designs and typically involves a multidisciplinary investigation of interactions between the application, solution algorithms, computer architecture, and system software.

Computer-based modeling and simulation are indispensable for gaining a better understanding of many scientific phenomena and engineering designs. Computer simulation makes it possible to investigate regimes that are beyond current experimental capabilities and to study phenomena that cannot be replicated in laboratories, such as the evolution of the universe. In the realm of science, computer simulations are guided by theory as well as experimental results, while the computational results often suggest new experiments and theoretical models. In engineering, many more design options can be explored through computer models than by building physical ones, usually at a small fraction of the cost and elapsed time.

The CACR’s mission is to foster advances in CS&E by

- following an applications-driven approach to computational science and engineering research,
- conducting multidisciplinary research using leading-edge computing facilities,
- providing a rich, creative intellectual environment that cultivates multidisciplinary collaborations, and
- harnessing new technologies to create innovative large-scale computing environments.

The CACR simultaneously provides leading-edge capabilities for CS&E research and experiments with new technologies that help define the technical computing environment of the future. Currently the CACR computing environment features a Hewlett-Packard 128-processor ccNUMA shared memory V-Class system, with 128 gigabytes of main memory and 1.15 terabytes of disk storage.

Off-Campus Facilities

Kresge Building, Seismological Laboratory (Division of Geological and Planetary Sciences), 1926, 220 North San Rafael Avenue, Pasadena. Named in recognition of a gift from the Kresge Foundation of Troy, Michigan.

William G. Kerckhoff Marine Biological Laboratory, 1930, Corona del Mar. Rehabilitated with funds provided by the National Science Foundation in 1966.

Jet Propulsion Laboratory, 1944, 4800 Oak Grove Drive, Pasadena. Administered by the Institute; owned and supported by the National Aeronautics and Space Administration.

Palomar Observatory, 1948, San Diego County. Site of the 200-inch Hale Telescope, built by the Institute with funds from the Rockefeller Foundation.

Owens Valley Radio Observatory, 1958, Big Pine. Built with funds provided by the Winnett Foundation, the Office of Naval Research, the National Science Foundation, and the Oscar G. and Elsa S. Mayer Charitable Trust.

Big Bear Solar Observatory, 1969, Big Bear Lake. Built with funds provided by the National Science Foundation and the Max C. Fleischmann Foundation of Nevada. (Operated by the New Jersey Institute of Technology.)

Submillimeter Observatory, 1986, Mauna Kea, Hawaii. Built with funds provided by the National Science Foundation and the Kresge Foundation.

Georgina and William Gimbel Building, Caltech Submillimeter Observatory, 1996, Hilo, Hawaii. Built with funds provided by Mr. and Mrs. William Gimbel, members of the Caltech Associates.
Libraries

The Caltech Library System provides library resources and forward-looking information services of the highest quality in a timely, cost-effective manner to support and facilitate the research and educational programs of the Institute. The library system comprises the main collection in the Millikan Memorial; the Sherman Fairchild Library of Engineering and Applied Science; and departmental libraries for astrophysics and geology.

The main library in the Robert A. Millikan Memorial includes the collections for biology, chemistry, mathematics, physics, and the humanities and social sciences. Circulation and reference services are on the first floor; microfilm and government documents collections are on the fifth floor; and photocopy services are in the basement. The Sherman Fairchild Library includes engineering (chemical, electrical, civil, mechanical, environmental, and aeronautical), computer science, applied and computational mathematics, and materials science. Circulation and reference services are on the first floor; books and technical reports are on the ground floor; bound journals are on the second floor; and a reading room for current journals and newspapers is on the third floor. The Sherman Fairchild Library and the main library in the Millikan Memorial are open weekdays during the school year from 8 a.m. to 1 a.m., and weekends from 9 a.m. until midnight.

Collectively, the libraries subscribe to over 3,000 print journals and 500 electronic journals; they contain 550,000 volumes and have extensive collections of technical reports, government documents, and maps. The library electronic catalog includes the records of books and journals held throughout the Caltech Library System, as well as active links to full-text resources. Also available online are the recent citations to articles from over 2,000 journals in science and technology, the social sciences, and art history, as well as a variety of additional electronic reference sources. Special services that are available through the Caltech libraries include computerized literature searches, document delivery, interlibrary loans, and digitizing technical report collections. The Caltech Library System Web site at http://library.caltech.edu/ is a virtual reference desk with over 1,000 active pages.

Industrial Relations Center

The Industrial Relations Center develops and offers programs on managing technology and innovation, improving the effectiveness of business operations, developing the leadership skills of technical professionals, and encouraging new business ventures. Courses and forums are presented on campus and are open to executives and managers in technology-based organizations, and Caltech students, faculty, and staff. Fees are waived for Caltech students who participate in the center's programs.

The center is located on campus at 383 South Hill Avenue. The latest calendar of programs or more information may be obtained by calling extension 4041.

Information Technology Services

Information Technology Services (ITS) provides technology infrastructure and support to Caltech and fosters the use of advancements and innovations in computing and networking technologies. ITS is a service organization with a focus on applying technology to serve the needs of faculty, staff, and students.

ITS operates several campus facilities and services including
- the Digital Media Center (326 Sherman Fairchild Library, x420, dmc@caltech.edu), providing specialized tools and equipment for working with digital media and for producing multimedia products and presentations;
- the Network Operations Center (233 Steele, x4602, network@caltech.edu), responsible for monitoring and managing the campus data network 24 hours a day;
- the Campus Computing Lab (214 Steele), open 24 hours a day, 7 days a week, and containing a variety of computers, including Macintosh, Windows NT, and Sun Solaris;
- a computer lab in each undergraduate house;
- a central computing Help Desk (x4602, help@caltech.edu) with dispatching services;
- system administration service serving academic departments;
- administration of campus sitewide software license agreements;
- a computer repair facility.

The campus data network infrastructure, CITnet 2000, is installed, operated, and maintained by ITS in all buildings throughout campus. All student rooms in the undergraduate houses have full network access. ITS manages Caltech's high-performance links to the Internet and Internet2, as well as remote access to the campus network (including dial-up, cable modem access, and Virtual Private Networking). ITS provides several network-based services, including Web, e-mail, Usenet, Domain Name Service, file transfer (FTP), and IP address assignment. Students are provided space for personal Web pages. The ITS Web site (http://www.its.caltech.edu/) provides additional details about facilities, services, and licenses provided by ITS.
UNDERGRADUATE RESEARCH

The Institute provides three principal avenues for undergraduate research: the Summer Undergraduate Research Fellowships (SURF) program, research courses for academic credit and senior theses, and research for pay under a faculty member’s grant or contract. Students may combine these options, but they may not receive both pay and credit (at the same time) for the same piece of work. Students registering for a research course during the summer do not have to pay tuition.

Each division offers the opportunity for qualified students early in their careers to engage in research under the supervision of a faculty member. Most options offer undergraduate research courses in order to encourage participation, and students should consult listings and descriptions of opportunities. Students are encouraged to undertake research of such scope and caliber as to merit the preparation of a senior thesis. The requirements for such thesis research vary from option to option; individual option representatives should be consulted.

The Summer Undergraduate Research Fellowships (SURF) program provides continuing undergraduate students the opportunity to work on an individual research project in a tutorial relationship with a mentor, usually a member of the Caltech/JPL research community, but occasionally a faculty member at another college or university. Students write research proposals in collaboration with their mentors. Proposals and recommendations are reviewed by the SURF administrative committee, and awards are made on the basis of reviewer recommendation and available funding. The work is carried out during a 10-week period in the summer. Students may attend weekly seminars presented by members of the Caltech faculty and JPL technical staff and may participate in professional development workshops to help students consider short-term career decisions in the context of long-term life and career goals. At the conclusion of the summer, SURFers submit a written report describing the project, methods, and results of their work. On the third Saturday of October, students make oral presentations of their projects at SURF Seminar Day. About 20 percent of the students publish their work in the open scientific literature. In 2001, SURF students were paid $5,000. Applications are available in January and are due on March 1. Awards are announced in early April. To be eligible, students must be continuing undergraduates and have a cumulative GPA of at least 2.0. Students must complete the third quarter at Caltech (or at another school under a program approved by a dean). Students must be eligible for full term registration as of the end of the June Undergraduate Academic Standards and Honors (UASH) Committee reinstatement meeting and must not be on medical leave or under disciplinary sanction.

For further information regarding this program, contact the Student-Faculty Programs Office, Room 137, Beckman Institute, (626) 395-2885, sfp@its.caltech.edu. Visit the Student-Faculty Programs Web site at http://www.its.caltech.edu/~sfp/ for more information on SURF and other programs.

STUDENT LIFE

Undergraduate Student Houses
The seven undergraduate student houses are situated on both sides of the Olive Walk near the southeastern end of the campus. The original four—Blacker, Dabney, Fleming, and Ricketts—were built in 1931 from the plans of Mr. Gordon B. Kaufmann, in the Mediterranean style to harmonize with the adjacent Athenaeum. The other three, designed by Smith, Powell and Morgridge, were completed in 1960, and are named Lloyd, Page, and Ruddock. Each of the seven is a separate unit with its own dining room and lounge, providing accommodations for about 75 students.

Each house has its own elected officers, and has wide power to arrange its own social events and preserve its own traditions. The immediate supervision of the activities of each house is the responsibility of the house Resident Associate, generally a graduate student. All houses are under the general supervision and control of the director of residence life.

In addition to the student houses, the Institute maintains two apartment buildings, Avery House, Marks House, and a number of off-campus houses. Typically two or three students share an apartment. Depending upon size, the off-campus houses have a capacity of four to ten students. These residences are all within a short walk of the campus and offer students greater privacy, a different lifestyle, and the opportunity to prepare their own meals.

Mail is delivered daily to the student mailboxes. Students should use their mailbox number, California Institute of Technology, Pasadena, CA 91126, to facilitate handling of mail at the campus post office.

Avery House
Made possible by a gift from trustee R. Stanton Avery, this innovative residential complex was designed by Moore, Ruble, Yudell and completed in September 1996. Located at the north end of the campus, Avery House has rooms for about 100 undergraduates and 25 graduate students, in addition to four faculty apartments and a visitor’s apartment. Its dining facilities, meeting rooms, lounges, and library are designed to encourage informal faculty-student interaction and to attract all members of the campus community to join in this interaction. Avery House hosts a regular series of lec-
tures, performances, and social events open to the campus, and the house invites distinguished visitors to be in residence for varying lengths of time.

The Student Activities Center

The SAC is located in the basement of the south undergraduate housing complex and is open for student use 24 hours a day. Whether you are interested in music, art, publications, student government, gaming, photography, or simply finding a room for your group to meet in, the SAC will probably have what you need. The center also houses the South House Laundry Room and has several club rooms, a small library, a bike shop, and a TV/VCR room—most are open 24 hours. The center also includes a coffeehouse. The SAC is open to all current members of the Caltech and JPL communities, though first priority is given to undergraduate and graduate students.

The SAC provides office space for the officers of the undergraduate student government, working space for student publications, office and rehearsal space for musical and art activities, and space for many more student-oriented functions.

Interhouse Activities

The president of each undergraduate house represents that house on the Interhouse Committee (IHC). While the seven houses are generally autonomous, the IHC exists to ensure that conflicts between houses do not develop and to deal with matters that affect the houses in general. In particular, the IHC is responsible for the freshman selection process by which the houses choose their members.

In conjunction with the athletic department, the IHC conducts two intramural sports programs: the Interhouse and Discobolus trophy competitions. (These are described below under *Athletics*.) Other interhouse activities include parties, usually involving two or three houses, which are held once or twice each term.

Faculty-Student Relations

Faculty-student coordination and cooperation with regard to campus affairs are secured through the presence of students on faculty committees, by faculty-student conferences, and by other mechanisms, such as course ombudsmen.

Freshman Advisers

Each member of the freshman class is assigned a faculty adviser. The adviser takes an interest in the freshman’s progress and provides advice on any questions or problems that the freshman may have.

Option Advisers

Each member of the three undergraduate upper classes is assigned an option adviser, a faculty member in the option in which the student is enrolled. The adviser takes an interest in the student’s selection of courses and progress toward a degree, and, eventually, in assisting the student toward satisfactory placement in industry or in graduate school. Normally, the association between student and adviser is established before the beginning of the sophomore year and continues through graduation.

Athletics

Caltech supports a well-rounded program of competitive athletics. As a member of the NCAA Division III and the Southern California Intercollegiate Athletic Conference, Caltech carries out intercollegiate competition in 10 men’s sports and eight women’s sports, with teams such as Claremont-Mudd-Scripps, LaVerne, Occidental, Pomona-Pitzer, Cal Lutheran, Redlands, and Whittier. Individual athletes and teams who distinguish themselves in conference competition earn the privilege of participating in NCAA regional and national championships.

Caltech also sponsors vigorous programs of club sports and intramural competition. Club sports include rugby, ultimate Frisbee, ice hockey, and men’s volleyball and soccer. Intramural competition consists of residence house teams battling for championships (and bragging rights) in flag football, soccer, swimming, ultimate Frisbee, basketball, volleyball, tennis, track and field, and softball. A full 33 percent of Caltech undergraduates participate in intercollegiate athletics, and over 80 percent participate in some form of organized athletic competition each year.

Outdoor athletic facilities include an all-weather running track, a soccer field, baseball diamonds, eight tennis courts, and two 25-yard swimming pools. Indoor facilities include two full-size gymnasiums for basketball, volleyball, and badminton; four racquetball courts; two squash courts; a 4,000-square-foot weight room; and a large multipurpose room for dance/aerobics, fencing, and martial arts.

ASCIT

The undergraduate student body forms the membership of a corporation known as the Associated Students of the California Institute of Technology, Inc., or ASCIT. Governed by a board of directors consisting of nine elected officers, ASCIT is involved in many aspects of student life. ASCIT subsidizes the Friday-night ASCIT movies, a weekly presentation of late-vintage popular films. ASCIT also oversees publication of the student newspaper, a directory, the yearbook, a research opportunities handbook, a course review, and a literary magazine.
Besides overseeing many student publications and coordinating activities and policies, the ASCIT Board of Directors administers the corporation's finances. ASCIT sponsors a wide variety of special-interest clubs and programs, such as the student shop and the Students for the Exploration and Development of Space (SEDS).

The student government is active in campus affairs. The student members of each standing faculty committee ensure that undergraduate opinion is considered seriously. Excellent informal relations between students and faculty and between students and administration promote mutual concern and goodwill. Student-faculty conferences are held from time to time, and serve a very useful purpose in promoting cooperation and communication.

Graduate Student Council
The graduate student body forms the membership of a corporation known as the Graduate Student Council, or GSC. Governed by a board of directors, consisting of graduate student representatives from different graduate options, the GSC provides funding for student clubs, publishes a monthly newsletter, and organizes or subsidizes various campus events. Annual events include weeklong New Student Orientation activities, and Gradiators, a fun-filled summer day of unusual games. The Technique, an information guide for graduate-student life off and on campus, is published yearly by the GSC. The GSC also organizes monthly social hours, the GSC Teaching and Mentoring Awards, and the Everhart Lecture Series, which honors outstanding graduate student speakers. The GSC is active in campus affairs, with graduate student representatives on many faculty standing committees.

Honor System
The Honor System, embodied in the phrase “No member shall take unfair advantage of any member of the Caltech community,” is the fundamental principle of conduct for all students. More than merely a code applying to conduct in examinations, it extends to all phases of campus life. It is the code of behavior governing scholastic and extracurricular activities, relations among students, and relations between students and faculty. The Honor System is the outstanding tradition of the student body, which accepts full responsibility for its operation. The Board of Control, which is composed of elected student representatives, is charged with monitoring the Honor System for undergraduates, while the Graduate Review Board performs the same function for graduate students. Suspected violations are reported to the appropriate board, which conducts investigations and hearings with strict confidentiality. If necessary, recommendations for actions are made to the deans.

Student Body Publications
The publications of the student body include a weekly paper, The California Tech; an undergraduate research journal, CURJ; a literary magazine, The Totem; a student handbook, the little t, which gives a survey of student activities and organizations and serves as a campus directory; a yearbook, The Big T; an annual review of the quality of teaching in the various courses, The Clue; and a handbook of available research opportunities. These publications are staffed entirely by students. Through them, ample opportunity is provided for any student who is interested in obtaining valuable experience not only in creative writing, photography, art work, and the journalistic fields of reporting and editing, but in the fields of advertising and business management as well.

Musical Activities
The Institute provides qualified directors and facilities for a wind ensemble, a jazz band, several choral music groups, a symphony orchestra (jointly with Occidental College), a number of small chamber ensembles, and a weekly interpretive music class. A series of chamber music concerts is given on Sundays in Dabney Lounge. There are other musical programs in Beckman and Ramo Auditoriums.

Student Societies and Clubs
There are at the Institute more than 70 societies and clubs covering a wide range of interests. The American Chemical Society, the American Institute of Chemical Engineers, the American Society of Mechanical Engineers, and the Society of Women Engineers all maintain active student branches.

The Institute has a chapter (California Beta) of Tau Beta Pi, the national scholarship honor society of engineering colleges. Each year the Tau Beta Pi chapter elects to membership students from the highest-ranking eighth of the junior class and the highest fifth of the senior class.

Special interests and hobbies are provided for by a broad and constantly changing spectrum of clubs, some informal but most formally recognized by either ASCIT or the Graduate Student Council.

Student Shop
The student shop is housed in the Physical Plant complex. It is equipped by the Institute, largely through donations, and is operated by the students. Here qualified students may work on private projects that require tools and equipment not otherwise available. All students are eligible to apply for membership in the student shop; applications are acted on by a governing committee of students. Members not proficient in power tools are limited to hand tools and bench work; however, instruction in power tools is given as needed. Yearly dues are collected to provide for maintenance and replacement.
The Caltech Bookstore

The Caltech Bookstore is located on the ground floor of the Winnett Student Center. Owned and operated by the Institute, the store serves the students, faculty, and staff, carrying a complete stock of general interest and reference books, insignia merchandise, greeting cards, and gift items. These are in addition to textbooks, school and office supplies. The store offers an ordering service for books and items that are not a part of its regular stock. Located within the store are the Red Door Café and Caltech Wired Computer Store. The Red Door Café provides various types of coffee drinks and juices, along with other food items. Caltech Wired provides computers (including hardware and supporting software and instructional material) that support Caltech's educational and research functions.

STUDENT HEALTH

Medical Examination

Before initial registration, each applicant is required to submit a Report of Medical History and Physical Examination on a form that is sent at the time of notification of admission. Students who have been absent from the Institute for two years or more may also be required to submit this report.

Student Health Services

The Archibald Young Health Center provides the following services for undergraduate and graduate students: (1) office consultation and treatment of most medical problems by physicians and nurse practitioners (physician visits by appointment only and at prescribed hours); (2) laboratory tests, X rays, and consultations as ordered by the medical staff; (3) routine medications, prescription drugs, and other supplies at cost; (4) dermatology and orthopedic clinic visits, which are available on a weekly and bimonthly basis and are by appointment only.

Religious Life

In addition to several groups active on campus such as the Caltech Christian Fellowship, the Newman Club, and Hillel, houses of worship of many different denominations are within walking distance or are only a short drive from campus.

Public Events

Beckman and Ramo Auditoriums serve as the home of the professional performing arts program on the Caltech campus. Each year, more than 150 public events, ranging from the traditional Earnest C. Watson Caltech Lecture Series to dramatic, film, and concert attractions (featuring world-renowned artists), are presented at Caltech. Tickets, often with discounts available, are offered to Caltech students for all events in Beckman and Ramo Auditoriums. Under the auspices of the Office of Public Events are a ticket agency (handling tickets for Caltech events) and the campus Audio-Visual Services Unit (where projectors, tape recorders, and video equipment may be obtained).

Ombudsman

The Ombudsman provides informal assistance in resolving intra-campus conflicts, disputes, and grievances and promotes fair and equitable treatment within the Institute. Any member of the Caltech community (students, faculty, and staff) may receive confidential and independent assistance from the Ombuds Office.

Student Counseling Service

A staff of mental health professionals provides individual, group, and crisis counseling to undergraduates and graduates at no cost. Students are seen at the center with various concerns, such as depression, stress, grief, relationship difficulties, and self-esteem issues, among others. The center also offers workshops and training on psychologically related topics, a substance-abuse prevention program, psychiatric consultation, and referrals to other professionals in the community. Counseling sessions are confidential.

Student Health Insurance
In addition to services available at the Health Center, coverage under a comprehensive medical insurance plan is provided to all full-time students and, during the summer, to students registered for the previous term. This plan covers (with a small deductible) hospital and surgical costs, as well as costs of outpatient treatment for injury or illness. Benefits continue for 12 months, on and off campus, provided that students remain enrolled through the school year.

Medical Coverage of Dependents
A student’s spouse and all unmarried dependent children under 19 years of age are eligible to purchase coverage under the medical insurance plan. In addition, student spouses may enroll for a modest fee in a plan that makes them eligible for all services offered at the Health Center. Children are not eligible for these services. Application for dependents’ insurance should be made at the time of registration for any one school term. Rates for dependents’ coverage are available at the Health Center.

Medical Responsibility of the Student
The responsibility for securing adequate medical attention in any contingency, whether emergency or not, is solely that of the student, whether the student is residing on or off campus. Apart from providing the opportunity for consultation and treatment at the Health Center as already described, the Institute bears no responsibility for providing medical attention.

Any expenses incurred in securing advice and attention in any case are entirely the responsibility of the student, except as already specified. To secure payment from the insurance plan and substantiate a claim for services rendered away from the Institute, the student is required to retain bills for such services and present them with appropriate documentation when medical claims are made. The Health Center office staff may be called upon for advice on the preparation of claim forms.

CAREER DEVELOPMENT

Career Services
The Career Development Center (CDC) provides assistance to students, postdoctoral scholars, and alumni in the areas of career and life planning and employment. Personal assistance is available in career choice, résumé preparation, interviewing, graduate school application, and job search strategies. Career and vocational interest tests can also be taken.

All students are encouraged to visit and make use of the Career Development Center early in their student careers.

CDC Online
The CDC has a home page on the World Wide Web with information about the center’s programs and activities, as well as links to career, educational, and employment resources nationwide. The URL is http://www.career.caltech.edu/.

Premedical and Graduate School Advising
Students planning to apply to medical school can make use of many resources and individual counseling in the CDC. We encourage students planning to apply to graduate school and other professional programs to plan ahead. The CDC provides many resources for these programs. Important to all students who will seek further education is the Letter of Recommendation service for application to graduate or professional school.

On-Campus Recruiting Program
Through the on-campus recruiting program, employment interviews are arranged with about 200 companies that seek full-time employees pursuing B.S., M.S., Eng., or Ph.D. degrees. All graduating students, Caltech postdoctoral scholars, and recent alumni are eligible to participate.

Resumania
Several Caltech alumni who hire graduates for employment in their firms are selected to provide screening, advice, and feedback on student résumés. Students bring their résumé drafts and get one-on-one feedback from experienced hiring managers. Resumania is scheduled prior to Career Days, so students can prepare for the recruiting season.

Career Day
Each year in October and February, companies send representatives to campus for a day of informal discussion with students on internship and employment opportunities. Most bring informative displays and literature, and many of the representatives are themselves Caltech alumni. Career Day 2001 hosted over 100 different companies.

Ph.D. Career Fair
The Ph.D. Career Fair addresses the need for a more focused career fair to deal with special considerations of researchers with doctoral degrees. The event complements our annual Career Day in February, which traditionally focuses on undergraduates.
CALTECH ALUMNI ASSOCIATION

The mission of the Association is to promote the interests of Caltech as a world standard of academic excellence by strengthening the ties of goodwill and communication between the Institute, its alumni, and current students, and by maintaining programs to serve alumni needs. These programs include

- the Alumni College, a two-day lecture series focused on one discipline, with Caltech faculty as featured speakers;
- Seminar Day, a day of lectures, exhibits, and social events held on campus;
- class reunions;
- domestic and overseas travel/study programs;
- regional events around the country, some of which showcase Caltech faculty.

The Association also supports on-campus student activities and organizations, sponsors programs that encourage contacts between alumni and students, and funds scholarships and undergraduate awards. Alumni volunteers play an important role for the Association by representing Caltech at college fairs nationwide, by maintaining contact with prospective students and their families, and by serving as mentors to current students. Benefits of membership in the Alumni Association include a subscription to Engineering & Science magazine and an opportunity to join the Caltech Employees Federal Credit Union.

INTERNATIONAL STUDENT PROGRAMS

The Office of International Student Programs (ISP) provides assistance to international students and their dependents in adjusting to academic and personal life at Caltech and in the United States. The office provides assistance with cross-cultural adjustment, personal, financial, legal, career, and health-related needs of international students, in cooperation with other Institute departments and offices, and, where appropriate, acts as liaison with foreign government representatives in the United States. The office develops programs and activities that encourage interaction between international and U.S. students and promotes American students’ participation in travel and study opportunities outside of the U.S.

All visa and immigration-related matters for international students and their dependents are processed through the ISP. The staff disseminates information on the rules and regulations pertaining to all student visas, and represents students and the Institute to government agencies that oversee immigration regulations.

The office is able to assist students with employment authoriza-
The staff of International Student Programs work closely with the graduate and undergraduate deans to address academic and personal concerns of international students. International students with a legal or an Honor System grievance or concern may contact the director for assistance.

The ISP plans and promotes programs and activities that foster international and cross-cultural awareness on campus. In cooperation with various national and cultural organizations and student governance groups, the office holds events that celebrate cultures and peoples of the world. The staff are resources for individual students and groups planning multicultural events.

The New International Student Orientation Program each September provides a comprehensive introduction to academic and social life at Caltech and in the United States. All incoming international students participate in this weeklong program. In addition, the office holds information seminars throughout the year to update international students on immigration regulations, professional development, American values and work culture, and other appropriate topics.

The ISP issues international student ID cards for those traveling abroad. The office offers extensive resources on travel and study opportunities around the world. The ISP also assists students who are traveling abroad with cross-cultural and adjustment information, obtaining State Department travel information, and securing visas.

For information on English-as-a-second-language courses for graduate students, please refer to the course listings in section five of this catalog.

Further information about services, current programs, and U.S. immigration regulations pertaining to nonimmigrant students can be obtained through the ISP Web site at http://www.isp.caltech.edu/.

AUDITING COURSES

Persons not regularly enrolled in the Institute may audit courses if they obtain the consent of the instructor in charge of the course, and the dean of undergraduate students or dean of graduate studies, as appropriate, and pay the required fee. The fees are nonrefundable.

Auditing fees for nonacademic staff members may be covered by the Institute Tuition Support Plan. Auditing cards may be obtained in the registrar's office.

Regularly enrolled students and members of the faculty are not charged for auditing. Auditing cards are not required, but the instructor's consent is necessary in all cases. No grades for auditors are reported to the registrar's office, and no official record is kept of the work done.

GRADES AND GRADING

All permanent grades recorded for freshmen during the first and second terms they are enrolled will be either P, indicating passed, or F, indicating failed. The temporary grade of I (Incomplete) may be used as it is for other students. The temporary grade of E may be given to freshmen as described below for other students. It may also be used in a continuing course if the performance of the freshman concerned is not significantly below the current passing level, and if the student is maintaining a steady and substantial improvement; an E given for this reason will be automatically changed to a P if the freshman earns a P for the following term, and will change to an F if the student receives an F for the following term. The grade may not be used in this way for two successive terms nor for the last term of the course.

If a first-quarter or second-quarter freshman is enrolled in a course in which the instructor gives letter grades, the registrar will record P for all passing grades. No grades given to a freshman during the first and second quarter in which they are enrolled will be used in computing the cumulative grade-point average.

For all students beyond the first and second quarters of their freshman year, graduate and undergraduate, letter grades will ordinarily be used to indicate the character of the student's work: A, excellent; B, good; C, satisfactory; D, poor; E, conditional; F, failed; I, incomplete. P may also be used as described below under Pass/Fail Grading. In addition, grades of A+, and A-, B+ and B-, C+, and C-, and D+ may be used. In any situation in which no grade is reported, the grade shall be assumed to be F.

At their discretion, instructors may give students who have not completed their work for a course by the end of the term a grade of E. The grade E indicates deficiencies that may be made up without repeating the course. If the instructor does not specify a date on the grade report sheet for completion of the work, students receiving an E will have until Add Day of the following term to complete their work for that course. Instructors may, however, require the work for the course to be completed by an earlier date. If a student receives an E and does not complete the work by the date specified by the instructor or by Add Day, the grade will be changed to an F. Adequate time must be afforded to instructors to grade the work and to submit the final grade to the registrar.
It is the responsibility of a student receiving an E to confirm that the registrar has recorded the terms for satisfying the completion of the work in the course.

With the written permission of the instructor a student may extend the E grade past Add Day of the following term, but doing so will cause an additional E grade to be registered. Each additional extension of the E will be until the date specified by the instructor or until Add Day of the following term, but in each case will require the written permission of the instructor and the registering of an additional E grade.

After an undergraduate student has been awarded the grade of E six times, he or she is not eligible to receive E grades in any subsequent term. A petition for an E in a subsequent term may be approved by the Undergraduate Academic Standards and Honors Committee (UASH) in an exceptional case. Such a petition requires the support of the instructor and the dean or associate dean of students.

The grade I is given only in case of sickness or other emergency that justifies noncompletion of the work at the usual time. It is given at the discretion of the instructor, after approval by the dean or associate dean of students or the dean of graduate studies. The time period within which the grade of I is to be made up should be indicated on the grade sheet, or students receiving an I will have until Add Day of the following term to complete their work for the course. As in the case of the E grade, the grade of I shall not be considered in calculating a student's grade-point average.

Students receiving grades of E or I should consult with their instructors not later than the beginning of the next term in residence as to the work required and the time allowed. This time should, in most cases, coincide with the date fixed in the calendar for removal of conditions and incompletes (Add Day), and in fact if no other time is specified, this date will be assumed. Further, under no circumstances may the time for the completion of the work be extended for more than three terms in residence after the end of the term in which the grade of E or I was given. At the end of the specified time, unless there is a written request from the instructor to the contrary, or in any event at the time of graduation or at the end of three terms in residence, whichever occurs first, all E's and I's not otherwise reported will be changed to F. Grades of E and I shall not be considered in calculating a student's grade-point average.

Failed means that no credit will be recorded for the course. The units, however, count in computing the student's grade-point average, unless the course was taken on a pass/fail basis. He or she may register to repeat the subject in a subsequent term and receive credit without regard to the previous grade, the new grade and units being counted as for any other course, but the original F and units for the course remain on the record. An F, once recorded, will be changed to a passing grade only on the basis of error. Such a change may be made only with the approval of the Undergraduate Academic Standards and Honors Committee or of the Graduate Studies Committee, whichever has jurisdiction.

Each course at the Institute is assigned a number of units corresponding to the total number of hours per week devoted to that subject, including classwork, laboratory, and the normal outside preparation. Credits are awarded as shown in the following table.

<table>
<thead>
<tr>
<th>No. of Units</th>
<th>A+</th>
<th>A-</th>
<th>B+</th>
<th>B-</th>
<th>C+</th>
<th>C-</th>
<th>D+</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>36</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>25</td>
<td>24</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>40</td>
<td>37</td>
<td>34</td>
<td>31</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>36</td>
<td>32</td>
<td>28</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>56</td>
<td>52</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>61</td>
<td>56</td>
<td>51</td>
<td>47</td>
<td>43</td>
<td>39</td>
<td>35</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>

Grade-Point Average is computed by dividing the total number of credits earned in a term or an academic year by the total number of units taken in the corresponding period. Units for which a grade of F has been received are counted, even though the course may have subsequently been repeated. Grades of P or F obtained in courses graded on a pass/fail basis are not included in computing grade-point average.

Pass/Fail Grading: The following regulations apply:

- First-quarter and second-quarter freshmen receive pass/fail grades in all courses by virtue of their classification as freshmen by an admissions committee or, for students whose status after the first year is uncertain, by the Undergraduate Academic Standards and Honors Committee.
- Required laboratory courses will be graded P or F regardless of when they are taken, but these courses must be taken during the freshman or sophomore years.
- All other students, undergraduate and graduate, in courses with numbers under 200 will receive letter grades unless the course is designated “graded pass/fail” or unless, when it is allowed, the student files with the office of the registrar.
a completed Pass/Fail Course Selection Card not later than the last day for dropping courses.

- In courses with numbers 200 or greater that are not designated either “graded pass/fail” or “letter grades only,” the instructor may decide separately for each student what class of grades to use.
- All research courses shall be designated “graded pass/fail.” All reading courses, seminar courses, or other courses that do not have a formal class structure shall be designated “graded pass/fail” unless the option secures an exemption from the Curriculum Committee or the Graduate Studies Committee and from the Faculty Board.
- A grade on the pass/fail system should be P if it would have been a D or better on the letter grade system. (Note that there is no D- grade.) The standards of failure in courses in which only pass/fail grades are used should be the same as they would be if the course were letter graded.
- Any instructor may, at his or her discretion, specify prior to registration that his or her course, if not classified by the above regulations, is to be graded on a “letter grades only” basis or is to be graded pass/fail only, subject to possible review by the responsible option. The registrar must be notified of such specification two weeks before the beginning of registration.
- Each term any student may select, subject to such requirements as may be imposed by the option, one elective course in which he or she is to be graded on a pass/fail basis if it is not designated as “letter grades only” and is not specifically required for the degree in his or her option. To make this election, a completed Pass/Fail Course Selection Card must be submitted to the Office of the Registrar on or before the last day for dropping courses that term. This election may be reversed or reinstated at any time before the deadline. The election must be approved and the card signed by the student’s adviser. The instructor must be notified and should sign the card to indicate that this has been done; the instructor must allow any eligible student to make this election.
- Of the units offered to satisfy the requirements for the Bachelor of Science degree, no more than 90 may be in courses graded pass/fail because of the student’s election.

NOTICES, AGREEMENTS, AND POLICIES

Accreditations and Authorizations

The California Institute of Technology is accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges. In addition, the Institute is authorized by the California State Department of Education, Office of Private Postsecondary Education, to operate as a private postsecondary educational institution and, by the same agency, to train veterans in the programs of the Veterans Administration.

In specific degree programs the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology has accredited our B.S. programs in chemical engineering, in electrical engineering, and in engineering and applied science. Further, the Committee on Professional Training of the American Chemical Society has approved our B.S. program in chemistry.

The documents describing these accreditations and authorizations are on file and may be inspected in the Office of the Registrar, the Undergraduate Admissions Office, or the Office of the Dean of Graduate Studies.

Nondiscrimination and Equal Employment Opportunity

It is the policy of Caltech to provide a work and academic environment free of discrimination. Consistent with this policy, illegal harassment will not be tolerated at Caltech, which will take all reasonable steps to eliminate it in its work and academic environment. (See the related harassment policy for more details.)

Caltech is committed to equal employment opportunity for all persons without regard to sex, race, creed, color, religion, national origin, ancestry, age, marital status, pregnancy, sexual orientation, status as a disabled veteran, a veteran of the Vietnam era or other eligible veteran, and for otherwise qualified individuals with a disability.

Caltech is an affirmative action employer and will, whenever possible, actively recruit and include for employment, members of minority groups, females, disabled veterans, veterans of the Vietnam era, other eligible veterans, and otherwise qualified persons with disabilities. Caltech will hire, place, transfer, and promote based on the qualifications of the individual and administer these functions to ensure equal consideration and fair treatment of all. All other employment actions, such as work assignments, compensation, evaluations, training (including apprenticeships and tuition assistance), benefits, layoffs, and terminations are governed by this policy. Personnel actions will be reviewed to ensure adher-
Institute Fire Policy

The California Institute of Technology community will comply with all applicable laws, regulations, codes, standards, and good practices pertaining to fires, fire safety, and fire protection. This policy was formulated with input from students, staff, and faculty and strives to ensure that

- No threats to the public health or welfare will result from fires occurring at Caltech.
- There will be no hazards to employees, students, staff, faculty, and visitors to the campus from fires and related perils.
- No Institute programs will be adversely affected as a result of fire or accidental explosions.
- Individuals will not be hurt and property will not be damaged due to negligent or improper use of fire, explosives, or hazardous combustibles. Questions about the proper use of such materials should be directed to the Caltech Safety office.

Violations of this policy can result in investigation and action by any of the following bodies: Board of Control, Conduct Review Committee, Dean of Students, Director of Residence Life, Dean of Graduate Studies, or Graduate Review Board.

Important factors to consider:

1. Recreational fires are allowed but must conform to Pasadena Municipal codes pertaining to barbecues, grills, bonfires, and open burning. Note that a permit from the City of Pasadena is also available from the house RA and house president. Information on fire codes will be published yearly in the little t.

2. All explosives, hazardous combustibles, and fireworks are not allowed to be used or possessed on campus or on Institute property except in approved locations in campus laboratories. The student shops have established their own safety procedures that are consistent with Caltech safety policies.

3. Individuals should understand and conform to Caltech procedures for fire drills and evacuation procedures and must not interfere in any way with campus fire protection equipment, fire alarms, or responding emergency personnel. False fire alarms, intentional or unintentional, are a particular hazard for those living in the undergraduate houses.
Sexual Assault Policy for Students

I. Basic Principles
Rape and other types of sexual assault, whether by a stranger or by an acquaintance, are violations of the law and the policy of the California Institute of Technology. Sexual assault includes but is not limited to rape, forced sodomy, forced oral copulation, rape by a foreign object, sexual battery, or threat of sexual assault. Caltech will not tolerate sexual assault, whether directed at males or females. The Institute will also provide assistance and support for survivors of such assault and will aid in the apprehension of assailants. To reduce the risk of sexual assault, the Institute provides education to increase awareness of this important issue. Some of the educational programs provided include training for peer counselors, including health advocates; yearly training for resident associates; yearly in-service workshops for Student Affairs staff; and annual self-defense classes.

Caltech views sexual assault, in any of its forms, as a very serious matter and is committed to responding promptly and thoroughly to investigate sexual assault charges leveled at a Caltech student by any other of its students.

A student who has been sexually assaulted by another student or any other member of the Caltech community is strongly encouraged to file a complaint with Caltech officials, as well as with any civil authorities the student deems appropriate. See section III of this document for details on filing a complaint with the police.

II. Procedures for Filing a Complaint on Campus
Students who wish to file a complaint against another student should do so as soon as possible after the assault, although complaints may be filed at any time. Undergraduates should contact the dean or associate dean of students. Graduate students should see the dean or assistant dean of graduate studies.

If administrative changes are needed to protect the rights of either party, the dean shall see that they are made. Extensions to any time limits listed herein can be made if required for fairness or practical necessity. Such extensions will be made in writing and sent to the parties involved.

A. Initial Meeting
When a student (“the complainant”) files a complaint with one of the deans, the dean will

- Ask the complainant questions to assess the situation for continuing threat to the complainant and/or other members of the community.
- Ensure that the complainant is given appropriate protection if necessary, including protection from retaliation for the complaint. Such protection may include a temporary housing reassignment and other restrictions on the accused (“the respondent”).

- Request a written statement of complaint from the complainant that includes as much detail as possible.
- Provide a copy of these procedures to the complainant.

B. Investigation
Within a reasonable amount of time (typically five working days) of meeting with the respondent, the dean will form a two-person team to investigate the case. The dean may choose to be one of the members of that team. The Institute will try to protect confidentiality. The degree to which confidentiality can be protected, however, depends upon the professional role of the person being consulted. For example, doctors and nurses who treat injuries sustained during sexual assaults are required to report to law enforcement. The professional being consulted should make these limits clear before any disclosure is made to them.

In addition, campus security is required by law to report to police certain factual details about incidents occurring on campus. Such reports are for statistical purposes and do not include individual identities. State law permits law enforcement authorities to keep confidential the identity of a person officially reporting a sexual assault. However, if the District Attorney files a criminal charge, confidentiality may not be maintained. The investigation should be completed within 21 days after the formation of the team. The Caltech investigation will occur independently from any legal proceedings that may take place. The process will be the following:

- The respondent should be notified as soon as possible after a complaint is filed. The respondent will receive a verbal summary of the complaint.
- Both investigators will interview the complainant and will interview the respondent, and each will be allowed to have a friend, who is not a lawyer, present during his or her interview. The friend will serve as an observer and will not participate in the proceedings.
- The complainant and the respondent will be asked to suggest available witnesses. Others may be interviewed to obtain relevant information.
- The complainant will be kept informed of the status of the investigation.

C. Determination
The investigators will consult with Institute counsel and, when the dean is not a member of the team, make a recommendation to the dean regarding the charges and the appropriate consequences, including discipline up to expulsion for the respondent.

In addition, the investigating team shall prepare a summary record of the case for the dean. This record will be considered a confidential Institute document and will be available only to the
Survivors who do not wish to be interviewed by the police should seek medical assistance from the Caltech Health Center, a private physician, or other community resources. Health-care professionals may need to fulfill legally mandated reporting requirements.

IV. Community Resources
Verbal and written information about sources of support on campus and in the community will be provided to the survivor. Referrals to the following will be included:

- Student Health Center (626) 395-6393
- Caltech Counseling Service (626) 395-8331
- Caltech Women’s Center (626) 395-3221
- Office of the Dean of Students (626) 395-6351 or (626) 395-3480
- Office of Residence Life (626) 395-6194
- Planned Parenthood (626) 798-0706
- Victim/Witness Assistance Program (626) 356-5714
- Pasadena Lawyer Referral Services (626) 795-5641

V. Further Complaints
The complainant should notify the dean immediately if anyone associated with this matter is under continuing threat. In such cases, the complainant has the right to file another complaint.

On a “need-to-know basis,” the following individuals or offices at the Institute may also be informed of the fact that a sexual assault complaint has been made and that both parties are members of the Caltech community. The names of the individuals involved will not be released without their consent unless the release is essential to the health and safety of a student or to otherwise fulfill the legal obligations of the Institute. In such rare circumstances, the vice president for student affairs is the only one authorized to make an exception to the rule of complete confidentiality regarding the names of those involved. If an exception is made to this rule, the parties will be notified as soon as possible.

- The President
- Vice President for Student Affairs
- Assistant Vice President for Student Affairs
- Dean of Students/Dean of Graduate Studies
- Director of Residence Life/Master of Student Houses
- Resident Associate
- Director of the Women’s Center
- Director of the Counseling Services
- Director of the Health Center
- The Office of Public Relations
- Campus Security

To preserve evidence, the survivor should not shower, douche, or change clothes. The survivor should bring a fresh change of clothes to the hospital. If clothes have been changed, the clothes worn at the time of the assault should be put in a paper bag and brought to the hospital.
Institute Policy on Unlawful Harassment

It is the policy of the Institute to provide a work and academic environment free of unlawful harassment and retaliation. Harassment is the creation of a hostile or intimidating environment, in which verbal or physical conduct, because of its severity and/or persistence, is likely to interfere significantly with an individual’s work or education, or affect adversely an individual’s living conditions. Harassment in any form based on sex, race, color, age, national origin, disability, religion, sexual orientation, or any other characteristic protected by state or federal laws, is prohibited, as are all forms of sexual intimidation and exploitation. All students, staff, and faculty should be aware that the Institute will not tolerate any conduct that constitutes illegal harassment. Complaints of harassment will be promptly and thoroughly investigated and appropriate action, including disciplinary measures, will be taken when warranted.

Faculty, students, and staff, at all levels, are responsible for maintaining an appropriate environment for study and work. This includes conducting themselves in a professional manner, actively discouraging harassment, and taking appropriate corrective action to prevent and eliminate harassment.

Faculty, staff, and students have the right at any time to raise the issue of harassment without fear of retaliation. Any faculty or staff member or student who feels that he or she has been harassed should review the Procedures for Investigating and Resolving Unlawful Harassment and Sexual Harassment Complaints at Caltech and immediately bring the matter to the attention of his or her supervisor or any of the individuals listed below. They will handle matters brought to their attention with sensitivity and discretion.

- Director, Employee Relations
- Division Administrators
- Division Chairs
- Provost
- Deans
- Student Affairs Directors (including the Master of Student Houses)
- Employee Relations Specialists

The Institute also offers members of the Caltech community the choice of seeking confidential counseling outside the Institute’s formal mechanisms for resolving harassment complaints. These confidential counseling services are intended for the personal benefit of the individual and offer a setting where various courses of action can be explored. Those seeking this type of assistance should check with the offices listed below, each of which has its own mandate and guidelines for providing services:

- Ombuds Office
- Staff and Faculty Consultation Center
- Counseling Center
- Women’s Center

Information for faculty, students, and staff is also available from the Women’s Center, Ombuds Office, Staff and Faculty Consultation Center, any Student Affairs office, or the Resident Associates.

Any member of the Caltech community who believes he or she has been a witness to or a target of harassment is urged to report promptly the facts of the incident(s) to any of the above individuals. Delay in reporting may impede the Institute’s ability to take appropriate action. In addition, an employee who believes he or she has been harassed has the right to file a complaint with the federal Equal Employment Opportunity Commission or the California Department of Fair Employment and Housing, which have the authority to remedy violations; students may file complaints with the federal Office of Civil Rights. No member of the Caltech community will be retaliated against for making a good faith report of alleged harassment or for participating in an investigation, proceeding, or hearing conducted by the Institute, or by a state or federal agency.

Guidelines Regarding Harassment

Harassment

Harassment is the creation of a hostile or intimidating environment, in which verbal or physical conduct, because of its severity and/or persistence, is likely to interfere significantly with an individual’s work or education, or affect adversely an individual’s living conditions. Abusive or harassing behavior, verbal or physical, which demeans, intimidates, threatens, or injures another because of his or her personal characteristics or beliefs is subject to the Institute’s disciplinary process. Examples of personal characteristics or beliefs include race, ethnicity, national origin, religion, disability, age, sex, and sexual orientation.

Harassment must be distinguished from behavior which, even though unpleasant or disconcerting, is appropriate to the carrying out of certain instructional, advisory, or supervisory responsibilities or is objectively reasonable under the circumstances. Similarly, instructional responsibilities require appropriate latitude for pedagogical decisions concerning the topics discussed and the methods used to draw students into discussion and full participation. There are, however, obligations of civility and respect for others that underlie rational discourse. Behavior evidently intended to dishonor or such characteristics as race, gender, national origin or ethnic group, religious belief, sexual orientation, age, or disability is contrary to the pursuit of inquiry and education and may be discriminatory harassment violative of law and Institute policy. Some examples of incidents that may constitute illegal harassment follow:

- An adviser tells a minority student not to take a certain course because the adviser says that other minority students have had difficulty in the course.
General Information

- A disabled individual is not included in an off-site outing because of lack of mobility.
- A supervisor assigns only menial tasks to a minority staff member.
- An older employee is disciplined for insubordination when the same conduct is tolerated from younger employees.
- Swastikas have been painted on the door of a room often used to prepare for the observance of the Jewish Sabbath.

Of course, in order to make an accurate judgement as to whether these incidents are illegal or violate policy, the full context in which these actions were taken or statements made must be considered. Conduct of this type will therefore initiate an investigation since making tolerance of illegal harassment or submission to it a condition of employment, evaluation, compensation, or advancement is a serious offense.

Sexual Harassment

Sexual harassment is unlawful, violating Title VII of the Civil Rights Act of 1964, as amended, Title IX of the Education Code, and California state law. Sexual harassment is defined as follows:

Unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature constitute sexual harassment when:

1. Submission to such conduct is made either explicitly or implicitly a term or condition of an individual's employment or education.
2. Submission to or rejection of such conduct by an individual is used as the basis for decisions affecting such an individual.
3. Such conduct has the purpose or effect of unreasonably interfering with an individual's performance or creating an intimidating, hostile, or offensive environment.

The test for “unwelcome” is not whether the participation was voluntary; the test is whether the conduct was unwelcome.

Peer or coworker sexual harassment is a form of prohibited sex discrimination where the objectionable conduct creates a hostile educational or work environment. Both males and females are protected from peer sexual harassment. Moreover, sexual harassment is prohibited regardless of the sex of the harasser, e.g., even where the harasser and the person being harassed are members of the same sex.

Some examples of conduct that may constitute harassment are:
- Unwanted sexual advances.
- Offering employment benefits in exchange for sexual favors.
- Making or threatening reprisals after a negative response to sexual advances.
- Making sexual gestures; displaying sexually suggestive objects, pictures, cartoons, posters, calendars, or computer screens.
- Making or using derogatory comments, epithets, slurs, or jokes of a sexual nature.
- Verbal sexual advances or propositions.
- Creating or obtaining sexually explicit materials using Institute resources or time that are not directly related to legitimate business of the Institute.
- Verbal abuse of a sexual nature, graphic commentaries about an individual's body, sexually degrading words used to describe an individual, suggestive or obscene letters, notes, or invitations.
- Unwelcome, intentional and/or repeated touching of a sexual nature.
- Stalking.
- Ostracizing individuals from group activities because of their sex or because they objected to harassing behavior.

Even when relationships are consensual, care must be taken to eliminate the potential for harassment or other conflicts. Institute practice, as well as more general ethical principles, precludes individuals from evaluating the work or academic performance of those with whom they have amorous and/or sexual relationships, or from making hiring, salary, or similar decisions.

Upon learning about such a relationship, the supervisor, dean, or division chair has the authority to eliminate any direct administrative or academic relationship between the involved individuals.

When a consensual personal relationship arises and a power differential exists, consent will not be considered a defense in a claim that the Institute policy has been violated. The individual in the relationship with greater power will bear the burden of accountability.

Investigations

The Institute is firmly committed to resolving allegations of harassment fairly and quickly. To ensure that open and forthright dialog occurs, attorneys are not permitted to accompany individuals during interviews, nor are interview sessions recorded in any manner. Those interviewed are always entitled to submit a written statement if they so choose or to consult with others regarding the interview, keeping in mind that these proceedings must be kept as confidential as possible.

Procedures for Investigating and Resolving Unlawful Harassment and Sexual Harassment Complaints at Caltech

I. Basic Principles

Caltech is dedicated to the free exchange of ideas and intellectual development as part of the campus milieu. A crucial part of Caltech culture is respect for one another; no member of the Caltech community should take unfair personal advantage of
another member of the community.

The Institute is committed to maintaining a work and study environment for all members of the Caltech community that is free of unlawful harassment, including sexual harassment. Harassment compromises the tradition of intellectual freedom and the trust placed in the members of the Caltech community. This policy is not intended to stifle vigorous discussion and debate, teaching methods, or freedom of expression generally. Harassment, as defined in the Institute's policy on harassment, is neither legal nor the proper exercise of academic freedom. Retaliation against an individual for reporting any type of harassment is also prohibited by law and Caltech policy.

Copies of the Institute's discrimination and harassment policies are available from the Human Resources Office, any Student Affairs office, the Women's Center, the Ombuds office, the Staff and Faculty Consultation Center, and the Provost's Office, are published in the *Caltech Catalog* and the employee handbook, and are on the Caltech Web site. The policy and these procedures identify appropriate people on campus to contact with complaints.

II. Procedures

A member of the Caltech community who believes he or she has been subjected to harassment, including sexual harassment, should review the Institute's policy. There are several courses of action available to the individual (“the complainant”) to address the problem, each with different consequences and implications with respect to confidentiality and resultant action. These include the following five possibilities.

Steps 1–4:

In general, the goal of steps 1–4 is to put an end quickly to the offending behavior without utilizing disciplinary action. Third parties with an official status at Caltech as described in step 4 are expected to follow up with the complainant to make sure that the issue has indeed been resolved. Mutually agreeable administrative changes are sometimes possible to ease an uncomfortable situation. Complainants should consider at the outset whether such changes might be desirable.

1. Talk personally with the offending individual, or write a letter asking him/her to stop. This is a personal step taken solely among the relevant parties.
2. Speak to members of the Counseling Center, the Ombuds office, the Staff and Faculty Consultation Center, or the Women's Center. Such conversations are confidential and are not communicated to individuals within or outside the Institute.
3. Resolve the complaint informally with the help of a third party who does not have a faculty, supervisory, or managerial position at Caltech. This could be a peer for staff; or, for students a peer, a Resident Associate, or a member of the Board of Control or the Graduate Review Board. The goal here is to allow the parties to resolve complaints without an investigation and without elevating the complaint within the Institute. The person here is not obligated to share this information with other persons holding positions of responsibility at Caltech.
4. Resolve the complaint informally with the help of a third party who has a faculty, supervisory, or managerial position at Caltech. The goal here is also to allow the parties to resolve complaints without an investigation and without elevating the complaint within the Institute. However, a person in these positions is obligated to follow up to be sure the situation has been resolved. This action might include referring to an appropriate individual within the Institute or sharing some of this information with other persons holding positions of responsibility at Caltech.

Step 5: Formal Complaints

A formal complaint is a request that the Institute take action. Complainants may file a formal complaint by reporting the offending conduct to individuals holding any of the following positions: provost, dean, director of employee relations, employee relations specialist, student affairs director (including master of student houses), division chair, division administrator. The complaint is then taken to the provost, director of employee relations, or dean(s) as appropriate (for faculty or postdoctoral scholars, staff, and students, respectively). This individual initiates an investigation. Step 5 is described more fully below.

These options are not mutually exclusive. The complainant has the right to choose which course to follow and is urged to submit a formal complaint in the event that informal steps do not stop the behavior.

Protection of complainant: The Institute encourages staff, faculty, and students to report and address incidents of harassment. Accordingly, retaliation against any member of the Caltech community is strictly prohibited. Overt or covert acts of reprisal, interference, discrimination, intimidation, or harassment against an individual or group for exercising his or her rights under this policy will be subject to appropriate, prompt disciplinary or remedial action.

Administrative and/or academic changes may be needed in order to protect the rights of the complainant. These changes should be discussed with the appropriate parties (provost, dean(s), director of employee relations). Changes might include transfer of supervisory or evaluative responsibility regarding grading, supervision, tenure review, letters of recommendation, etc. Care will be
taken to protect both the complainant and the respondent with the greatest degree of confidentiality. Complainants may have an adviser or support person present when reporting harassment. However, the proceeding is an internal Caltech function, and therefore the presence of legal counsel is not permitted by anyone during the conduct of these procedures.

Details of Formal Complaints
Formal complaints of harassment can be made orally but should, in the end, be submitted in writing. Complaints should be brought to the attention of one of the following individuals: provost, dean, director of employee relations, employee relations specialist, student affairs director, division chair, division administrator. They will ensure that complaints reach the provost, director of employee relations, or the dean(s), as appropriate. Within a reasonable length of time the accused party (“the respondent”) will be notified of the nature of the complaint, and an investigation will begin. If administrative changes are needed to protect the rights of the complainant during the investigation, the appropriate administrators shall see that they are made.

All formal complaints will be investigated within a reasonable length of time of the notification of the complaint, normally within 120 days. The investigation may be carried out by an individual, a committee, or an outside consultant. The purpose of the investigation is to determine the facts relating to the complaint.

Each individual or team member who conducts an investigation will be trained on various aspects of harassment. Because of the sensitive nature of these investigations, he or she will consult with the general counsel for legal assistance in investigative techniques, in applying legal standards regarding harassment, and in determining the Institute’s legal duties and obligations.

The complainant and respondent will be informed of the relevant procedures and will have an opportunity to comment on the suitability of the investigator(s). The Institute’s Equal Employment Opportunity (EEO) and harassment policy and policy against retaliation will be reviewed with both parties. The complainant and respondent shall be given the opportunity to present their cases separately to the investigator(s) and to suggest others who might be interviewed. Subsequently the investigator(s) can, if appropriate, interview other parties to reach findings and conclusions. The investigator(s) will summarize for the respondent the evidence in support of the complaint to allow the respondent the opportunity to reply. The investigation will remain confidential to the extent possible.

All parties who participate in interviews may submit written statements. Investigatory meetings will not be recorded. Findings and conclusions in the case will be reported, along with recommendations regarding resolution and sanctions appropriate to the case, to the respondent’s management/administration within 30 days of the investigation being concluded. The findings should also recommend measures that could prevent the occurrence of similar instances.

Exceptions to or modification of these procedures can be made by the provost, dean(s), or director of employee relations if required for fairness or practical necessity. Exceptions must be made in writing and notice provided to both the complainant and respondent. Other administrative issues regarding the conduct of the investigation will be decided by the provost, dean(s), or director of employee relations as needed.

Investigative files are confidential and will be maintained in the appropriate administrator's office.

Resolution
The conclusions that the investigation might reach include, but are not limited to, the following possibilities. In each case the investigator(s) should summarize the evidence that supports the conclusion.

1. A violation of the Institute’s EEO and/or harassment policies occurred.
2. Inappropriate behavior occurred, but did not constitute a violation of the Institute’s policies on discrimination and/or harassment. For example, the respondent improperly used the power of his or her position, used poor judgement, or violated applicable standards of ethical behavior.
3. The charges were not supported by the evidence.
4. The charges were brought without any basis or without a reasonable belief that a basis existed.

As soon as practicable after receiving the findings of the investigator(s), management/administration shall review the finding with dean(s), managers, division chairs, and others as necessary. Both the complainant and respondent shall be informed of the results.

If a violation of the Institute EEO and/or harassment policies occurred, sanctions shall be imposed. Depending on the severity of the case and role at Caltech, possible sanctions include, but are not limited to

Verbal counseling/training
A formal written warning placed in the respondent's file
Suspension of the right to accept new graduate students or postdoctoral scholars
Transfer of advisees and/or removal from positions of administrative responsibility
Removal from student housing
Removal from a supervisory position
Enforced leave of absence/suspension
Termination of employment or permanent dismissal
The first step in this procedure is to consult with the person appointed by the president of the Institute as mediator for student grievances. The mediator will assist the student in trying to work out the problem in an informal way. If the student is not satisfied with the results, he or she may appeal the case to the Student Grievance Committee. The members of the committee are undergraduates appointed by the ASCIT Board of Directors, graduate students appointed by the Graduate Student Council, faculty appointed by the faculty chair, and administrative staff appointed by the vice president for student affairs. Two members and two alternates are appointed from each of the four categories. The chair of the committee is appointed by the president and does not vote except in case of a tie. The grievant may present the case to the committee, present documents in support of the case, request that witnesses be called, and be assisted by another member of the Caltech community who is not an attorney. The committee will present its conclusions and recommendations to the president of the Institute, and the president's decision will be final. A complete statement of the student grievance procedure is available from the following offices: Student Affairs, Dean of Students, Dean of Graduate Studies, Director of Residence Life, Women's Center, and the Ombuds Office.

Employment Experience of Recent Graduates

A survey was made at the end of October 2000 of the future plans of students who had graduated earlier that month. Of those receiving the B.S. degree about whom Caltech has definite information, 43 percent had been accepted for admission to graduate or professional school for further education, 40 percent had accepted employment, 7 percent were uncommitted, and 6 percent had other plans. The average salary of those accepting employment was $55,555 per year. At the M.S. level, 71 percent had been accepted for graduate or professional school, 47 percent had accepted faculty or research fellow positions, 6 percent were uncommitted, and 6 percent had other plans.

Student Retention and Persistence Rates

Most undergraduates enter Caltech at the freshman level. Of the 234 freshmen enrolled during the 1999–2000 academic year, 228 have reenrolled in the first term of the 2000–01 academic year and are progressing, yielding a persistence rate of 97 percent. Of the 231 freshmen enrolled during the 1994–95 academic year, 189 graduated by June 2000, yielding a graduation rate for this group of 82 percent. At the graduate level, 91 percent of entering students graduate with the degree of either Master of Science or Doctor of Philosophy or, occasionally, both.
Student Patent and Computer Software Agreement

Students at Caltech have many opportunities to work in laboratories, in shops, or with computers, sometimes on individual projects and sometimes as part of a group activity. It is not unusual under these circumstances for inventions to be made, or computer software (including programs, databases, and associated documentation) to be written, and it is important that the student’s rights in patents on inventions and in computer software he or she may have made or written be protected. The Institute’s policy generally is to reserve to itself rights in inventions and computer software made by faculty and staff members with the use of Institute facilities or in the normal course of their Institute duties. The student’s position is different, however, and students generally retain all rights except in inventions or computer software made under circumstances such that rights clearly belong to the Institute or to the sponsor of the research. In order to clarify this situation and to protect the rights both of the student and of the Institute, each entering student is asked to sign the following agreement:

1. The Institute agrees that I shall retain all rights in inventions and computer software made or written by me except when such inventions are first conceived or reduced to practice or such computer software written: 1.1 in the course of the performance of work as a paid employee of the Institute; 1.2 in the course of independent student research financed by or otherwise obligated to an outside grant or contract to the Institute or financed by a grant from the Institute; 1.3 or when they arise out of work in the research program of an academic staff member.

2. The Institute agrees that rights of all other inventions or computer software made or written by me with the use of Institute facilities are to be retained by me, except for computer software that is written in connection with or used in the educational program of the Institute (e.g., course work, homework, theses), for which the Institute shall obtain an irrevocable royalty-free, nonexclusive license, with the right to grant sublicenses, for any purpose whatsoever.

3. I agree to notify the Institute promptly of any discovery, innovation, or invention that is first conceived or first actually reduced to practice, or computer software first written, under the conditions of items 1.1 or 1.2 or 1.3 above and computer software written in connection with or used in the educational program of the Institute under the conditions of paragraph 2 above.

4. I agree to assign to the Institute or its nominee all rights in the United States and foreign countries to inventions and computer software made or written under the conditions of items 1.1 or 1.2 or 1.3 above and to supply all information and execute all papers necessary for the purpose of prosecuting all patent applications, or registering copyrights in or otherwise protecting such computer software, and fulfilling obligations that may arise from such inventions or computer software. The Institute will bear the expenses for such patent applications or copyright registrations or for obtaining such other protection.

It is understood that the student will share in the same manner as a member of the academic staff such royalty income from patents or computer software as the Institute may receive on inventions assigned to it, or computer software assigned or licensed to it, as a result of this agreement.

It is also understood that the Institute relies on the foregoing agreement when it signs contracts with others and obligates itself with respect to discoveries, innovations, or inventions or computer software made or written in the course of research conducted at the Institute under such contracts.

Access to Student Records

The Institute maintains educational records for each student that include name, address, student identification number (including Social Security number), information on parents, guardian, and spouse, general information on academic status at the Institute, previous school data, results of standardized admissions examinations, courses previously taken or being taken, credits, and grades. Applicants for financial aid have an additional file holding those records. The Family Education Rights and Privacy Act (FERPA) and Caltech policy afford students certain rights as well as establish limitations, with respect to student education records. These rights and limitations are as follows:

1. The registrar of the Institute is responsible for maintaining all educational records, except for those involving Financial Aid. Caltech permits disclosure of educational records, without consent of the student, to Institute officials with legitimate educational interests in them. An Institute official is a person employed by the Institute in an administrative, supervisory, academic or research, or support-staff position (including security personnel, and Health and Women’s Center staff), a person with whom the Institute has contracted (such as an attorney, auditor, or collection agent), or a person serving on the Board of Trustees. A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility. They are available to the registrar, provost, president, general counsel, vice president for student affairs, dean of graduate studies, dean of students, director of financial aid, and faculty of the Institute and to their respective staffs for the normal academic and business
purposes of the Institute. Records involving financial aid are
maintained by the director of financial aid, and are available
to the director and staff, to the dean of graduate studies and
staff, to the Faculty Committee on Scholarships and
Financial Aid, and to the Faculty Committee on Graduate
Study, for the purpose of granting and administering the
Institute’s Financial Aid program. Except as authorized by
federal or state law or regulation, none of these educational
records nor any personally identifiable information con-
tained therein, other than directory information (see below),
will be made available to anyone else, other than the student,
without the written consent of that student. Where consent
is required and given, the student, upon request, will receive
a copy of the records to be released. The Institute will keep
a record, available to the student and kept with his or her
file, of all persons and organizations, other than those autho-
rized within the Institute, requesting or obtaining access to
the files, except when records have been produced in
response to a grand-jury subpoena or other subpoena issued
for a law-enforcement purpose and the court or issuing
agency has ordered that the existence or the contents of the
subpoena or the information furnished in response to the
subpoena not be disclosed.

2. Students are allowed access to their educational records as
follows: A student may inspect his or her academic transcript
during normal working hours. To see other records, the stu-
dent must provide a written request to the registrar or to the
director of financial aid or to the dean of graduate studies or
to the dean of students, or their deputies, as appropriate. A
mutually convenient time will be arranged within 10 work-
ing days after receipt of the request for the student to ex-
amine the records in his or her file. At that time the student
may examine all educational records in the file with the
exception of those specifically exempted by Part 99 of Title
34 of the Code of Federal Regulations. The student may
obtain copies of any of the records available to him or her;
the cost will be 44 cents for the first page copied and 12
cents for each additional page. All reasonable requests for
explanations or interpretations of the educational records
will be honored, and if inaccurate, misleading, or otherwise
inappropriate data are found in these records, they will be
promptly corrected or deleted. The student also has the
right to insert into the records a written explanation respect-
ing the contents of such records. If the student and the reg-
istrar, or the director of financial aid, or the dean of graduate
studies, or the dean of students, or their deputies, do not
agree on any item contained in the educational records, the
student may submit a written request to the provost for a
hearing to challenge the content of the records. The provost
will schedule such a hearing within 30 days after receipt of
the request and will notify the student at a time reasonably
in advance of the hearing of its date, time, and place. The
hearing will be before a board composed of the provost, the
vice president for student affairs, or their designated alter-
nates, and at least one disinterested member of the faculty,
who shall be appointed by the chair of the Faculty Board.
None of those hearing the challenge may have a direct inter-
est in the outcome. The student will be afforded a full and
fair opportunity to present evidence relevant to the issues
raised and may be assisted or represented by individuals of
his or her choice at his or her own expense, including an
attorney. The decision of the board on the correctness of the
educational record, as determined by majority vote, will be
in writing, will be rendered within 10 days after the conclu-
sion of the hearing, and will be final. This decision will be
based solely upon the evidence presented at the hearing and
will include a summary of the evidence and of the reasons
for the decision. If, as a result of the hearing, the Institute
decides that the information in the files is inaccurate, mis-
leading, or otherwise in violation of the privacy or other
rights of the student, the Institute shall amend the records
accordingly and so inform the student in writing. However,
if, as a result of the hearing, the Institute decides that the
information is not inaccurate, misleading, or otherwise in
violation of the privacy or other rights of a student, it shall
inform the student of the right to place in the educational
records a statement commenting on the information in the
records and/or setting forth any reasons for disagreeing with
the decision of the Institute.

3. The Institute considers the following to be directory infor-
mation: a student’s name, gender, address, e-mail address,
telephone listing, date and place of birth, major field of
study, year in school, participation in officially recognized
activities and sports, weight and height if a member of an
athletic team, dates of attendance, degrees and awards
received, thesis title, home town, and most recently attended
educational agency or institution. Directory information is
made generally available to requestors. Any student may,
however, have part or all of this information withheld by
notifying the registrar in writing no later than 30 days after
the commencement of classes in the academic year. That
information will then be withheld for the balance of that
academic year. If the information is to be withheld in subse-
quently years, new requests must be filed.

4. A student will not be required to waive any rights regarding
access to educational records. However, a student may vol-
required number of units, fails to receive satisfactory grades, or engages in unsatisfactory conduct, the record is marked to indicate this, and the student is forbidden to continue at the Institute.

5. The Institute reserves the right to destroy from time to time any and all educational records that it maintains on a student, except to the extent that the law requires their maintenance for a longer period of time. However, records, access to which has been requested, are not allowed to be and will not be destroyed until such access has been granted, or denied as described in (2) of this section.

6. Students who believe their rights under FERPA may have been violated may file a complaint with the Family Policy Compliance Office, U.S. Department of Education, 400 Maryland Avenue SW, Washington D.C. 20202-4605.

Academic Records of Veterans

The Institute maintains a written record of a student's previous education. This is part of the student’s permanent record card, and included on this is a summary of any prior college-level education. A true copy of a transcript of college-level work at other institutions is maintained as part of the student's record. The amount of credit granted for prior training is indicated on the student's permanent record card and, where this results in the shortening of a required training period in the case of a veteran, the Veterans Administration is notified.

The Institute's permanent record card for each student shows the progress that student is making at the Institute. There is a record of each course enrolled in each term with a grade recorded for the course. The total number of units earned is kept so that the record will show continued progress toward the degree sought.

The final grades are recorded at the end of each term of the school year, and the accumulative permanent record has on it grades for all subjects taken at the Institute. No student is allowed to enroll repeatedly in a course and withdraw without penalty. If a student enrolls in a course, he or she is expected to complete the course or receive a failing grade unless he or she withdraws from the course prior to the deadline for dropping courses. All students must maintain a minimum load equivalent to 12 quarter hours each term; no student may drop courses that would bring him or her below this level of effort. At any time when the student falls below the
Areas of Study and Research

AERONAUTICS

The Guggenheim Aeronautical Laboratory, the Karman Laboratory of Fluid Mechanics and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical Laboratories, widely known as GALCIT. In this complex are housed the applied and computational mathematics group, the jet propulsion center, and the hydrodynamics laboratories, as well as the various disciplines making up the broad field known as aeronautics.

Areas of Research

Aeronautics has evolved at Caltech from a field of basic research and engineering, primarily related to the development of the airplane, into a wide discipline encompassing a broad spectrum of basic as well as applied problems in fluid dynamics and mechanics of materials. Research at GALCIT has traditionally pioneered exploration of new areas that have anticipated subsequent technological demands. This tradition places a high premium on an in-depth understanding of fields both closely and remotely related to the behavior of fluids and structures, such as physics, applied and computational mathematics, geophysics, materials science, electronics, and even astrophysics. As a consequence, GALCIT students are known and sought after for their broad yet intense education and for their ability to deal with new and challenging problems.

Major areas of study and research currently pursued by aeronautics students at Caltech are briefly described below.

- **Physics of Fluids.** Fluid dynamics as a discipline is as much a part of physics as of engineering. Physics of fluids refers to research in areas closer to applied physics than to direct technical applications. Present active research includes studies in gasdynamics and hypervelocity flows, diffraction of shock waves, detonation waves, shock-induced Rayleigh–Taylor instability, and transient supersonic jets, the development of laser scattering diagnostic techniques for fluid-flow measurements, study of structures and mechanics in transition and turbulence, and studies of two-phase flows and turbulent mixing.

- **Computational Fluid Dynamics.** Many of the subjects studied experimentally at GALCIT are also being investigated by numerical simulation. Present active research areas in computational techniques include direct numerical simulation, particle methods for flow simulation, subgrid-scale models for compressible and incompressible flows, large-eddy simulation methods, flows with shocks, high-explosive interactions with deformable boundaries, and detailed chemical reaction kinetics in flames and detonations.
- **Technical Fluid Mechanics.** These areas are related to a variety of modern technological problems and, in addition, to the traditional aeronautical problems of drag, wing stall, and shear flow mixing. Additional areas of activity include bluff-body aerodynamics, fluid-structure interaction, turbulent combustion, laminar diffusion flames and their instabilities, explosions, hydrodynamics and two-phase flows, interaction of vorticity with free-surface, cardiac flows, swimming and flying, and active and passive control of transition and turbulence. Acoustics problems studied include jet noise, combustion noise, and instabilities such as the generation of organ pipe oscillations in large burners of electric generating plants.

- **Mechanics of Materials.** Mechanics of materials research involves both the quasi-static and dynamic characterization of solids. In order to understand materials for applications in a wide range of structures germane to aeronautics as well as other engineering disciplines, both the physical foundations of that behavior as well as the mathematical or numerical representation of such behavior needs to be understood. Accordingly, studies involve material response at both the macroscopic (continuum) scales and the micro- and nanoscales. Of interest are the typical engineering metals, multiphase (composite) materials, polymers and ceramics, as well as active materials used in structural actuation and controls.

- **Computational Solid Mechanics.** Computational solid mechanics addresses phenomena ranging from the atomistic scale, e.g., nanoindentation, to the structural scale, e.g., fracture of aircraft components. It provides an indispensable tool for understanding the relation between structure and mechanical properties of materials, for predicting the efficiency of such industrial processes as machining and metal forming, and for assessing the safety of such structures as airplanes, automobiles, and bridges. The goals and objectives of this activity are to provide a state-of-the-art environment for the development of numerical methods in solid mechanics, to provide the computational resources required for medium-scale simulations in solid mechanics, and to serve as an instructional facility for advanced courses.

- **Mechanics of Fracture.** An active effort is being made to understand mechanisms in a wide range of fracture problems. Aspects that are studied include quasi-static and dynamic crack growth phenomena in brittle and plastically deforming solids, polymers and advanced composites, as well as fatigue and failure of adhesive bonds. Research areas adjunct to fracture studies in polymers are the non-linearly viscoelastic behavior of polymeric solids and issues of durability in advanced aerospace structures.

- **Aeronautical Engineering and Propulsion.** Research in the aeronautical engineering area includes studies of airplane trailing vortices and separated flows at high angles of attack. Research work in the propulsion area has centered on the fluid dynamic problems associated with combustion, solid propellant rocket motor instabilities, fluid dynamics of scramjets, and pulse detonation engines.

- **Jet Propulsion and Space Applications.** The Daniel and Florence Guggenheim Jet Propulsion Center conducts a large portion of its instruction and research in close cooperation with the aeronautics group. Students wishing to pursue courses of study and research in jet propulsion take degrees in aeronautics or mechanical engineering. The program generally emphasizes basic subjects (such as combustion, two-phase flow, spacecraft and mission design, acoustics) that are applicable to a wide variety of engineering problems. The experimental facilities of the jet propulsion center are located in the Karman Laboratory of Fluid Mechanics and Jet Propulsion. Some of the facilities of the Jet Propulsion Laboratory have also been used under special arrangement.

Physical Facilities
The Graduate Aeronautical Laboratories contain a diversity of experimental facilities in support of the programs described above. Low-speed wind tunnels include the John W. Lucas Adaptive Wall Tunnel, the Merrill Wind Tunnel, which can be operated by a single person, and special-purpose flow facilities. Both a high-speed water tunnel (100 feet per second) and a free-surface water tunnel are housed in the hydrodynamics laboratory; they are used for studies of acoustics, laminar-turbulent flow transition, and the structure of turbulent shear flows. Smaller water channels and a tow tank for studies of wave motion and flow visualization are also available. For investigations of high-speed flows there is a Ludwig tube, a supersonic shear layer facility, and the T5 shock tunnel for studying hypervelocity gas flows up to 7 km/s. Shock tubes and other special facilities are available for the study of extreme temperatures, shock waves, deflagrations, detonations, acoustics, and combustion at variable pressure conditions.

The solid mechanics laboratories contain standard as well as special testing facilities for research related to aircraft, spacecraft structures, and failure/fracture behavior of materials under static and dynamic loads, including three servohydraulic facilities, two of which operate on a “tension/torsion” mode. A range of digital and film high-speed cameras offering recording at rates from still to 2 million frames per second are available for the study of fast phenomena, such as wave propagation, dynamic buckling, and the mechanics of static and dynamic fracture. Dynamic testing facilities include specialized electromagnetic loading devices (stored energy ~120 KJ), a drop weight tower, split Hopkinson bars (axial/torsional), and plate impact apparatus. Diagnostic devices include full-field interferometric and temperature measurements, both for stat-
ic and dynamic applications. State-of-the-art facilities are available for scanning microscopy (AFM, STM) and electromechanical characterization of materials.

State-of-the-art electronic instrumentation is being developed and used. Extensive use is made of computer systems for real-time control of experiments, for data acquisition, processing, and storage, and for digital image processing. Computational facilities include powerful workstations, on-campus parallel processing machines, and remote supercomputers such as those generally available at NSF, NASA, and DOE centers. Graphics workstations are available to support research in computational fluid dynamics and solid mechanics.

APPLIED AND COMPUTATIONAL MATHEMATICS

An interdisciplinary program of study in applied and computational mathematics that leads to the Ph.D. degree is offered by the Institute. In addition to various basic and advanced courses taught by the applied and computational mathematics faculty, broad selections are available in mathematics, physics, engineering, and other areas. Students are expected to become proficient in some special physical or nonmathematical field. A subject minor in applied computation is offered jointly with the computer science option.

In addition to the applied and computational mathematics faculty, professors from other disciplines such as mathematics, physics, engineering, biology, etc., supervise research and offer courses of special interest. Close contact is maintained with experimental programs in fluid and solid mechanics and with research groups in parallel computation. The applied and computational mathematics group has access to supercomputers and concurrent computers, and has a variety of its own computers, graphics terminals, and other equipment. Library facilities are excellent, comprising all the journals, a complete general library, and a special research library in engineering and applied science.

The present graduate program is one leading mainly to the Ph.D. degree. The curriculum consists of two types of courses: those that survey the methods used in applied and computational mathematics, and those that have a special applied and computational mathematics flavor and represent active research interests of the members of the faculty. Among the latter have been wave motion, perturbation theory, fluid mechanics, stochastic processes, wavelet analysis, signal processing, numerical analysis, and computational fluid dynamics. Through study outside of applied and computational mathematics, each student is expected to become competent in some special physical or nonmathematical field. In this way, subjects for research appear naturally, and a broad educational program is provided.

The group primarily interested in applied and computational mathematics currently consists of approximately 25 students and eight professors. Also, each year many distinguished visitors come either to present lectures or remain in residence for large parts of the academic year.

Areas of Research

Research is particularly strong in theoretical and computational fluid mechanics, theoretical and computational materials science, integral equations, ordinary and partial differential equations, bifurcation theory, perturbation and asymptotic methods, stability theory, variational methods, approximation theory, statistical estimation, computational harmonic analysis, stochastic processes, mathematical biology, large-scale scientific computing, and related branches of analysis.

APPLIED MECHANICS

Advanced instruction and research leading to degrees of Master of Science and Doctor of Philosophy in applied mechanics are offered in such fields as elasticity; plasticity; wave propagation in solid media; mechanics of quasi-static and dynamic fracture; dynamics and vibrations; finite element analysis; and stability, control, and system identification of mechanical and structural systems.

Research studies in these areas that illustrate current interests include linear and nonlinear vibrations; structural dynamics and control for earthquake and wind loads; linear and nonlinear problems in static and dynamic elasticity, plasticity, and viscoelasticty; wave propagation in solids; mechanics of time-dependent fracture; chaotic behavior of dynamical systems; and material instabilities and phase transformations in solids.

Physical Facilities

In addition to the regular facilities in the Division of Engineering and Applied Science, which include extensive computing facilities, certain special facilities have been developed in connection with applied mechanics activities. The vibration laboratory is equipped with a good selection of modern laboratory apparatus and instrumentation for experimental research in shock and vibration, and the earthquake engineering research laboratory contains specialized equipment for vibration tests of buildings, dams, and other structures, and for the recording and analysis of strong-motion earthquakes. The solid mechanics laboratory located in the Graduate Aeronautical Laboratories contains extensive testing.
equipment for the study of fracture and structural failure. Excellent computing facilities are available through the campus computing network and in the specialized centers of various research groups.

APPLIED PHYSICS

An interdivisional program in applied physics for both undergraduate and graduate study was initiated in 1970. Applied physics at Caltech is in a fortunate position: The comparatively small size of Caltech coupled with its great strength in both the pure sciences and engineering make it possible to have a faculty with a wide interest in the application of modern physics to technology, without losing close interaction with “pure subjects.” At present, members of four divisions—Engineering and Applied Science; Physics, Mathematics and Astronomy; Chemistry and Chemical Engineering; and Geological and Planetary Sciences—participate in instruction and research in applied physics leading to a B.S. degree as well as to M.S. and Ph.D. degrees.

The program is designed for students who are deeply interested in physics but at the same time are fascinated by the interrelation of physical problems and technological development; i.e., students who like to work with problems in physics that originate from or result in applications. A sharp division between “pure” and “applied” physics or between applied physics and engineering cannot be drawn, and the option of applied physics should be considered a bridge rather than a divider. A student is expected to have a thorough background in physics, as well as a broad background in related fields of technology.

Members of the faculty involved with the educational and research activities in applied physics remain members of their respective divisions. Graduate students who choose the applied physics option will do research in one of the cooperating divisions.

In setting up the undergraduate curriculum, every effort has been made to facilitate the transition into and out of the option. In general an undergraduate student in applied physics will devote somewhat more time to the study of condensed matter than will the “pure” physicist. Since it is expected that most students will be interested in experimental research, a special effort has been made to set up challenging laboratory courses and to provide an opportunity to do a senior thesis.

For first-year graduate students and adventurous seniors, a set of basic courses covering broad areas in applied physics is available, supplemented by a set of more specialized courses often closely related to a specific research effort.

Astronomy

The astronomical observatories at Palomar and Mauna Kea, and the Owens Valley Radio Observatory and the Caltech Submillimeter Observatory, together constitute a unique and unprecedented concentration of ground-based facilities in astronomy.

Access to satellite-based infrared observations is provided by Caltech’s Infrared Processing and Analysis Center (IPAC) and the newly established SIRTF Science Center (SSC). For example, IPAC currently supports a number of NASA missions: 2MASS, an all-sky survey at 2 microns, and the Infrared Space Observatory (a mission of the European Space Agency). The SSC will conduct the science operations of the Space Infrared Telescope Facility—one of the great space observatories. The GALEX mission, an upcoming space UV survey of the sky, is also used by Caltech.

The Division of Physics, Mathematics and Astronomy also conducts work in theoretical astrophysics, laboratory astrophysics, gravitational-wave physics, and infrared and submillimeter astronomy, as well as studies of the cosmic microwave background (CMBR). The radio astronomy group works in close collaboration with the optical astronomers in Pasadena. There is close cooperation between these groups and the students and astronomers interested in planetary physics and space science. Caltech is also among the leaders in the development of the national virtual observatory.

As a result of the cooperation possible over a broad range of astronomy and theoretical astrophysics, unsurpassed opportunities exist at Caltech for advanced study and research. Courses of study depend upon a broad and thorough preparation in physics, mathematics, and other relevant subjects; the faculty offers advanced instruction in astronomy, astrophysics, solar physics, planetary physics, and astronomical instrumentation and techniques.

Areas of Research and Physical Facilities

Research in applied physics covers a broad spectrum of activities, ranging from nanostructured materials, solid state devices, and photonics to biophysics and plasma physics. There is research in progress in single-molecule biophysics, microfluidics, nanostructure fabrication and application in photonics and electronics, ultra-high-speed fiber optic devices and communications systems, compound semiconductor materials and device physics, spin-dependent transport, photovoltaics, chemical vapor deposition processes, and fluid dynamics. The research program is centered in the Thomas J. Watson, Sr., Laboratories of Applied Physics. This 40,000-square-foot building contains research laboratories including a central micro/nano fabrication facility as well as offices, conference rooms, and a classroom, nestled around an attractive courtyard.

ASTRONOMY

The astronomical observatories at Palomar and Mauna Kea, and the Owens Valley Radio Observatory and the Caltech Submillimeter Observatory, together constitute a unique and unprecedented concentration of ground-based facilities in astronomy.

Access to satellite-based infrared observations is provided by Caltech's Infrared Processing and Analysis Center (IPAC) and the newly established SIRTF Science Center (SSC). For example, IPAC currently supports a number of NASA missions: 2MASS, an all-sky survey at 2 microns, and the Infrared Space Observatory (a mission of the European Space Agency). The SSC will conduct the science operations of the Space Infrared Telescope Facility—one of the great space observatories. The GALEX mission, an upcoming space UV survey of the sky, is also used by Caltech.

The Division of Physics, Mathematics and Astronomy also conducts work in theoretical astrophysics, laboratory astrophysics, gravitational-wave physics, and infrared and submillimeter astronomy, as well as studies of the cosmic microwave background (CMBR). The radio astronomy group works in close collaboration with the optical astronomers in Pasadena. There is close cooperation between these groups and the students and astronomers interested in planetary physics and space science. Caltech is also among the leaders in the development of the national virtual observatory.

As a result of the cooperation possible over a broad range of astronomy and theoretical astrophysics, unsurpassed opportunities exist at Caltech for advanced study and research. Courses of study depend upon a broad and thorough preparation in physics, mathematics, and other relevant subjects; the faculty offers advanced instruction in astronomy, astrophysics, solar physics, planetary physics, and astronomical instrumentation and techniques.
Areas of Research

Both observational and theoretical astrophysics are actively pursued. Topics of current interest in optical and infrared astronomy include observational cosmology; spectroscopic and spectrophotometric studies of quasars and galaxies; studies of the dynamics and composition of galaxies and clusters, nebulae, and interstellar matter; planet and star formation; statistical studies pertinent to the structure of the galaxy; globular clusters; gamma-ray bursts; neutron stars; digital sky surveys; and the physics of solar phenomena.

Research in planetary and solar system astronomy is pursued in cooperation with groups in the Division of Geological and Planetary Sciences.

The research in radio astronomy covers cosmology, via observations of the microwave background radiation, and the physical properties of galactic and extragalactic radio sources, including quasars, pulsars, radio galaxies, stellar envelopes, and the planets. The properties of the interstellar medium in our own and other nearby galaxies are investigated in spectroscopic studies of various atomic and molecular spectral lines.

Theoretical astrophysics is pursued not only in the astronomy department, but in physics and geology as well, and at Caltech includes work on supernovae, pulsars, stellar structure and evolution, stellar and planetary atmospheres, interstellar and intergalactic matter, the physics of radio sources, nucleosynthesis, relativity, and cosmology.

Physical Facilities

The Rockefeller Boards provided, in 1928, for the construction by the Institute of an astronomical observatory on Palomar Mountain, equipped with a 200-inch reflecting telescope, 48-inch Oschin and 18-inch Schmidt wide-angle telescopes, and other auxiliary instruments, together with an astrophysical laboratory on the Institute campus. The 48-inch Oschin Telescope has made possible complete surveys of the northern sky. A 60-inch telescope owned jointly by Caltech and the Carnegie Institution of Washington was completed in 1969. The Palomar telescopes have modern instrumentation and detectors designed for both optical and infrared wavelengths.

A multipurpose solar equatorial telescope has been installed at an observing station at Big Bear Lake and is now run jointly with the New Jersey Institute of Technology. The unique atmospheric conditions in this area make possible investigations of the fine structure of the solar atmosphere. Emphasis is on high-resolution spectroscopy, magnetography, and cinematography. A major effort is the study of solar oscillations.

The Owens Valley Radio Observatory is in a radio-quiet location 400 km north of Pasadena, near Big Pine, California. Its facilities include a 40-meter telescope, a six-element millimeter-wave synthesis interferometer array, a five-element interferometer for solar studies, and a 5.5-meter telescope dedicated to observations of the microwave background radiation. The high-precision 10-meter telescopes of the millimeter array are used at wavelengths of 1.3 to 4 mm to map the distribution of interstellar gas and dust in star-forming regions of our own and other galaxies. The array also enables detailed studies of the sun, planetary atmospheres, and the envelopes around evolved stars. These telescopes, which are equipped with very sensitive cryogenically cooled receivers and sophisticated signal-processing and data-recording systems, give Caltech staff and students the widest range of observing opportunities available at any university-related radio observatory in the world.

The Caltech 10-meter Submillimeter Observatory, located on Mauna Kea, Hawaii, was completed in 1986 for the study of the chemistry and physics of planets and cool regions of the interstellar medium.

A special purpose instrument for imaging the microwave background, located in Chile, is now operational.

The Keck Foundation funded the construction of two 10-meter optical-infrared telescopes, operated jointly with the University of California as part of an interferometer. Each Keck Telescope has four times the power of the Palomar 200-inch. It is planned to combine them as an interferometer of unprecedented power. These are the two largest optical-infrared telescopes in the world, equipped with adaptive optics and state-of-the-art optical and infrared instrumentation.

BIOCHEMISTRY AND MOLECULAR BIOPHYSICS

Biochemistry and molecular biophysics has been established as an interdisciplinary program, at the interface of biology and chemistry, that seeks to understand the chemistry of life. Thus, biochemists and molecular biophysicists study the atomic structure and folding of biopolymers; their interactions with each other and with small molecules; and the roles of particular biopolymers and biopolymer assemblies in cellular physiology. The basic building block of life is the cell; the intellectual focus of modern biochemistry and molecular biophysics is to understand how individual parts interact to give cells their wide spectrum of functions. In particular, biochemistry and molecular biophysics addresses the principles through which the individual components of cells combine in an orderly self-association to produce their form, their function, and their dynamic behavior.
At a variety of levels of organization, from the molecular to the cellular to the organismal levels, biology is becoming more accessible to approaches that are commonly used in engineering—mathematical modeling, system theory, computation, and abstract approaches to synthesis. Conversely, the accelerating pace of discovery in biological science is suggesting new design principles that may have important practical applications in man-made system design. Synergism created at the interface of biology, engineering, and chemistry offers unprecedented opportunities to meet challenges in these areas. The educational goal of this option is to train graduate students in both engineering and biological science, thereby allowing them to integrate theses approaches. Such students should have or acquire a strong background in mathematics and physical sciences, biology, and chemistry. As biologists, bioengineers will study existing biological systems to deduce and apply design and system principles, whereas as engineers, they can create new biological structures and new types of man-made systems.

Areas of Research
Two major research themes of this option are “synthesis” and “analysis.” The notion of synthesis includes the synthesis of novel biomaterials and biosystems, as well as biologically inspired man-made systems. The analysis theme seeks to exploit the concept of “reverse engineering” of biological systems; that is, to understand the physical and engineering principles used by nature in biological systems. To achieve this goal, a significant component of the program involves system theory, informatics, mathematical modeling, optics, microfabrication, and biochemical analysis techniques as is necessary to “reverse engineer” and understand complex biological systems. Research in this option focuses on the development of new instrumentation for research and clinical applications.

The main active areas of research in bioengineering by the associated faculty include

- Biomaterial engineering;
- Tissue engineering;
- Cardiovascular fluid dynamics;
- Microfluidic devices;
- Microsensors for clinical and research applications;
- Biological and biomedical imaging;
- Metabolic and protein design and engineering;
- Principles of evolutionary design;
- Neural prostheses;
- Optical trapping and manipulation of molecules and particles;
- Biomechanics of the musculoskeletal system;
- Biomimetics (mechanophysics of swimming, walking, undulating, and flying);
- Transport phenomena in biological systems;
- Robotic technology for minimally invasive surgery.

BIOENGINEERING

The bioengineering option at Caltech is concerned with the enhanced analysis and understanding of complex biological systems. Researchers in this option also seek to apply engineering principles to the synthesis of novel biological and biomimetic systems. While the bioengineering option operates within the Division of Engineering and Applied Science, Biology, and Chemistry and Chemical Engineering.
BIOLOGY

Recent dramatic progress in our understanding of the nature of life has revolutionized the science of biology. Applications of the methods, concepts, and approaches of modern mathematics, physics, chemistry, and information science are providing deep insight into basic biological problems such as the manner in which genes and viruses replicate themselves; the control of gene expression in cells; the regulation of cellular activity; the mechanisms of growth and development; and the nature and interactions of nerve activity, brain function, and behavior. Qualified experimental and computational biologists will find opportunities for challenging work in basic research as well as in medicine and in biotechnology.

Because of the eminent position of the California Institute of Technology in both the physical and biological sciences, students at the Institute have an unusual opportunity to be introduced to modern biology.

Areas of Research

Research (and graduate work leading to the Ph.D. degree) is chiefly in the following fields: biochemistry, biophysics, cell biology, developmental biology, genetics, immunology, molecular biology, structural biology, neurobiology, and virology. Biochemical methodology plays an important role in many of these fields, and there is extensive interaction with related programs in biochemistry within the Division of Chemistry and Chemical Engineering, notably the new biochemistry and molecular biophysics option.

The programs in cellular, molecular, and developmental biology are based upon approaches derived from biochemistry, biophysics, and genetics that offer new possibilities for expanded insight into long-standing problems. Neurobiology is a major area of emphasis within the Division of Biology. A comprehensive program of research and instruction in neurobiology has been formulated to span from molecular and cellular neurobiology to the study of animal and human behavior including the computational modeling of neural processes.

A new geobiology option is described in the Geological and Planetary Sciences section.

Physical Facilities

The campus biological laboratories are housed in six buildings: the William G. Kerckhoff Laboratories of the Biological Sciences, the Gordon A. Alles Laboratory for Molecular Biology, the Norman W. Church Laboratory for Chemical Biology, the Mabel and Arnold Beckman Laboratories of Behavioral Biology, the Braun Laboratories in Memory of Carl F and Winifred H Braun, and the Beckman Institute. They contain classrooms and undergraduate laboratories, as well as research laboratories where both undergraduate and graduate students work in collaboration with faculty members. Special facilities include rooms for the culturing of mutant types of Drosophila, a monoclonal antibody production facility, a fluorescence-activated cell sorter, scanning and transmission electron microscopes, a confocal microscope facility, a magnetic resonance imaging center, a transgenic mouse facility, a state-of-the-art microchemical facility for sequencing and synthesizing biologically important macromolecules, and a protein expression and purification center.

About 50 miles from Pasadena, in Corona del Mar, is the William G. Kerckhoff Marine Laboratory. This laboratory provides facilities for research in cellular and molecular biology using marine animals and for collecting and maintaining these animals.

BIOTECHNOLOGY

Biotechnology is a growing area of interdisciplinary research with a long tradition at Caltech. It includes a wide range of research opportunities in the Divisions of Biology, Chemistry and Chemical Engineering, and Engineering and Applied Science. Areas of emphasis include the development and application of new methods and instruments for studying a spectrum of biological problems ranging from the structure, function, and chemistry of key macromolecules such as proteins and DNA to the imaging of cellular processes or the complex problems of neural systems. Other programs focus on the creation, study, and use of novel microorganisms and proteins, combining classical and molecular genetic approaches with modern chemistry and engineering science. New challenges in data analysis and molecular modeling bring together research in biology and chemistry with computer science and applied and computational mathematics. Research in these areas leading to the Ph.D. may be pursued by entry into one of the relevant graduate options in the divisions listed above. The interdisciplinary nature of biotechnology often includes course work and research collaborations that embrace more than one division. Each graduate option specifies the emphasis of the educational program and its degree requirements.

Excellent facilities for biotechnology research are available in each of the participating divisions. For example, the Beckman Institute provides extraordinary resources for development and application of new instruments and methods.
CHEMICAL ENGINEERING

The chemical engineering faculty teach and conduct research on fundamental chemical and transport processes and their application in understanding, designing, and controlling a broad spectrum of complex chemical processes. The faculty and students utilize their analytical methods and resources to understand diverse processes and to synthesize new working materials and new operating strategies for improving process performance. The combination of engineering principles, chemistry, biology, and mathematics that characterizes chemical engineering at Caltech enables students and faculty to contribute to the solution of a broad spectrum of critical problems and to aid in creating emerging new high-technology industries.

Areas of Research
Many different research areas are offered to students seeking the degrees of Master of Science or Doctor of Philosophy in chemical engineering. Particular research fields emphasized in the department include

- **Biochemicals**. In vitro evolution of industrial enzymes; protein adaptation to extreme environments; protein synthesis and design; theory of directed evolution.
- **Fluid mechanics and transport processes**. Mechanics of polymeric liquids, microstructured fluids, colloidal dispersions and suspensions. Transport in heterogeneous media.
- **Biomaterials**. Synthesis and properties of organic materials compatible for use in living systems.
- **Catalysis**. Synthesis of molecular sieves and molecular sieve thin films. Synthesis of inorganic membranes for gas separations and catalysis.
- **Plasma processing of electronic materials**. Etching and deposition. Dynamics of plasma-surface interactions. Modeling and simulations of pattern-dependent charging and profile evolution during plasma etching.
- **Environmental chemical engineering**. Physics and chemistry of atmospheric gases and aerosols.
- **Aerosols and colloids**. Nucleation and growth of particles. Particle formation and reactions. Structure and properties of colloidal dispersions.

Physics of complex fluids. Structures, phase transitions, and dynamics of polymers, liquid crystals, surfactant solutions, and suspensions.

Physical Facilities
The chemical engineering laboratories, housed in the Eudora Hull Spalding Laboratory of Engineering, are extremely well equipped. The equipment includes experimental reactors, computational facilities, and NMR spectrometers, as well as numerous special research facilities for molecular graphics, DNA synthesis, and electronic, optical, and chemical measurements.

CHEMISTRY

Caltech’s chemistry program offers exciting opportunities for study and research in many areas of chemical science. Eminent faculty and strong programs are available in chemical synthesis, structural chemistry, chemical dynamics and reaction mechanisms, theoretical chemistry, biochemical, synthetic, bioorganic, and biophysical chemistry, materials chemistry, and molecular engineering. Active interaction exists between chemistry and other disciplines at Caltech, especially applied physics, biology, chemical engineering, environmental engineering, geological and planetary sciences, and materials science. There is strong interest on the part of the faculty in both teaching and research, and the undergraduate and graduate programs are designed to encourage the greatest possible amount of freedom, creativity, and flexibility.

Areas of Research
Caltech has long had a reputation for excellence in chemistry in the areas of molecular structure and the nature of chemical bonding. This tradition is continuing. Work in structural chemistry ranges from X-ray crystallographic structural determinations of macromolecules, covalent compounds and transition metal complexes, to investigations of the stereochemistry of organic molecules, conformations of oligopeptides, solution structures of proteins and nucleic acids, and dynamical structures of macromolecules and membrane systems. Active programs in other areas of spectroscopy include laser Raman of metalloproteins and inorganic complexes; laser spectroscopy of molecular ions and ionic clusters;
Much of the current research in chemistry is directed at finding out how chemical reactions work in both chemical and biological systems. Chemical physics programs in this area include studies of gas phase reactions and processes using ion cyclotron resonance, molecular beams, and picosecond/femtosecond laser techniques. In organic chemistry, research focuses on the chemical basis of synaptic transmission; sequence-specific recognition of DNA; and mechanistic enzymology. Catalysis by transition metals is receiving emphasis among researchers in the inorganic and organometallic areas. Research in progress includes mechanisms of electrode surface chemistry and electrocatalysis, uses of transition metal complexes as homogeneous and heterogeneous catalysts, solar energy conversion and storage, water oxidation, methane oxidation, and nitrogen fixation. Reactions of molecules on surfaces are a significant focus, especially on semiconductors. A number of biochemical projects are aimed at obtaining detailed information about reactions catalyzed by enzymes, including electron transfer reactions promoted by metalloproteins.

A significant amount of synthetic chemistry is involved in many of the above projects. In addition, several groups have chemical synthesis as a primary goal of their research. This research includes projects aimed at the synthesis of complex organic molecules of importance in biology and human medicine; new organic molecules and materials with novel electronic properties; and molecules required for the testing of structural theories. Efforts are also directed at the development of novel and synthetically useful chemical transformations. The division has a strong program in polymer science, with emphasis on the development of strategies and methodologies for the synthesis of designed polymers.

Research in biochemistry and molecular biology includes crystallographic studies of macromolecule structures, studies on the folding and stability of proteins, the mechanisms of enzyme catalysis and allosteric transitions, interactions between proteins and nucleic acids, structural elucidations of nucleic acids, studies of membrane structure and function, protein-lipid interactions, and mechanisms of ion and electron transport in biological membranes. Many of these studies make use of recombinant DNA and cloning to probe fundamental biochemical processes.

Current work in energy-related research comprises studies of laser isotope separation, photochemistry, catalysis, electrochemistry, and molecular processes for energy production, storage, and transmission.

The theoretical chemistry program focuses on the applications of quantum mechanics to the study of electronic states of molecules and solids. The emphasis of the work here is on excited states and reactions of molecules, including studies of resonance-enhanced multiphoton ionization processes in molecules. Theoretical techniques are also being developed to facilitate detailed understanding of electron transfer processes, proton transfer reactions, energy randomization processes within molecules, and the dynamics of reacting systems. Computer simulations are addressing even more complicated systems, from solid-state materials to complex biomolecules.

Physical Facilities
The laboratories of chemistry consist of five units providing space for about 300 graduate students and postdoctoral research fellows. Crellin and Gates laboratories house several research groups, the divisional computing facility, the divisional High Field NMR facility, and the divisional administrative offices. Several synthetic research groups occupy the Arnold and Mabel Beckman Laboratory of Chemical Synthesis. The Braun Laboratories in Memory of Carl F and Winifred H Braun are shared with the Division of Biology. The Arthur Amos Noyes Laboratory of Chemical Physics, one of the major research facilities, is adjoined by the Clifford S. and Ruth A. Mead Memorial Undergraduate Chemistry Laboratory. A number of resource centers serving researchers of the division are located in the Beckman Institute.

CIVIL ENGINEERING

Civil engineering includes the research, development, planning, design, and construction associated with urban development, water supply, energy generation and transmission, water treatment and disposal, transportation, and space development. Dealing with the function and safety of such facilities as buildings, bridges, pipelines, dams, rivers, power plants, and harbors, it is concerned with the protection of the public against natural hazards such as earthquakes, winds, floods, landslides, water waves, and fires.

Recent advances in technology, the escalation of urban problems, and the exploration of space have broadened the applications of civil engineering, increasing the scope of research. New problems have presented special challenges to the civil engineer well-trained in the fundamentals of his or her profession. For this reason, in the advanced study of civil engineering at the Institute, the application of basic scientific principles and mathematics is emphasized for the solution of engineering problems.
Areas of Research

Graduate work leading to advanced degrees lies chiefly in the following fields: structural engineering and structural dynamics; applied mechanics; earthquake engineering; soil mechanics and foundation engineering; finite element analysis; hydraulics and coastal engineering; and environmental engineering (see also environmental science and engineering). In the past few years, graduate students and members of the faculty have pursued a variety of research programs, including the analysis of structures subjected to earthquakes and other dynamic loadings; optimal structural design; system identification and control of structures; structural health monitoring; the use of finite element methods for structural analysis; behavior of soil models in a centrifuge; investigation of sediment transportation and dispersion in water; turbulent mixing in density-stratified flows; wave-induced harbor oscillations; tsunamis; design criteria for various hydraulic structures; aerosol filtration; water reclamation; and ocean outfalls for discharges.

Students whose interests are in environmental problems may enroll for graduate degrees in either civil engineering or environmental science and engineering.

Physical Facilities

Civil engineering activities are housed in two buildings: the Franklin Thomas Laboratory, which contains the soil mechanics laboratory and centrifuge, the earthquake engineering research laboratory and library, and the vibration laboratory; and the W. M. Keck Engineering Laboratories, which contain the laboratory of hydraulics and water resources and the environmental science and engineering laboratories. Excellent computing facilities are available through the campus computing network and in the specialized computing centers of various research groups.

COMPUTATION AND NEURAL SYSTEMS

CNS is an interdisciplinary option that studies problems arising at the interface between molecular, cellular, neural and systems biology, electrical engineering, computer science, and physics. The unifying theme of the program is the relationship between the physical structure of a computational system (physical or biological hardware), the dynamics of its operation, and the computational problems that it can efficiently solve. The creation of this multidisciplinary program stems largely from recent progress on several previously unrelated fronts: the analysis of complex neural systems, using single- and multiunit recording techniques in combination with optical and other imaging techniques; the modeling of artificial neural networks; and analytical, numerical, and integrated electronic circuits to record from, model, and understand complex networks, from protein regulatory networks to the brain. Faculty in the program belong to the Divisions of Biology; Engineering and Applied Science; and Physics, Mathematics and Astronomy. They have an interest in developing conceptual frameworks and analytical approaches for tackling seemingly disparate problems that share a common deep structure at the computational level. Students in the program will partake of a wide-ranging curriculum that will promote a broad understanding of neurobiology, sensory psychology, computational hardware and software, and information theory.

Areas of Research

Areas of research include experimental and modeling studies of vision and the visual system on the basis of electrophysiology, psychophysics, and functional imaging techniques; cognitive psychology; the circuitry, computational function, and modeling of the olfactory cortex; the analysis of olfactory coding in insects and mammals; the theory of collective neural and silicon circuits for biological and machine computations; modeling and representation of physical objects for the general analysis of images; the use of optical devices in parallel computational hardware; the neuron as a computational device; computational modeling and analysis of information processing in biochemical and neural networks; the design and use of synthetic macromolecules as computational devices; the study of evolution in natural and artificial systems; the study of the auditory system of birds; synaptic plasticity in the rat hippocampus; memory-related activity in the human hippocampus; visual motion perception, movement planning, attention, and awareness using a combination of neurophysiological, psychophysical, and computer modeling techniques; light and magnetic resonance imaging of cell lineages, cell migrations, and axonal connections in the forming nervous system; functional MRI imaging of visual cortical areas in humans and other primates; design and implementation of novel algorithms and architectures that enable efficient fault-tolerant parallel and distributed computing; and learning theory and systems, pattern recognition, information theory, and computational complexity.
Although computing is a ubiquitous tool in all areas of study and research at Caltech, computer science is directed at the theory and technology of computation itself. Computer science is the study of information, and of the structures that communicate, store, and process information. Whether these structures are expressed in hardware and called machines, in software and called programs, or in nature or society, the fundamental concepts are similar. The student of computer science at Caltech does not specialize along traditional lines that divide hardware and software, systems and applications, or theory and experiment. Rather, a unified approach to the design and analysis of computing structures is taken both in courses and in research.

Unlike the study of physical and natural sciences, the objects of study by computer scientists are artificial systems; that is, structures that are purposefully designed, taking into account constraints imposed by our building blocks in the physical world and fundamental requirements of the computation itself. Thus, design assumes a role equal in importance to analysis, and is a term found frequently in the curriculum and research. Design is not only a creative activity but is also formal and systematic. Managing the great complexity of useful systems requires that one represent computations in a way that is amenable to mathematical treatment, as well as to implementation.

Areas of Research

Research and advanced courses leading to the Ph.D. degree in computer science are concentrated in the following areas: VLSI systems; computer architecture; concurrent computation; theory of computation; programming languages; semantics; programming methods and correctness; the human-machine interface, including natural language; information theory; machine learning and computational finance; computer vision; computer graphics; computer-aided design; and networking. Research projects frequently involve work in several of these areas, with both the theoretical and experimental aspects, as well as connections with such fields as mathematics, physics, biology, linguistics, and electrical engineering.

Physical Implementation of Computations. Computations must ultimately be implemented in some physical medium (e.g., semiconductor electronics, DNA self-assembly, quantum states of elementary particles, molecular electronics). Developing robust disciplines, abstractions, and methodologies that allow the design of reliable computing substrates has been a focus of the department since its inception. Caltech has been a leader in the development, engineering, and design of very large scale integrated (VLSI) circuits, and this remains a core part of the research and education. Beyond VLSI, efforts are under way to understand quantum, biomolecular, and molecular electronic substrates as possible media for future computing machines. As was the case with semiconductor electronics, Caltech computing can draw on the world-class expertise of its biology, physics, and chemistry departments as it tackles the many challenging opportunities that these new substrates present.

Systematic Design. A key theme in the Caltech computer science department is systematic design of systems at all levels. This shows up in the design of numerical algorithms for physical simulation and computer graphics, design of concurrent and distributed systems, abstractions for physical computing substrates, design of learning systems, the design of programming languages, the automated optimization of computations for both software and hardware implementation, and the control and optimization of networks. The success of computer systems has allowed the building of systems of unprecedented scale and complexity. These systems can only be understood and managed if we are careful to contain the complexity involved. We can only hope to create and optimize efficient computing artifacts by systematically defining and exploring their design space. This does not say that system design is not a creative endeavor, but rather that careful design allows us to expose the places where creativity is most needed, and to carefully assess the impact of new ideas and techniques.

Concurrency. The physical world is highly parallel. Caltech computer science has embraced concurrency as a fundamental feature of computing systems from its inception. Within the department, parallelism is a theme at all levels, from physical circuits, through tightly coupled, concurrent multiprocessors, through distributed systems, up to Internet-wide computing systems and beyond. Disciplines and systematic design for defining and managing the potentially complex interactions in parallel systems is a key focus.

Robust Modeling of Physical Systems. Caltech computer science also has a unique focus in developing rigorous and robust models of the physical world. These models are mathematically and physically sound, and serve as a basis for computer graphics and vision research, as well as the simulation of mechanical, optical, and biological systems.

Theory. A key component of systematic design is a strong theoretical understanding, which provides a basis for synthesis, analysis, and verification. The theory of computation focuses on deep mathematical problems, many of which have substantial technological impact. Theory is not relegated to a single group at Caltech, but rather forms an integral part of all disciplines (learning, VLSI, systems, graphics, programming languages, cryptography, etc.). As such, it has a strong connection to actual practice in each domain.

Interdisciplinary Research. Computation enables better control and understanding of the physical world. These are ubiquitous
themes at Caltech. We’ve already noted the intimate way in which computer science interacts with the physical sciences to physically build computations. Computer simulations, modeling, and analysis are now key enablers, allowing all fields of science to advance rapidly. Modern mechanical and aeronautical systems are enabled by vast computational processing for sensing and control. Further, insights into computational management of information helps us understand information processing issues in natural systems (e.g., cells and neurons) and build hypothetical models that advance our understanding of natural cognition. These relations provide many opportunities for scholars in computer science to work closely with colleagues throughout science and engineering at Caltech.

Physical Facilities
The computer science department has excellent computing facilities ranging from high-performance workstations to multiprocessors and supercomputers. The inventory of computers is upgraded frequently, and students have easy access to state-of-the-art equipment. The department has two semi-immersive 3-D displays and numerous graphics workstations, and it maintains VLSI laboratories equipped with complete facilities for the construction and testing of experimental systems. The department maintains several laboratories open to students and has a wide collection of software for a range of applications. The Institute libraries maintain a large collection of journals in computer science and related fields.

CONTROL AND DYNAMICAL SYSTEMS

Some of the most exciting interactions between mathematics and engineering are occurring in the area of analysis and control of uncertain, multivariable, and nonlinear dynamical systems. While changing technology has made control and dynamical systems theory increasingly relevant to a much broader class of problems, the interdisciplinary nature of this area means that it no longer has a natural home exclusively or even primarily within any one of the traditional engineering disciplines. The CDS option is designed to meet the challenge of educating students both in the mathematical methods of control and dynamical systems theory and their applications to engineering problems.

Automatic control is an enormously successful field that affects every aspect of our lives. A combination of technological developments, economic pressures, and research advances has promoted control into a central position in technology, and over the next several decades, the impact of automatic control systems will continue to grow. The applications we have seen so far—such as cheap and fast computer disk drives, active vehicle suspension control, fly-by-wire aircraft, highly integrated manufacturing facilities, and manned and unmanned space systems—are only the beginning of this trend.

The rapid development of dynamical systems theory as an intellectual discipline over the past 10 years has been equally striking. Stimulated by the discovery of the phenomenon of “deterministic chaos,” the “dynamical systems approach” has been adopted in a variety of diverse engineering disciplines (e.g., chemical, mechanical, electrical, civil, and aeronautics), as well as the physical, biological, and social sciences. At the same time, dynamical systems continues to enjoy strong links with pure and applied computational mathematics.

While research in both control and dynamical systems is inherently interdisciplinary and crosses many traditional engineering and scientific boundaries, their relationship is much deeper. As theoretical disciplines, they are moving together rapidly. The mathematical background required to do research in either control or dynamical systems is nearly identical and can be difficult to obtain within traditional curricula in engineering and mathematics. The CDS option provides a coherent and complete graduate curriculum with corresponding research opportunities, both theoretical and applied.

Areas of Research
Theoretical research is conducted in all aspects of control, with emphasis on robustness; multivariable and nonlinear systems; optimal control; decentralized control; modeling and system identification for robust control; control of Hamiltonian and Lagrangian systems; and control of nonholonomic mechanical systems. Techniques from operator theory, differential geometry, dynamical systems, and computer science are combined to study control problems in a wide variety of areas. A central theme is the role of uncertainty and robustness, and the development of a unified theory for modeling, system identification, analysis, and synthesis of nonlinear control systems.

The CDS research program in nonlinear dynamics has two components: one mathematical and the other driven by specific areas of applications in science and engineering. The main thrust of the mathematical research is to develop mathematical methods for studying the dynamics of the types of nonlinear dynamical systems that arise in science and engineering. Active areas include developing methods for detecting and describing chaotic phenomena; local and global bifurcation theory; homoclinic and heteroclinic motions; Hamiltonian dynamics; geometric mechanics and mechanical systems with symmetry; phase space transport theory; geometrical dynamical systems theory for infinite dimensional systems; computational methods for visualizing higher dimensional
phase space structures; and statistical methods for the description of chaotic dynamics.

Active application areas at Caltech include complex systems in networks and biology; vortex structures in complex fluid flows; mixing and transport processes in fluids; classical dynamics of triatomic molecules; phase space structure and mechanisms that enhance and inhibit transport and energy flow; turbomachines and complex combustion systems; nonlinear flight dynamics for highly maneuverable aircraft; robotic locomotion and manipulation; and the design of autonomous systems.

ELECTRICAL ENGINEERING

Electrical engineering at Caltech emphasizes both electronics and systems. Closely allied with computation and neural systems, applied physics, computer science, and control and dynamical systems, it offers students the opportunity for study and research, both theoretical and experimental, in a wide variety of subjects, including wireless systems, quantum electronics, modern optics, solid-state materials and devices, power electronics, control theory, signal processing, data compression, and communications.

The Lee Center for Advanced Networking sponsors a wide range of long-term research efforts in ubiquitous communications and computing technologies. Several electrical engineering faculty participate, and faculty from computer science, applied physics, control and dynamical systems, and economics are also involved. More information is available at http://www.its.caltech.edu/~leectr/leecenter.html.

Areas of Research and Physical Facilities

Substantial experimental laboratory facilities, housed mainly in the Moore Laboratory of Engineering, are associated with each of the research fields described below.

1. **Quantum Electronics and Optical Communication** (Yariv)—
 Research projects in progress include the generation and control of ultrashort pulses, integrated optoelectric semiconductor circuits, semiconductor injection lasers, molecular beam epitaxy growth of submicron GaAs/GaAlAs structures for optoelectronics and electronics, ultrafast (<10^{-12}s) semiconductor lasers, theoretical and experimental quantum optics—light squeezing, studies of noise and pulse propagation in optical fibers, and theoretical and experimental studies of new devices and phenomena involving fiber gratings, with special emphasis on optical filters for wavelength division multiplexing in optical fiber communication.

2. **Lasers and Guided Waves** (Bridges)—Experimental and theoretical studies in optical-, submillimeter-, and millimeter-wave technology and applications: EHF electro-optic modulation, dielectric waveguides and fiber optics, gas lasers; optical communication and measurement systems. In anticipation of retiring in 2002, Dr. Bridges is not accepting new graduate students.

3. **Communications** (Effros, Goodman, Hassibi, McEliece, Vaidyanathan)—Theoretical and computer experimental work in a wide range of information, communication, and signaling problems. Current research emphases are in error control coding, modulation, and capacity calculations for channels that occur in communication networks, multiuser mobile and cellular radio, and deep-space communications; network communications, including general network reliability studies and ATM networks in particular; access, spectral sharing, dynamic channel allocation, and multiuser detection in wireless systems; multiple-antenna systems and space-time codes; information content and data compression; applications of neural networks to communication and signal processing problems; traffic modeling, routing, and network architectures for mobile services and ISDN; and design and simulation of single-rate and multirate digital filters and filter banks to minimize the number of computational operations for a given accuracy. Digital filter banks, subband coding, wavelet transforms, multidimensional multirate signal processing. Possibilities exist for joint work with microsystems, wireless communication, digital signal processing, and data compression.

4. **Microsystems** (Goodman)—Theoretical and experimental research in intelligent autonomous systems. The goal is to design software- and hardware-based systems that exhibit intelligent decision-making behavior, using adaptive techniques such as learning and evolution. The integration of swarm-intelligence principles inspired by social insects, and the use of neuromorphic sensors are key strengths of the lab. Specific research topics are collective autonomous robotics; machine learning and neural networks; probabilistic modeling methods; and analog, digital, and neuromorphic VLSI processing. Current projects in neuromorphic chip design include “the silicon nose”—an electronic olfaction chip—and “the active skin”—an integrated micromachined chip (for reducing drag on an aircraft wing), which combines sensors, actuators, and a neural network controller. Current projects in collective autonomous robotics include distributed sensing (odor, vision, etc.) strategies for exploring and mapping unknown environments, freeway traffic safety algorithms, and distributed strategies for manipulating and building 2-D structures. Current projects in swarm intelligence and machine-learning algorithms include the development of adaptive control strategies for autonomous robots, robust dynamic routing in telecommu-
nical finance applications, where learning is used in financial forecasting, risk analysis, and derivative pricing. Other recent applications include pattern recognition and medical diagnosis.

5. **Control** (Doyle)—Theoretical research is conducted in all aspects of control, with emphasis on robustness, multivariable and nonlinear systems, and optimal control. Theoretical developments are tested using the latest in computer and experimental facilities in a wide variety of application areas. Opportunities on campus, at Caltech’s Jet Propulsion Laboratory, with industrial sponsors, and at NASA laboratories include control problems associated with large flexible space structures, refinery systems, flight control, robotics, control of unsteady flows, and various other aerospace and process control applications.

6. **Wireless Engineering** (Hajimiri, Rutledge)—Circuits and system design for wireless communication using integrated circuit technology, including analysis and design of communication building blocks, such as monolithic low-noise amplifiers (LNA), active and passive mixers, local oscillators and frequency synthesizers, frequency dividers and multipliers, power amplifiers, integrated filters, intermediate frequency amplifiers, and baseband digital signal processing. These building blocks are used in the design of complete transceiver circuits with new architectures for various applications. The group also has interests in devices for radar, remote sensing, broadcasting, and industrial power from 1 MHz to 1 THz. Current projects include phased-array radars, quasi-optical amplifiers and oscillators for millimeter-waves, multiplier grids for 1 THz and high-frequency Class-E amplifiers. For more information see http://www.its.caltech.edu/~mmic/group.html and http://www.its.caltech.edu/~rei/.

7. **Learning Systems and Computational Finance** (Abu-Mostafa)—The Learning Systems Group at Caltech studies the theory, algorithms, and applications of automated learning. The theory of learning uses mathematical and statistical tools to estimate the information (data and hints) needed to learn a given task, and the computational aspects of learning. The algorithms deal with learning mechanisms in different models, such as neural networks, and different learning protocols. The applications of learning are very diverse. The group has emphasized computational finance applications, where learning is used in financial forecasting, risk analysis, and derivative pricing. Other recent applications include pattern recognition and medical diagnosis.

8. **Optical Information Processing** (Psaltis)—Research to develop optical techniques and devices for information processing. Current areas of interest include optical memories, optical neural computers, neural network models of computation, pattern recognition and image processing, photorefractive crystals, liquid crystals, and Si optoelectronic devices.

9. **Microsensors and Microactuators** (Tai)—Silicon micromachining technology is used to fabricate miniature solid-state microelectromechanical devices. Current research includes pressure sensors, flow sensors, IR sensors, accelerometers, microphones, micromotors, microvalves and micropumps, neuro-probes, and microsurgical tools. Device research requires broad exercise covering physics, design, fabrication, and testing. Hands-on training is especially emphasized in the Micromachining Laboratory.

11. **Computational Vision** (Perona)—Theoretical and experimental research on the computational principles underlying vision processes. Psychophysics and modeling of the human visual system. Theory and applications of computer vision. Emphasis on multiscale image analysis; analysis of motion sequences for navigation, control, and reconstruction of ambient geometry; 3-D photography, perception, and modeling of shapes; visual object recognition; vision-based human-computer interfaces; perception and modeling of biological motion. Areas of collaboration include learning theory, computer graphics, neurophysiology, psychology, applied probability, robotics, geometry, and signal processing.

12. **Nanofabrication and Design of Ultrasmall Devices** (Scherer)—High-resolution lithography and dry etching allow the miniaturization of structures to below 10 nm. Using these techniques, ultrasmall optical, magnetic, and fluidic structures can be constructed. Current research includes the design and fabrication of nanocavity lasers; photonic-crystal waveguides and modulators; nanomagnet arrays; nonmechanical oscillators; and microfluidic pumps, valves, and networks on biochips.
13. (1) Parallel and Distributed Computing (Bruck)—Theoretical and experimental research on a number of fundamental issues related to the design of novel algorithms, protocols, and architectures that enable efficient parallel and distributed computing for scientific and commercial applications. Special emphasis on creating and experimenting with novel communication algorithms and protocols for reliable and efficient interprocessor communication over a variety of communication media, including communication subsystems of parallel machines and local area networks. Also includes research on new models for computing inspired by neural networks with emphasis on the questions: What are the essential ingredients that make real neural networks computationally powerful? Can we improve computing systems based on these insights? (2) Fault-Tolerant Computing—Research on fault-tolerance aspects of high-performance computing systems. The focus is on the underlying theory as well as the practical challenges, including the creation of checkpointing schemes for scientific and commercial applications, the design of reliable communication algorithms and interconnection architectures, and the development of schemes based on error-correcting codes to enable reliable storage and high-bandwidth communication. More information can be found at http://paradise.caltech.edu/.

14. Data Compression (Effros)—Theoretical analysis and practical design of algorithms for efficiently representing information for communication, storage, and processing. Current work focuses on the special challenges introduced by emerging applications such as network communication systems, multimedia communication systems, packet-based communication systems (such as the World Wide Web and digital cellular phone systems), and distributed data storage systems. Areas of investigation include the theory and practice of optimal data compression for inhomogeneous data sets (universal source coding); systems in which the available rate varies as a function of system or user variation (multiresolution source coding); data representations for packet-based systems with nonzero probability of packet loss (multiple description source coding); combined information representation and communication systems (joint source and channel coding). Techniques employed in these systems include entropy coding, vector quantization, transform coding, subband coding, bit allocation, and motion compensation. Results include new source coding paradigms, theoretical performance bounds, rate of convergence results for universal codes, and practical code design algorithms. The research combines ideas from information theory, signal processing, and optimization. Possible areas of collaboration include communications, wireless communications, distributed computing, digital signal processing, and computational vision.

15. Integrated Circuits (Hajimiri)—Analysis, design, simulation, verification, and testing of integrated circuits for various applications, such as high-speed and wireless communications, wireless local-area networks, highly stable frequency sources, distributed integrated circuit design techniques for ultrahigh-speed silicon-based circuits, system and circuit design for multiband systems, single-chip spectrum analyzers, performance limitation of A/D and D/A data converters, and robust circuit design techniques. Projects also include modeling of the effect of substrate and supply noise in large integrated circuits and design techniques to minimize their effect, examination of integrated passive structures and their fundamental performance limits, and noise modeling in amplifiers, mixers, and oscillators. More information can be found at http://www.its.caltech.edu/~ic/.

17. Wireless Communications (Hassibi)—Theoretical research on link, system, and network aspects of wireless communications. Current areas of interest include time-varying channel modeling; capacity computations for wireless channels; channel estimation, identification, and equalization; multiple-antenna systems and diversity techniques; space-time codes; modulation techniques; channel access and spectral sharing through various TDMA, FDMA, CDMA, and hybrid techniques; multistation detection and interference cancellation; dynamic channel allocation; models and performance analysis of wireless networks; ad hoc networks; signal processing for wireless. The research encompasses various areas of information theory, coding theory, stochastic processes, statistical and adaptive signal processing, and network theory.

ENVIRONMENTAL SCIENCE AND ENGINEERING

This interdisciplinary graduate program is concerned with earth system science and engineering. At the heart of the instructional program are three core areas of research expertise: environmental physics, environmental chemistry, and environmental biology. Research and instruction emphasize basic scientific studies that underlie new solutions to challenging environmental problems from atomic to global scale. These include urban, regional, and global air quality; water supply and water quality control;
irradiated reaction chambers are used for direct simulations of atmospheric conditions using carefully prepared mixtures of hydrocarbons, nitrogen oxides, and aerosols. Both gas-phase chemistry and the formation of aerosol particles are probed with this system.

Analytical instrumentation includes monitors for major gas-phase trace gases, gas chromatography, gas chromatography with mass spectrometry, and the resources of the Environmental Analysis Center for detailed chemical analysis of gas and aerosol samples. Measurements of aerosol particle formation and growth in the smog chamber experiments and in field studies are performed using the scanning electrical mobility spectrometer, a fast-response, high-resolution particle-sizing instrument developed at Caltech, along with more conventional particle measurement techniques (optical particle counters, cascade impactors, condensation nuclei counters, and filter samplers). A novel aerosol mass spectrometer is used for molecular speciation of aerosols.

Flow reactors are used for controlled studies of nucleation processes, and to probe the dynamics of agglomerate aerosols. Equipment is available sufficient to conduct field experiments involving the measurement of atmospheric particulate matter concentration, chemical composition and size distribution, and gaseous pollutant concentration, simultaneously at up to 10 monitoring sites.

Caltech, in conjunction with the Naval Postgraduate School in Monterey, California, operates the Center for Interdisciplinary Remotely Piloted Aircraft Studies. This center operates research aircraft for atmosphere science studies, including a Twin Otter aircraft instrumented to carry out state-of-the-art measurements of atmospheric aerosol and cloud properties and composition. Caltech faculty and graduate students regularly participate in large, international field programs in atmospheric chemistry and aerosols using the aircraft available in the Center.

The environmental chemistry and aquatic chemistry laboratories and the Environmental Analysis Center are equipped for chemical analysis by electrochemistry, plasma emission mass spectrophotometry, gas chromatography, high-performance liquid chromatography, fluorescence spectroscopy, infrared spectrometry, gas chromatography–mass spectrometry (GC-MS), liquid chromatography–mass spectrometry (LC-MS), high-resolution MS/MS/MS, ATR-FTIR, electrospray mass spectrometry, supercritical fluid extraction (SCF/MS), multicomponent UV-visible spectrophotometry, electrophoresis chromatography, gradient-elution ion chromatography, gel permeation chromatography, total organic carbon analysis, and, for physical characterization of aqueous particles by light scattering, electrophoresis and electrical particle size analysis. The Environmental Analysis Center operates 14 mass spectrometry systems.
The atmospheric chemistry laboratory has a number of light-sources and detectors for investigation of atmospheric photochemistry. Instrumentation development activities include design of optical and mass spectrometers for environmental analytical chemistry.

The hydraulics laboratory has a variety of water channels and basins appropriate for studies of waves, sediment transport, turbulent diffusion, and density-stratified flows. A 40-meter-long, glass-walled flume is equipped with dual circulating water systems for density-stratified shear flow studies. This tilting flume can also be used as a wave tank to generate breaking waves using a computer-operated hydraulic wave generator. Two smaller wave flumes also have computer-controlled wave generators that can produce waves of specified profiles. Four multibeam laser-Doppler velocimetry systems are available for velocity measurements in turbulent flow studies or for wave-induced fluid velocity measurements. High-resolution laser-induced fluorescence is used for simultaneous concentration measurement and mass flux and dispersion studies. The laser systems can be directly coupled to a laboratory computer system that can accomplish real-time multiuser processing and experimental control with data presentation by video graphics or hard-copy plotter. Additional computers are available for data analysis.

The environmental microbiology laboratory includes a facility for the preparation of bacterial media, as well as equipment for the isolation, cultivation, and physiological characterization of fastidious and anaerobic microbes, DNA isolation and manipulation, DNA sequence data manipulation and analysis, protein purification and enzyme assays, and culture field analyses. In addition, access is available to several electron microscope facilities on campus, as well as the oligonucleotide probe synthesizer and the microprotein sequenator.

The option provides students with access to scientific computing and word processing through various departmental and personal computers and advanced supercomputers operated by the Institute.

GEOLOGICAL AND PLANETARY SCIENCES

Students and faculty in the Division of Geological and Planetary Sciences study the earth and planets to understand their origin, constitution, and development, and the effect of the resulting physical and chemical environments on the history of life, and on humanity. The approach to these problems relies strongly on the basic sciences. Programs of study and research are pursued in geology, geobiology, geochemistry, geophysics, and planetary science. The curriculum is flexible so that students with degrees in biology, chemistry, engineering, or physics may carry out graduate work within the division. Interdisciplinary studies are encouraged and students may carry out academic and research programs within and between different divisions.

The geographical position and geologic setting of the Institute are favorable for year-round field access to a wide variety of earth problems and materials. Current advances in understanding the dynamic motions of the earth’s crust and the structure of the interior have opened new opportunities for research into the processes responsible for the earth’s development and activity. Seismic activity in the Southern California area presents stimulus and research material for the study of earthquakes, which are of great practical concern and are intimately related to the earth’s development on a global scale. Human records of seismic activity are put into long-term perspective by studies of surface and bedrock geology, which reveal the history of motion on fault systems. The dynamics and geometry of crustal movements are studied by geological and geophysical methods on both planetary and local scales in order to understand the evolution of continents. Major processes and events in the chemical and physical evolution of the earth can be identified by studying the structure of rocks formed or modified in these events, and their chemical and isotopic compositions. The absolute chronology can be established by measurements of radioactive isotopes. A wide variety of studies focuses on the origins of igneous and metamorphic rocks in planetary interiors. These include radiogenic and stable isotopes and experimental petrology, in addition to field and petrographic studies. The broadscale structure of the earth is inferred from isotopic-geochemical studies and is inter-related with geophysical studies. Further breadth in our understanding of the earth and its place in the cosmos is being gained by the comparative study of the other planets—their atmospheres, surfaces, and internal structures. The early history of the solar system can be approached by studies of lunar samples and meteorites. The earliest solar and presolar history is being studied by seeking the connection between the residual planetary materials and the physical-chemical processes within the solar nebula and the precursor interstellar medium.

Physical Facilities

The division is housed in three adjacent buildings, which are well equipped for modern instruction and laboratory work. They contain several comfortable seminar rooms and the library as well as student and faculty offices. Numerous computers are distributed throughout the division, including a facility for geographic information systems, remote sensing, and 3-D modeling. There is an analytical facility (which includes an electron microprobe, a scanning electron microscope, and X-ray diffraction equipment). Rock and mineral collections and sample preparation areas are available.
There are modern laboratories for the chemical analysis of solids, liquids, and gases. A variety of mass spectrometers (electron impact, thermal ionization, laser ablation, ion microprobe, and inductively coupled plasma) provide analyses at the trace and ultralow levels. Optical, infrared, and Raman spectroscopies are available for the characterization and analysis of samples. State-of-the-art tunable laser spectrometers are available for the study of gas phase and surface processes of importance in cosmochemical and geochemical environments. This facility is used to study the mechanisms of chemical reactions that govern the formation of the protosolar nebula and the earth's upper atmosphere. Laboratories for experimental petrology contain high-temperature furnaces and presses for work up to 25 GPa. In addition, there is a laboratory for the study of the behavior of rocks and minerals and their elastic constants in the pressure and temperature environments of planetary interiors. This includes a shock-wave laboratory for studying ultrahigh-pressure equations of state and shock effects.

Conditions for field study and research in the earth sciences in Southern California are excellent. A great variety of rock types, geologic structures, active geologic processes, physiographic forms, and geologic environments exist within convenient reach of the Institute. The relatively mild climate permits field studies throughout the entire year; consequently, year-round field work is an important part of both the educational and research programs. There are active field programs in diverse areas in North America and throughout the world.

The Seismological Laboratory of the Institute is housed in the Seeley G. Mudd Building. This has excellent computer facilities and maintains a seismological observatory, which includes the Kresge Laboratory, located about three miles west of the campus on crystalline bedrock, affording a firm foundation for the instrument piers and tunnels. The Seismological Laboratory carries on a vigorous program of geophysical research and education and is headquarters for a modern 200-station broadband array called TriNet. This array provides an excellent research facility for the study of earthquakes and earth structure.

The Jet Propulsion Laboratory, NASA’s lead center for planetary exploration, is located seven miles from campus and is administered by the Institute. Students and faculty participate in JPL activities through joint research, instrument development, mission operations, and data analysis. Planetary science minicomputers and image processing systems are linked, through the campus network, to the Image Processing Laboratory at JPL and to supercomputers across the country. In addition, Caltech owns and operates several optical and radio observatories that are used partly for planetary research. Active programs of planetary studies are pursued at both the Owens Valley Radio Observatory and the Keck Telescopes.

A laboratory for molecular geobiology specializes in the cultur-
INDEPENDENT STUDIES PROGRAM

Independent Studies is an educational alternative for undergraduates whose goals cannot be satisfied with a normal undergraduate option. The student gathers a three-person faculty committee, representing at least two divisions of the Institute, and chooses his or her own scholastic requirements under this committee's supervision. Approval must also be obtained from the Curriculum Committee, a standing committee of the faculty. The independent studies program has no facilities of its own. Areas of study and research may be selected from any part of the Institute. (For a complete description see page 202.)

MATERIALS SCIENCE

Materials scientists study relationships between the properties of materials and their internal structure, and how this structure can be controlled. The field of materials science at the California Institute of Technology emphasizes fundamental issues in metals, semiconductors, ceramics, and composites. Additional faculty in electrical engineering, applied physics, and chemistry are also concerned with semiconductors and superconductors. Work in polymers is carried out in aeronautics, chemistry, and chemical engineering.

Areas of Research
The current areas of research by the materials science faculty include a wide variety of nontraditional materials, many far removed from their equilibrium thermodynamic states. Examples of such materials include metallic glasses, metal-matrix composites, energy-storage materials, nanocrystalline materials, proton-conducting solid acids and perovskites, and ceramic-metal composites. The physical characteristics of interest span a wide range of mechanical, thermodynamic, electrical, and electrochemical properties. Materials science is a cross-disciplinary field, and materials research is performed by groups in many different options at Caltech. Graduate students in the materials science option can perform their thesis research with a supervisor or cosupervisor in a different option.

Physical Facilities
Research by the faculty, graduate students, and a few advanced undergraduates is conducted in the W. M. Keck Laboratory of Engineering Materials. Material-preparation facilities include equipment for physical vapor deposition under ultrahigh vacuum conditions, shock-wave consolidation of powders, rapid solidification, equipment for the processing of ceramic powders, high-energy ball milling, and ion-beam modifications of materials. Facilities for the characterization of materials include an extensive array of X-ray diffraction equipment including a single crystal diffractometer, two X-ray powder diffractometers with high-performance, position-sensitive detectors, a small-angle X-ray scattering system, impedance spectrometers for transport and dielectric measurements, a Rutherford backscattering spectrometer, Mössbauer spectrometers, two differential scanning calorimeters and two differential thermal analyzers, cryogenic facilities for the characterization of superconductors, and several test systems for the measurement of mechanical properties. A modern microscopy facility has been built around a Philips EM 430 300-keV transmission electron microscope with high resolution and analytical capabilities. Another analytical 120-keV transmission electron microscope is dedicated to materials research. In addition to the equipment within materials science, a wide range of mechanical and microstructural characterization facilities are available elsewhere at Caltech.

MATHMATICS

Areas of Research
Students in mathematics have the opportunity to work in many fields of current research. The main active areas of research by the faculty include the following:

- **Algebra.** Finite group theory, algebraic K-theory, and algebraic group theory.
- **Algebraic Geometry.** Hodge theory, moduli spaces, arithmetical geometry.
- **Analysis.** Classical real and complex analysis, complex dynamics, fractals, harmonic analysis, operator theory, and functional analysis.
- **Combinatorics.** Combinatorial designs, matrix theory, and coding theory.
- **Geometry and Topology.** Low-dimensional topology, hyperbolic geometry, geometric group theory, and foliations; symplectic geometry and topology, their applications to mathematical physics.
- **Mathematical Logic.** Set theory, and its interactions with analysis and dynamical systems.
- **Mathematical Physics.** Schrödinger operators.
- **Mathematical Statistics.** Sequential analysis, decision theory.
- **Number Theory.** Algebraic number theory, automorphic forms, Galois representations, and L-functions.
Areas of Study and Research

MECHANICAL ENGINEERING

Mechanical engineering at Caltech is focused at the interfaces between traditional disciplines of science and engineering in order to develop new understanding and advanced technology to address contemporary problems. Mechanical engineering encompasses three broad areas: mechanics (including active materials, fracture mechanics, and mechanics of materials), mechanical systems (including control and analysis of dynamic systems, engineering design of electromechanical systems, kinematics, optimization, robotics, and structural design), and fluid and thermal systems (including acoustics, cavitation, chemical vapor deposition, combustion, fluid flow, heat and mass transport, multiphase and multicomponent flows, propulsion, and turbulence). These areas are applied to a rich diversity of problems including bioengineering, control of aircraft engines, design of vehicle structures, granular flows, hyper-redundant robots, jet noise reduction, locomotion and grasping, medical applications of robotics, navigation algorithms, structured design of micro-electro-mechanical systems (MEMS), thin-film deposition, transportation systems, propulsion systems, pollution control, and rapid assessment of early designs.

The educational program in mechanical engineering at Caltech prepares students for professional practice and research in an era of rapidly advancing technology. It combines a strong background in the basic and engineering sciences with laboratory and design experience. It strives to develop professional independence, creativity, leadership, and the capacity for continuing professional and intellectual growth.

Areas of Research

- **Mechanics of Materials.** Studies in the field of mechanics of materials are an integral part of the mechanical engineering option. In general, work pursued within the mechanical engineering option emphasizes aspects of mechanics that are concerned with mechanical behavior of homogeneous and heterogeneous solids, bridging temporal and spatial scales, thin film, MEMS, active materials, composites, dynamic deformation and fracture of solids, computational modeling, and advanced experimental diagnostic techniques. Additional interests include the mechanics of heterogeneous geological systems.

- **Mechanical Systems and Engineering Design.** Activities in mechanical systems and engineering design encompass a broad range of traditional mechanical engineering fields, such as control systems, dynamics, kinematics, and mechanical design, as well as cross-disciplinary areas such as signal processing, computer control, engineering computation, electromechanical design, micro-electro-mechanical systems (MEMS) design, and bio-engineering. In the abstract, engineering design is the rigorous application of theory and analysis from traditional engineering disciplines to the synthesis of novel solutions to new problems. Analytical techniques from many fields are used to analyze the performance, stability, and robustness of complex systems. An imaginative, practical approach is emphasized for the solution of real problems involving many areas of technology. General areas of interest include design theory and methodology, precision in engineering design, engineering system design, MEMS design, kinematics, robotics, autonomous systems, control of mechanical systems, computer-aided design, and simulation.

- **Thermal Systems and Applied Fluid Mechanics.** This area encompasses a broad spectrum of research activities, including convective heat transfer (packed beds, moving granular media, rotating flows), chemical vapor deposition of thin films, computational fluid dynamics, acoustics of turbulent flows, two-phase flow, cavitation, turbomachines for flow of liquids and rocket propellants, and air pollution.

- **Jet Propulsion.** The Daniel and Florence Guggenheim Jet Propulsion Center provides facilities for postgraduate education and research in jet propulsion and advanced spacecraft propulsion. Students wishing to pursue courses of study and research in jet propulsion take degrees in aeronautics or mechanical engineering. The program generally emphasizes basic subjects (such as combustion, two-phase flow, turbomachinery, and acoustics) that are applicable to a wide variety of engineering problems. The experimental facilities of the jet propulsion center are located in the Karman Laboratory of Fluid Mechanics and Jet Propulsion. A collaborative program in advanced propulsion exists with NASA’s Jet Propulsion Laboratory.
Physical Facilities

Laboratory facilities are available in a number of areas, including control of mechanical systems, computer-aided design, heat transfer, liquid phase turbomachines, thin-film deposition, pump dynamics, robotics, and hydrodynamic water tunnels. These facilities are shared by research groups collaborating with applied mechanics, applied physics, civil engineering, and control and dynamical systems. The Engineering Computing Facility (ECF) is available for computational studies.

PHYSICS

Areas of Research

Graduate students in physics will find opportunities for research in the following areas where members of the staff are currently active.

- **Particle Physics.** Experiments in elementary particle physics are carried out with accelerators at the European Center for Nuclear Research (CERN), Cornell, and Beijing. Activities include studies of Z^0 decay at the LEP storage ring at CERN, studies of charmed quarks and τ leptons at IHEP, and studies of τ leptons at Cornell. In addition, a large project to search for magnetic monopoles and other phenomena in particle astrophysics is underway at the Gran Sasso underground laboratory in Italy. An active program is aimed at a future experiment to study CP-violation and rare B decays at a new accelerator at SLAC.

- **Kellogg Radiation Laboratory.** Studies of the structure and interactions of nuclei currently include experiments in the few-MeV energy range, carried out with Caltech’s in-house tandem electrostatic accelerators, and experiments in the multi-GeV range, carried out at SLAC, CEBAF (Virginia), the Bates Linear Accelerator Center (MIT), and DESY (Hamburg, Germany). The lower-energy studies are designed to address important problems in nuclear astrophysics, while the high-energy studies emphasize the effects of the quark structure of nucleons on the structure and properties of nuclei. The group is active in research involving polarized and cryogenic targets that support the experimental program.

- **Nuclear and Neutrino Physics.** This group focuses on fundamental properties of nuclei and elementary particles, particularly neutrinos and neutrino oscillations. The experimental program, which also includes symmetry tests with polarized nuclei using a dilution refrigerator, is complemented by theoretical studies of nuclear structure and particle properties.

- **Experimental High-Energy Astrophysics.** Research in this field encompasses X-ray and gamma-ray astronomy, compact object and gamma-ray burst astrophysics, cosmic-ray astrophysics, and magnetospheric and heliospheric physics. The Space Radiation Laboratory (SRL) is actively developing new instrumentation for hard X-ray and gamma-ray balloon and satellite experiments which will study compact objects, Active Galactic Nuclei, gamma-ray bursts, and supernova remnants. An observational program concentrated on high-energy observations of neutron star and black hole systems using the Compton Gamma-Ray Observatory, the ROSAT and ASCA X-ray satellites, and the X-ray Timing Explorer is also a major effort in the group. SRL is also using instruments developed for launch on spacecraft and balloons to measure the composition of energetic nuclei arriving from the sun, the local interstellar medium, and nearby regions of the galaxy in order to study how these nuclei were synthesized and accelerated to high energies. There are a total of five SRL instruments currently active on Voyager, Galileo, and SAMPEX missions, with two on the Advanced Composition Explorer. The SAMPEX and Galileo missions are also supporting studies of trapped radiation in the magnetospheres of Earth and Jupiter, while the Voyager instruments are approaching the solar wind termination shock.

- **Experimental Ultraviolet and Optical Astrophysics.** A sounding rocket program is developing novel telescopes and detectors for mapping the far cosmic ultraviolet background. New spectroscopic techniques are being exploited to study the dynamics and ionization of the violent interstellar medium. Ground- and space-based observations are being made to study the halos of galaxies, the history of star formation in the universe, the nature of UV bright objects, and the evolution of supernova shock waves in a heterogeneous interstellar medium. The first far-UV all-sky imaging survey mission is currently under study. A new ground-based instrument for diffraction-limited imaging is being developed for the Palomar 5-meter telescope.

- **Infrared Astronomy.** Astrophysical observations from 1-micron to 1-millimeter wavelengths are carried out with ground-based telescopes at the Palomar and Keck observatories. The infrared group constructs instruments for use on the 5-meter Hale and 10-meter Keck telescopes. Caltech has been a major participant in a survey of the infrared sky conducted by the IRAS satellite.

- **Submillimeter Astronomy.** Star formation, interstellar gas, galaxies, and quasars are studied using the 10-meter telescope at the Caltech Submillimeter Observatory on 14,000-foot Mauna Kea in Hawaii. Far-infrared observations are made from NASA’s Kuiper Airborne Observatory. Research is conducted on superconducting tunnel junction and bolometer detectors for use in future telescopes, both on the ground and in space.

- **Computational Astronomy.** High-performance parallel computers are applied to computation-intensive problems in astronomy. Topics include radio pulsar searches, diffraction-limited imaging...
engineering technologies are used to obtain long-term electrical and optical records of neural signals.

- **Theoretical Physics.** The particle theory group studies the unification of interactions based on superstring theory, the properties of hadrons described by QCD with an emphasis on heavy quarks, the quantum properties of black holes, and quantum cosmology. Theoretical studies also include nuclear structure and reactions, condensed matter physics, including the quantum theory of solids and turbulent fluids, and various aspects of mathematical physics.

- **Theoretical Astrophysics.** Many astrophysical interests are pursued in collaboration with the astronomy faculty, including problems in general relativity and cosmology, in relativistic astrophysics and accretion theory, in the interstellar medium, in the dynamics of stellar and planetary systems, in helioseismology, and in quasars, pulsars, and neutron stars.

Physical Facilities
The physics department is housed in six buildings grouped together on the south side of the campus: the Norman Bridge Laboratory, the Alfred P. Sloan Laboratory of Mathematics and Physics, the K. Kellogg Radiation Laboratory, the George W. Downs Laboratory of Physics, the C. C. Lauritsen Laboratory of High Energy Physics, and the Synchrotron Laboratory. Members of the staff also carry out research at the Palomar Observatory and at the Owens Valley Radio Observatory. Several computers are available for use in research, including the Intel Touchstone DELTA System, a high-performance supercomputer with a peak speed of 30 Gflop.

Caltech has been a major participant in several infrared astrophysics missions and projects, including data processing support for the Infrared Astronomical Satellite (IRAS) mission, and the SIRTF Science Center, which will support science operations for the SIRTF Observatory scheduled for launch in July 2002.
The social science program is characterized by collaborative interdisciplinary research on the behavior of, and methods to improve the performance of, political and economic institutions.

Among the areas of research in political science are theoretical models of legislative behavior and of international relations, and statistical analyses of campaign dynamics and of the effect of economic conditions on voting.

Quantitative history incorporates economic and political models with statistical analysis to address such issues as the extent of racial discrimination in the United States, and the role of capital markets in economic growth.

Economists study problems such as the design of institutions for the efficient provision of public goods, with applications to such diverse problems as railroad rights of way, space shuttle resources, and the telecommunications industry. There is also interdisciplinary research on improving the theoretical and statistical models of individual choice behavior.

Caltech is a major center for the experimental investigation of game theory as a basis for economic and political decision making, and the application of these methods to public policy.
REQUIREMENTS FOR ADMISSION TO UNDERGRADUATE STANDING

The undergraduate program leads to a four-year Bachelor of Science degree. Admitted students matriculate in the fall term only. Caltech does not have a summer session or part-time program, and cannot consider you if you already have a bachelor's degree from another college, university, or the equivalent. If you have matriculated at any college, university, or the equivalent in a program leading to any degree, you will probably be required to apply as a transfer student, and should read the requirements in the section titled “Transfer Admissions.”

ADMISSION TO THE FRESHMAN CLASS

Students are admitted to the freshman class on the basis of strong academic performance in a rigorous course of college preparatory study, especially in the areas of math and science; results of the SAT I and three subject exams, SAT II; teacher and counselor evaluations; personal characteristics; a demonstrated interest in math, science, or engineering; and information provided on the application.

Applying

An application for admission may be obtained by writing or calling the Office of Undergraduate Admissions, California Institute of Technology, Mail Code 55-63, Pasadena, CA 91125, (626) 395-6341. To be considered for admission, applications to the freshman class must be postmarked by January 1.

Early Action

Students who have a preference for Caltech may want to consider application under the Early Action plan. The Early Action application process requires that the completed application be postmarked by November 1. Under this application plan, students will be notified in late December of the admission decision. Students admitted under Early Action have until May 1 to make their commitment to attend.
High School Requirements

Students are expected to prepare for Caltech by successfully completing the following curriculum:

- Four years of mathematics
 - (calculus or higher is strongly recommended)
- One year of physics (calculus-based physics is recommended)
- One year of chemistry
- Three years of English (four years are recommended)
- One year of U.S. history/government

College Board Tests

Applicants are required to take the following standardized tests by the October test series for Early Action consideration, and by the December test series for Regular Decision consideration:

- SAT I: Reasoning (Verbal and Mathematical)
- SAT II: Writing
- SAT II: Math II C
- One of the following SAT II subject exams: Biology, Chemistry, or Physics.

Information regarding the College Board examinations can be found in the Bulletin of Information, which may be obtained without charge at most high schools, or by writing to the appropriate address. Applicants who wish to take the examinations in the western United States or Canada, or in Mexico, Australia, or the Pacific Islands should write the College Board, P.O. Box 23060, Oakland, CA 94623-2306. For all other inquiries, write the College Board, P.O. Box 592, Princeton, NJ 08540.

Essays

The essays, which are required as a part of the application, are intended to provide students the opportunity to communicate their interests, experiences, and background. Since Caltech is interested in learning about each applicant, the essays are viewed as an important part of the admission decision process.

Evaluations

Three evaluations and a Secondary School Report are required. One must be from a math or science teacher, one from a humanities or social science teacher, and one from an additional evaluator (see the instructions in the application), and a Secondary School Report must be filled out by your high-school counselor or other school official. You may submit more than required, but at least one must be submitted in each category.

Additional Information

Descriptions of research projects and hands-on science and engineering experience are helpful, as is material that demonstrates experiences outside math and science. Additional material should be identified with name and social security number.

Acceptance

Caltech is a College Board member and therefore agrees to comply with the candidate’s reply date of May 1. When accepting an offer of admission to Caltech, an admitted student is required to submit a nonrefundable matriculation fee of $250, along with the matriculation form. Places in the entering class will not be held after May 1. Early Action applicants will be informed of their status in late December, and Regular Decision applicants will be informed by April 1.

Deferral of Entrance

For reasons of travel or work, Caltech will consider requests from admitted students for a one-year deferral of entrance. Students who request a deferment must submit a written request stating the purpose of postponement.

Advanced Placement, International Baccalaureate, and College Credit

Caltech encourages all prospective undergraduate applicants to prepare by challenging themselves with the most rigorous course of study available, including the Advanced Placement (AP) and International Baccalaureate programs. However, college credit for these classes is not automatic. Course credit and/or placement in an accelerated program is sometimes granted as deemed appropriate by the department faculty. The awarding of Caltech course credit takes place at the time of registration each fall.

Biology

Prospective biology majors who pass both Bi 8 and Bi 9 in their freshman year are considered to have met the core requirement of Bi 1.

Chemistry

In exceptional cases, students with a particularly strong background in chemistry may elect to take Chemistry 21, the Physical Description of Chemical Systems, or Chemistry 41, Organic Chemistry, rather than Chemistry 1, General Chemistry. It is assumed that such students have reasonable competence in the following areas: 1) elementary theories of atomic structure and electronic theories of valence, 2) chemical stoichiometry, 3) computations based upon equilibrium relationships, and 4) elementary...
New Student Orientation

All freshmen are expected to attend the New Student Orientation as a part of the regular registration procedure.

The orientation takes place the week prior to the beginning of classes. A large number of faculty members and upperclass student leaders participate to help introduce the new student to the Caltech community. The orientation period provides an opportunity for the new student to become acquainted with the campus, the Honor System governing personal conduct, and other aspects of life at Caltech. In addition, he or she can meet classmates and a number of the upperclass students and the faculty. Thus the new student can begin to feel at home at Caltech and to share in the common agreement on intellectual and moral standards before the pressure of academic work begins.

ADMISSION TO UPPER CLASSES BY TRANSFER

Transfer Admissions

Caltech admits transfer students for the fall term only. We require a completed application, letters of recommendation, an official transcript from the last secondary school attended and all colleges or universities attended, descriptions of all college-level math and science courses, and completion of the Caltech Transfer Entrance Examinations. Please review the section titled "Eligibility Criteria for Admission" to determine whether you meet the eligibility requirements for transfer admissions consideration.

Academic Preparation

The following is a list of the Caltech core curriculum, taken by all Caltech students during their first two years. It is expected that transfer students will have had exposure to mathematics and science courses on a comparable level prior to entry to Caltech. Any of the following core courses that have not been covered by incoming transfer students must be taken upon matriculation to Caltech. There are no specific topics expected to have been covered in humanities and social science classes.

Freshman courses:
- Mathematics 1 abc
- Physics 1 abc
- Chemistry 1 ab
- Chemistry 3 a
- Biology 1
- Humanities and Social Science electives
Regardless of the amount of credit awarded upon matriculation, transfer students must spend at least two years (six terms) in residence at Caltech. Students must also earn at least 216 units at Caltech, not including courses taken to satisfy math and science core curriculum requirements.

Students must take, or have taken the equivalent of, all core curriculum courses.

Students must satisfy all of their chosen option’s degree requirements. Transfer students may choose from among all Caltech undergraduate options.

Admissions Application
Applications are available September 1. Completed applications should be received by the Office of Undergraduate Admissions by March 1. Applicants will be notified of the decisions of the Admissions Committee in mid-June. Questions about transfer admission and application should be directed to Transfer Information, Office of Undergraduate Admissions, Caltech, Mail Code 55-63, Pasadena, CA 91125, U.S.A., (626) 395-6341.

The 3/2 Dual Degree Plan
Caltech invites students from a select group of liberal arts colleges to transfer to Caltech upon completion of their junior year. After two years in residence at Caltech, and the successful completion of our requirements, 3/2 students will be granted a Bachelor of Science degree from Caltech and a second bachelor's degree from their liberal arts college. Students may transfer into any of the Caltech options.

Students from the following institutions are eligible to apply to the 3/2 program:

- Bowdoin College (ME)
- Grinnell College (IA)
- Mt. Holyoke College (MA)
- Oberlin College (OH)
- Occidental College (CA)
- Ohio Wesleyan University (OH)
- Pomona College (CA)
- Reed College (OR)
- Spelman College (GA)
- Wesleyan University (CT)
- Whitman College (WA)

Applications and a program description are available from the 3/2 liaison at each of the liberal arts college partners and from the Caltech Office of Undergraduate Admissions. Deadline for submission of 3/2 applications and support materials is April 1.

Admission to the 3/2 program is not guaranteed and will be determined by the Caltech Faculty Upperclass Admissions Committee. Students applying should have a record of superior academic achievement at their home institutions, and strong letters of recommendation from their 3/2 liaison and an additional faculty member. They must have completed a minimum of one year of calculus-based physics and mathematics (two years are recommended) including multivariable calculus and differential equations, and one year of chemistry.
Exchange Programs

Exchange programs exist with Occidental College, Scripps College, and Art Center College of Design, permitting Caltech students to receive credit for courses taken at these colleges. Students from these colleges also may receive credit for courses taken at the Institute. Tuition payments are not required, but the student may have to pay any special fees. The student must obtain approval from the instructor of the exchange course. Exchange courses taken by Caltech students must have prior approval by the student's option, by the division providing courses most similar to the proposed course, and by the registrar. Students wishing to take such courses should obtain the appropriate form at the registrar's office, get the required signatures as above, and return it to the registrar. Freshmen at Caltech ordinarily cannot participate in this exchange.

In addition, through the office of the dean of students, informal exchange programs are conducted with several colleges and universities throughout the country. Under these programs, a student can visit another campus for a period ranging from one term to a full academic year, with few formalities. Any student interested in the informal program should check with the dean of students for details.

CALTECH CAMBRIDGE SCHOLARS PROGRAM

The Caltech Cambridge Scholars Program offers qualified juniors and seniors the opportunity to spend a fall or winter term at the University of Cambridge in England. Students are hosted by and live in one of the Cambridge Colleges participating in the exchange. The participating colleges are Corpus Christi, Pembroke, St. Catharine's, and St. John's. During their term at Cambridge, students take three to five lecture or module courses. The number of courses depends on Cambridge departmental requirements. For this work, students receive 36 to 45 units of Caltech general or option credit. Caltech students have the use of all Cambridge facilities and are matriculated into the university for the term. A minimum 3.2 GPA is required to apply. Eligible sophomores and juniors interested in either the fall or winter term apply in February for the next academic year. Further information, including application procedures and the exact application deadline date is available from the Fellowships Advising and Study Abroad Office.

Please see page 157 of the Financial Aid section of the Catalog for details on applying and eligibility for financial aid related to study abroad.

ROTC

Through arrangements with the University of Southern California (USC), Army and Air Force Reserve Officer Training Corps programs are available to all qualified full-time Caltech students. Air Force Reserve Officer Training Corps (AFROTC) offers two-, three-, and four-year programs leading to a commission as a second lieutenant in the United States Air Force. The AFROTC program is open to almost all students pursuing baccalaureate and graduate degrees. Classes consist of one hour of academics and two hours of leadership laboratory per week for freshmen and sophomores, and three hours of academics and two hours of leadership laboratory per week for juniors and seniors. AFROTC offers numerous scholarship opportunities, but scholarships are not required to participate in the program. AFROTC offers a variety of one- to four-year scholarships valued at up to 100% of annual tuition along with a nontaxable monthly stipend. Air Force ROTC is offered on the campuses of the University of Southern California, California State University San Bernardino, and Harvey Mudd College. You do not need to be a student at any of these colleges to get involved. For more information contact the Department of Aerospace Studies at (213) 740-2670 or visit www.usc.edu/afrotc/. No military commitment is incurred until entering the junior year of the program or receipt of a scholarship after freshman year.

The Army ROTC program at USC offers four-, three-, and two-year scholarships that pay tuition costs up to $20,000 a year. In addition, the program pays all contracted cadets a stipend of $1,500 a year and an annual book allowance of another $450. High-school students need to apply for the four-year scholarship during the fall of their senior year, and no later than November 15. All Caltech students interested in an Army ROTC three- or two-year on-campus scholarship need to apply early in their spring semester, and no later than March 15, for the next academic year. Completion of the program leads to a commission as a second lieutenant in one of 17 occupational branches in the Regular Army, Army Reserve, or the National Guard. These scholarship provisions are subject to change, and interested students are encouraged to contact the Department of Military Science at the University of Southern California for further information: PED 110, Los Angeles, CA 90098, (213) 740-1850.
Undergraduate Student Sabbatical

An undergraduate student sabbatical must be sought by written petition, which must be accompanied by a completed withdrawal card. The dean or associate dean of students may grant a sabbatical provided: (a) the student is in good standing, in other words does not have to meet special academic requirements as a result of reinstatement, (b) the sabbatical is for one year or less, and (c) the sabbatical extends over a period that includes at least one full term.

The dean or associate dean may also grant a leave for medical reasons provided the petition is approved by the director of health services or the director of counseling services. Return from a leave for medical reasons also requires the recommendation of the director of health services or the director of counseling services, and the final approval of the dean or the associate dean. A student returning from a leave for medical reasons will maintain the same academic standing that he or she had previously.

Involuntary Leave

The dean of students may place a student on an involuntary leave if persuaded by the evidence that such action is necessary for the protection of the Institute community or for the personal safety or welfare of the student involved. The withdrawal card may state a specific date after which the student may return or it may be indefinite as to term. The dean of students may stipulate conditions that must be met before the student may return. These conditions might include a letter of approval from the director of health services or the director of counseling services. A decision by the dean to place a student on involuntary leave is subject to automatic review within seven days by the vice president for student affairs (or his designee). Nothing in this statement precludes access to the normal student grievance procedure.

All other petitions pertaining to leaves should be addressed to the Undergraduate Academic Standards and Honors Committee.

Withdrawal from the Institute

Formal separation from the Institute is effected by filing a completed withdrawal card with the registrar. The effective date of an immediate withdrawal will be the date the student informs the Dean of Students Office of his or her intent to withdraw. A student who withdraws, or is absent for a term (or longer), without an approved undergraduate student sabbatical, must petition for reinstatement to return to the Institute. Reinstatement rules are the same as those listed under scholastic requirements. A student must withdraw by the last day of classes in any term. No courses or grades for that term will appear on the permanent record of the student. However, the date of withdrawal and the number of units will be noted on the record. The record will also indicate whether
an undergraduate student sabbatical was granted.

A student leaving the Institute at any time during the term without filing a formal withdrawal card will not be considered withdrawn. In such a case, any grades reported by the instructors will be recorded on the permanent record card; the grade of F will be recorded for all other courses.

Summer Research or Summer Reading

Qualified undergraduate students who are regular students at the Institute are permitted to engage in research or reading during the summer, but in order to receive academic credit the student must have the approval of his or her division and must file a registration card for such summer work in the registrar's office before June 1. An undergraduate may not receive payment for research carried out for academic credit. Students who are registered for summer research or reading will not be required to pay tuition for the units. A student may apply up to 18 units of summer research per summer and 36 units in total toward Institute graduation requirements.

SCHOLASTIC REQUIREMENTS

All undergraduates are required to meet certain scholastic standards as outlined below.

Eligibility for Registration

Eligibility to register is determined by the student's record as of Registration Day of the term in which registration is sought. Undergraduates who register for programs that make it appear they are no longer candidates for a B.S. degree or who are not making satisfactory academic progress may be refused further registration by the Undergraduate Academic Standards and Honors (UASH) Committee.

Freshmen are ineligible to register for subsequent terms if they have accumulated 24 or more units of E or F, exclusive of PE; if they have accumulated three or more course grades of E or F, exclusive of PE; if, in any term of their freshman year following a reinstatement, they obtain six or more units of E or F, exclusive of PE. Ineligible freshmen must petition the UASH Committee for reinstatement if they wish to continue as students. The dean of students or associate dean may act on a petition if (i) it is the student's first ineligibility and (ii) the student has received fewer than 42 units of E or F, exclusive of PE. For other petitions, action must be taken by the UASH Committee.

Undergraduate students, except first- and second-term freshmen, are ineligible to register for another term if they fail during any one term to obtain a grade-point average of at least 1.4, or if they receive 27 or more units of E or F, exclusive of PE, during any one term; if they fail to obtain a grade-point average of at least 1.9 for the academic year, or if they accumulate 45 or more units of E or F, exclusive of PE, over the academic year (students who have completed at least three full terms of residence at the Institute and have been registered for their senior year shall no longer be subject to the requirement that they make a grade-point average of at least 1.9 for the academic year—seniors must, however, receive a grade-point average of at least 1.4 or receive fewer than 27 units of E or F each term); if they have completed fewer than 36 units in the previous term and fewer than 99 units in the previous three terms in residence; if, once reinstated, they fail to complete a full load of at least 36 units in the following term with a grade-point average of at least 1.9.

If a late grade makes a student ineligible after the start of the next term, the permanent record card shall show the ineligibility and a reinstatement. If the late grade is reported to the registrar before midterm deficiency notices are due for the subsequent term, the student shall be held to the requirement as above to complete a full load of at least 36 units with a grade-point average of at least 1.9.

If a late grade received on or before the last day for adding classes makes a reinstated student eligible, the ineligibility and the reinstatement will be removed from the student's record.

No student ineligible to register on the first day of classes will be permitted to register unless a petition for reinstatement has been submitted and acted upon.

Students ineligible for registration because of failure to meet the requirements stated in the preceding paragraphs may submit a petition to the Undergraduate Academic Standards and Honors Committee for reinstatement, giving any reasons that may exist for their previous unsatisfactory work and stating any new conditions that may lead to better results. Each such petition will be considered on its merits. For the first such ineligibility, the petition may be acted on by the dean of undergraduate students, after consultation with the student and examination of the record. At the dean's discretion, such cases may be referred to the Undergraduate Academic Standards and Honors Committee for action. All subsequent reinstatements must be acted upon by the Committee. A second reinstatement by UASH will be granted only under exceptional conditions.
Departmental and Option Regulations

Continuing in an Option
Students whose grade-point averages are less than 1.9 at the end of an academic year in a specific group of subjects designated by their department or option may, at the discretion of their department, be refused permission to continue the work of that option. Such disbarment does not prevent the students from continuing in some other option or from taking additional courses to raise their average in their original option. Students without an option will fall under the direct jurisdiction of the dean of students. Students may remain without an option for no more than one year.

Change of Option
An undergraduate in good standing at the Institute shall be permitted to transfer into any option of his or her choice provided he or she has (a) a 1.9 GPA in subjects required for graduation in that option or in a specific group of subjects designated by that option or (b) permission of the option representative or committee. A change of option is effectuated by obtaining a Change of Option petition from the registrar's office. The completed petition must then be signed by the option representative for the new option (who will assign a new adviser), and filed with the registrar's office.

Institute regulations require that a student who has made normal progress at the Institute be able to change options at any time up to the end of the sophomore year without penalty either as to time until graduation or as to excessive unit requirements in any term.

Term Examinations
Term examinations will be held in all subjects unless the instructor in charge of any subject shall arrange otherwise. No student will be exempt from these examinations. When conflicts exist in a student's schedule, it is the student's responsibility to report the conflict to the instructor in charge of one of the conflicting examinations and make arrangements for another time.

Satisfactory Academic Progress
A student will be declared ineligible to register if he or she has completed fewer than 36 units in the previous term and has completed fewer than 99 units in his or her three most recent terms in residence.

Graduation Requirement
To qualify for graduation a student must complete the prescribed work in one of the options with a passing grade in each required subject and with a grade-point average of 1.9. A grade of F in an elective course need not be made up, provided the student has received passing grades in enough other accepted units to satisfy the minimum total requirements of the option.
number of exceptional, highly motivated students with at least junior standing, for reasons deemed valid by the committee.

Miscellany

Transfer of Credit from Other Institutions
Regularly enrolled students who want to obtain credit for college courses taken elsewhere should have a copy of the transcript of their work sent to the registrar’s office. The student should then obtain an “Allowance of Credit” form from the registrar’s office and take this, with the transcript, to the representative of the option in which credit is desired. Credit will be granted when this form, with the appropriate signatures, is returned to the office.

Allowance of Credit in the Humanities and Social Sciences
In general, Caltech students should fulfill Caltech course requirements by taking courses at Caltech. Students are expected to have a well-reasoned educational goal for taking classes elsewhere. The only exceptions are transfer students admitted to advanced standing. Credit for comparable work done at other institutions with similar academic standards is not granted automatically.

Students who wish to take courses elsewhere (whether on leave, in the summer, or during the academic year) should consult, in advance, with the executive officer for the humanities or the executive officer for the social sciences, or their designees, to minimize any misunderstanding regarding the nature of credit they may receive. Upon completion of the course, the student must obtain an Allowance of Credit Form from the registrar, obtain the signed approval of the executive officer, or his or her designee, for transfer credit, and return the completed form to the registrar’s office. The executive officers are the final authority in the allowance of credit.

Guidelines and specific information about allowance of credit are available from the Division of the Humanities and Social Sciences.

Other Allowances of Credit
Except for transfer credit and advanced placement credit upon admission, credit will not be granted for Caltech courses not registered for, except in special circumstances by arrangement with the instructor. Such arrangements must be approved by the Curriculum Committee, and the student must petition the Committee before the work is undertaken.

Selection of Option
By the middle of the third term, freshmen must notify the registrar’s office of their selection of an option in engineering, humanities, social sciences, or science to be pursued in subsequent years. Upon the selection of an option, a freshman will be assigned an adviser in that option, whose approval must then be obtained for registration for the following year.

In exceptional circumstances an undergraduate may be allowed to major in two options for the Bachelor of Science degree. In order to do so the student must present a rationale for the double option and a plan of study leading to completion of the degree in four years. The plan, and any substantive modifications, must be approved by a committee composed of the option representatives of the two options. The plan must meet the minimum requirements for both options as set forth in this Catalog, but the committee may impose additional requirements as well. The approved plan should be submitted to the registrar during the sophomore year, but in any case no later than the start of the senior year. The student will then be assigned an adviser by each option. Consult the registrar for appropriate procedures.

Candidacy for the Bachelor’s Degree
A student must file with the registrar a declaration of candidacy for the degree of Bachelor of Science on or before the first Monday of November preceding the date on which he or she expects to receive the degree. All subjects required for graduation, with the exception of those for which the candidate is registered during the last term of his or her study, must be completed and the grade recorded, by the second Monday of May preceding commencement.

Transcripts of Records
A student, or former student, may request that official transcripts of his or her records be forwarded to designated institutions or individuals. Requests should be filed at the registrar’s office at least five days before the date on which the transcripts are to be mailed. (See “Unpaid Bills” for complete details.)

ATHLETICS AND PHYSICAL EDUCATION

Before graduation each undergraduate is required to successfully complete 9 units of physical education. This requirement may be satisfied entirely or in part by participation in intercollegiate athletics, or successful completion of physical-education class coursework. All grades are issued pass/fail. Of this 9-unit PE requirement, only 3 units may be counted from PE 1. A maximum of 6 units per term may be applied toward graduation requirements with the total not to exceed 36 units. Participation as a bona fide member of an intercollegiate team for the period covered by the sport in a given term satisfies the requirement for that term.

A broad program of instruction is provided each term. Enrollment in classes is conducted during registration. Late registration is permitted during the first week of each term, provided there is space available and with permission of the instructor.
The following is a list of undergraduate student fees at the California Institute of Technology for the academic year 2001–02 together with the dates on which these charges are due. Fees are subject to change at the discretion of the Institute.

First Term
September 24, 2001 (Freshmen)
October 1, 2001 (All Others)

<table>
<thead>
<tr>
<th>Fee</th>
<th>September 24, 2001 (Freshmen)</th>
<th>October 1, 2001 (All Others)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Deposit</td>
<td>$100.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Tuition</td>
<td>$6,968.00</td>
<td>$6,968.00</td>
</tr>
<tr>
<td>Associated Student Body Dues</td>
<td>$20.00</td>
<td>$20.00</td>
</tr>
<tr>
<td>Assessment for Big T</td>
<td>$12.00</td>
<td>$12.00</td>
</tr>
<tr>
<td>Assessment for Caltech Y</td>
<td>$5.00</td>
<td>$5.00</td>
</tr>
<tr>
<td>Room and Board (for on-campus residence)</td>
<td>$2,181.00</td>
<td>$2,181.00</td>
</tr>
<tr>
<td>Student House Dues and Assessment</td>
<td>$35.00</td>
<td>$35.00</td>
</tr>
</tbody>
</table>

Second Term
January 7, 2002

<table>
<thead>
<tr>
<th>Fee</th>
<th>January 7, 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$6,968.00</td>
</tr>
<tr>
<td>Associated Student Body Dues</td>
<td>$20.00</td>
</tr>
<tr>
<td>Assessment for Big T</td>
<td>$12.00</td>
</tr>
<tr>
<td>Assessment for Caltech Y</td>
<td>$5.00</td>
</tr>
<tr>
<td>Room and Board (for on-campus residence)</td>
<td>$2,181.00</td>
</tr>
<tr>
<td>Student House Dues and Assessment</td>
<td>$35.00</td>
</tr>
</tbody>
</table>

Third Term
April 1, 2002

<table>
<thead>
<tr>
<th>Fee</th>
<th>April 1, 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$6,968.00</td>
</tr>
<tr>
<td>Associated Student Body Dues</td>
<td>$20.00</td>
</tr>
<tr>
<td>Assessment for Big T</td>
<td>$12.00</td>
</tr>
<tr>
<td>Assessment for Caltech Y</td>
<td>$5.00</td>
</tr>
<tr>
<td>Room and Board (for on-campus residence)</td>
<td>$2,181.00</td>
</tr>
<tr>
<td>Student House Dues and Assessment</td>
<td>$35.00</td>
</tr>
</tbody>
</table>

Tuition Fees for fewer than normal number of units:

<table>
<thead>
<tr>
<th>Units</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 units or more</td>
<td>Full Tuition</td>
</tr>
<tr>
<td>Per unit per term</td>
<td>$194.00</td>
</tr>
<tr>
<td>Minimum tuition per term</td>
<td>$1,940.00</td>
</tr>
</tbody>
</table>

1 This charge is made only once during residence at the Institute.
2 Fees subject to change by action of the Board of Directors of the Associated Students of the California Institute of Technology.
Other Items of Interest

Refunds and Repayments

Students withdrawing from Caltech may either be entitled to a refund or required to make a repayment.

For those students receiving no financial assistance, the institutional charges, e.g., tuition and fees, room and board, books and supplies, will be prorated according to the amount of time the student spent in academic attendance before withdrawing (see withdrawal information below). These prorated charges will be compared to the payment the student has made and the student will either receive a refund or owe an amount to Caltech.

For those students receiving funds from federal Title IV, and/or Caltech, and/or state programs, the Institute will use specific procedures to determine the amount of program funds the student has earned at the time of withdrawal. In general, the amount of financial aid earned is based on the amount of time the student spent in academic attendance. If the amount of aid disbursed to the student is greater than the amount the student earned, unearned funds must be returned. If the amount the student was disbursed is less than the amount the student earned, the student is eligible to receive a postwithdrawal disbursement.

The Department of Education has provided a summary of these regulations in *The Student Guide* for the 2001–02 award year, available online at www.ed.gov/ prog_info/SFA/StudentGuide/.

Determining the Student’s Last Date of Attendance or Withdrawal Date: The Office of the Registrar is responsible for receiving a request for a withdrawal from the appropriate undergraduate or graduate dean and for processing official withdrawals.

In order to calculate the refund or repayment, Caltech will establish the student's withdrawal date. This date is one of the following:

- The date that the student began the withdrawal process prescribed by Caltech; or
- The date the student otherwise provided official notification to the registrar (written or oral) of his or her intent to withdraw; or
- The mid-point of the academic term if no official notification is provided; or
- The date determined by the registrar if there are special circumstances (illness, accident, grievous personal loss); or
- The date the registrar determines the student has not returned from an approved student sabbatical or if the student does not qualify for a sabbatical.

Academically Related Activities that Determine Academic Attendance:

The Institute may use the last date of attendance at an academically related activity as the student's withdrawal date. This may occur if a student begins the withdrawal process and then attends an academically related activity after that date. Caltech considers an academically related activity to include the following:

- Attendance at a lab
- Attendance at a lecture
- Completing a quiz and/or test
- Participation in a study session
- Academic counseling session
- Academic advisement session
- Turning in a class assignment

Determining the Return of Federal Funds: The Financial Aid Office and/or the Graduate Office will calculate the federal funds that must be returned to the appropriate federal accounts.

If a student withdraws prior to the first day of classes for the period of enrollment, Caltech will return 100% of the student's federal financial aid in accordance with federal procedures, as well as Caltech and/or state grants/aid.

If a student withdraws any time after the first day of classes for the period of enrollment, the Institute will perform the following:

- Determine the percentage of the payment period that the student completed. If the student completed more than 60% of the period, he or she earned 100% of the aid for the period. If the student completed 60% or less, the percentage of the period completed is the percentage of aid earned. This percentage is determined by dividing the number of days attended in the period of enrollment by the total days in the period.

- Apply the earned percentage to the amount of aid actually disbursed and the amount that could have been disbursed (“earned aid”).

- Subtract earned aid from aid that was actually disbursed. This results in the amount of unearned aid to be returned.

The Financial Aid Office and/or the Graduate Office (as appropriate) will allocate the return of funds back to the student aid programs in the following order:

1. Federal Unsubsidized Stafford Loan Program
2. Federal Subsidized Stafford Loan Program
3. Federal Direct Unsubsidized Stafford Loan Program
4. Federal Direct Subsidized Stafford Loan Program
5. Federal Perkins Loan Program
6. Federal PLUS Loan Program
7. Federal Direct PLUS Loan Program
8. Federal Pell Grant Program
9. Federal SEOG Program
10. Other Title IV Programs
Any remaining refund will be returned to the other state, institutional, or private student assistance utilized. Federal Work Study is not included in any of these calculations.

Appeals on Refunds: Any questions or problems related to refunds should be directed to the Bursar's Office.

For further information on refunds and repayments, please contact the Financial Aid Office, the Graduate Office, or the Bursar's Office.

Dropping a Course: A student's financial aid package will be adjusted to reflect any tuition adjustment made by the Bursar's Office as well as any other adjustments required by law or by the applicable fund donor(s). In addition, students who are not enrolled full time as of the last day to add courses may have their aid revised. Generally, students enrolling less than three-fourths time will have an increased work award. Additional information is available in the Financial Aid Office.

Refund upon Withdrawal: Should a student, for whatever reason, withdraw from Caltech during an academic term, a refund of tuition as well as room and board, if applicable, is calculated. The amount of refund is determined by how much of the term has elapsed. If the student is a recipient of student financial assistance, that assistance, if applicable, will be reduced as a result of his or her withdrawal. Recent federal legislation determines the amount of refund for recipients of federal Title IV student assistance. It is the purpose of this section to inform students of the financial implications of withdrawal.

If the student is not a recipient of federal student financial aid, the Institute's refund policy returns any refund of tuition or room and board first to the programs from which assistance has been received (i.e., scholarships, Caltech gift assistance). Any amount remaining will then be returned to the student. The non-Title IV portion will be distributed as appropriate, first to outside agencies, as required, then to the Caltech grant, scholarship, or loan, depending on the composition of the aid package. These distributions will occur as credits to the appropriate aid funds and charge(s) to the student's Caltech account.

If the student is the recipient of federal Title IV student assistance, any refund must then be applied first to the federal aid program(s) in the prescribed order listed on page 135.

In the event that a student's disbursed financial aid exceeds the direct costs on the student's personal account, a credit balance will result. Withdrawal will result in the reversal or repayment of the resulting credit balance.

ASCIT Dues
As a service to the Associated Students of the California Institute of Technology, Inc., or ASCIT, dues of $60 per year and an assessment of $36 for the college annual, the Big T, are collected by the Institute and turned over to ASCIT. A subscription to the student newspaper, the California Tech, is included in these dues, and the balance is used in the support of student activities as deemed appropriate by the ASCIT Board of Directors. Students not wishing to join ASCIT or to purchase the Big T should so indicate at the time of registration.

General Deposit
Each new student is required at his or her first registration to make a general deposit of $100, to cover possible loss and/or damage of Institute property. Upon graduation or withdrawal from the Institute, any remaining balance of the deposit will be refunded.

Fees for Late Registration
Registration is not complete until the student has returned the necessary forms for a program approved by his or her adviser and has paid tuition and other fees. A penalty fee of $50 is assessed for failure to register within five days of the scheduled dates. A $50 late penalty will be charged by the Bursar's Office for failure to clear a past-due account within five days of the beginning of instruction.

Honor System Matters
Monies owed to the Institute resulting from a Board of Control decision may be collected through the Bursar's Office, at the request of the dean of students.

Student Houses
Students in the houses must supply their own blankets. Bed linens and towels are furnished and laundered by the Institute.

Application for rooms in the student houses may be made by addressing the Director of Residence Life, Mail Code 160-86, California Institute of Technology, Pasadena, CA 91125.

Special Fees
Students taking the Summer Field Geology course (Ge 120) should consult with the division about travel and subsistence arrangements and costs.

Unpaid Bills
All bills owed the Institute must be paid when due. Any student whose bills are past due may be refused registration for the term following that in which the past due charges were incurred. Transcripts will not be released until all bills have been paid or satisfactory arrangements for payment have been made with the Bursar's Office.
Caltech believes that qualified students who wish to attend the Institute should not be prevented from doing so for financial reasons. Although the Institute expects students and families to finance the cost of education to the fullest extent possible, the Institute will make every effort to assist those who need help, including those whose financial circumstances change during the year.

Demonstrated financial need is the difference between the annual cost of attending Caltech and the amount the student and parents can reasonably be expected to contribute toward those costs. Costs include actual tuition and fees, room and board, an allowance for meals not covered in the board contract, books and supplies, personal expenses, and a travel allowance based on airfare for two round trips. (Caltech is unable to include a travel allowance for students whose residence is outside the United States, Mexico, or Canada.) Caltech's estimate of a family's ability to contribute is determined annually in accordance with nationally established guidelines.

Eligibility for each type of assistance varies, depending upon the source of funds. Most students who attend Caltech qualify for some kind of financial aid from the Institute, federal and state agencies, outside organizations, such as foundations and businesses, and/or lending institutions. Assistance offered by Caltech includes federal, state, and institutional grants, subsidized part-time jobs, and low-interest loans. U.S. citizens or eligible noncitizens (as defined in the application) may apply for state and federally funded programs. International students may apply for institutionally funded programs.

Students should not wait to be accepted for admission to Caltech before applying for financial aid. Applications for admission are evaluated separately from requests for financial aid. Students with complete financial aid applications on file will be considered for all applicable types of need-based assistance. A renewal application must be submitted each year. In addition to direct financial assistance, information is available, upon request, about education payment plans and financial-planning resources. (For information on non-need-based scholarships and prizes, see pages 156 and 159–166.)

All students who believe they will need assistance to attend Caltech are encouraged to submit financial aid applications. Application procedures are outlined below.

The Financial Aid staff is happy to talk with students and their families at any time to explain the application process and Caltech's computations. For further information on the determination of financial need and on application procedures, as well as on financial aid awards and programs, contact the Financial Aid Office, California Institute of Technology, Mail Code 2-94, Pasadena, CA 91125, call (626) 395-6280, or visit the Caltech Financial Aid Office home page at http://www.finaid.caltech.edu/.

HOW TO APPLY FOR FINANCIAL AID

Slightly different procedures and deadlines exist for each category of students applying for financial aid. Detailed descriptions of these procedures and deadline dates may be found on the Caltech Financial Aid Office Web site at http://www.finaid.caltech.edu/.

Incoming Student Application Process for Caltech and Federal Financial Aid PROFILE

The College Scholarship Service (CSS) PROFILE application and the Free Application for Federal Student Aid (FAFSA) forms are both required of all applicants (with the exception of international applicants, who should review the specific procedures listed on page 138) for Caltech need-based assistance. These forms provide essential information about the applicant’s family's financial picture and enable the Financial Aid Office to determine eligibility for federal, state, and Caltech financial assistance.

Please note the following steps for filing the PROFILE and FAFSA forms:

Step 1

To receive a 2002–03 PROFILE application, students may register by connecting to the College Board Online at http://www.collegeboard.com/ or by telephoning 1-800-778-6888, beginning September 15. This number is available Sunday through Friday, 8:00 a.m. to 10:00 p.m. (Eastern time). Complete the PROFILE with Caltech’s CSS Code 4034. Students registering by telephone will have the option of paying PROFILE fees by credit card or being invoiced for check/money order payment at the time of application submission. Those filing on line must be prepared with credit card information. The customized PROFILE application packet will be mailed within 24 to 48 hours of the student's phone call. The electronic customized PROFILE application is available on-line within minutes of registering.

Step 2

Complete the customized PROFILE application and submit it to CSS for processing. CSS will then report the financial information to the colleges listed on the Registration form and mail each student a Data Confirmation Report (DCR) approximately 2 to 3 weeks after receipt of the PROFILE application.
Step 3
Students must also complete the Free Application for Federal Student Aid (FAFSA) in early January. The FAFSA is available in paper version from your high school. The Internet version of the FAFSA is available after January 1, 2002, at http://www.fafsa.ed.gov/. Complete the FAFSA with Caltech’s code 001131 and submit according to the schedule below. The completed FAFSA form is required to determine eligibility for federal and state financial aid programs. As with the PROFILE, it is advisable to estimate income information in order to meet the priority deadline.

All students must reapply for aid each year.

Types of Aid Available

Once financial need has been determined, that need will be met either by a single type of aid or by a combination of grants or scholarships, student employment, and low-interest loans. Such a combination is called a financial aid “package.”

Grants and scholarships, which include those provided both through Caltech and by the federal and state governments, do not have to be repaid. Employment wages are funds earned during the academic year either on or off campus. Employment opportunities exist for students who wish to work to help meet their educational costs. Loans are a sound means of meeting a portion of current educational expenses by borrowing against future earnings. Loans, of course, must be repaid.

Disbursement of Funds
Financial aid funds are disbursed depending on the type of aid and its source:

- Caltech grants, scholarships, and merit awards, as well as state and federal grants, are automatically credited to the student’s account, in equal amounts, at the beginning of each academic term.
- Federal Perkins Loans, Direct Stafford Loans, and Caltech Loans are also credited each term, in equal amounts, to the student’s account.
- Federal Perkins and Caltech Loans require that the borrower complete a Borrower Data Sheet and sign a promissory note for each loan disbursement. These forms are available at the Bursar’s Office during fee payment each term.
- Federal Perkins Loan borrowers must read and sign an Entrance Interview form.
- Federal Direct Stafford Loan borrowers must complete the Entrance Interview process and must sign an Entrance Interview form prior to receiving their loan. The Entrance Interview is available online at http://www.ed.gov/offices/OPE/DirectLoan/ or in person.
- Paychecks (for actual hours worked) from Federal Work Study and CIT Work Study earnings are disbursed to students at the work site on a biweekly basis.
Outside scholarships are disbursed according to the sponsor’s specifications. If the funds are sent to the Financial Aid Office, they will be credited to the student’s account.

Note: For information on Federal Direct PLUS loan disbursements, please see page 147.

Grants and Scholarships

Caltech Grants are gifts awarded from an institutional fund or endowment specifically established for the purpose of assisting undergraduates. The amount of the award depends entirely on demonstrated financial need and is subject to available funds. Caltech Grants are renewable based on demonstrated financial need, which is assessed annually when students apply for financial aid.

“Named” scholarships are awarded to undergraduates from money given by individuals or organizations for scholarship purposes and are “named” by or for the donor. All aid applicants who meet the specifications of the donor are considered for a “named” scholarship. In most cases, no special application need be filed. Since many donors are lifelong friends of the Institute and enjoy hearing about student life at Caltech today, recipients may be asked to write a thank-you letter to one or more donors. Named scholarships are given in lieu of Caltech Grants.

Federal and State Grants

The Federal Pell Grant Program is for undergraduate students who have not yet completed a baccalaureate degree. Eligible students may receive Federal Pell Grants for the period of time necessary to complete a first undergraduate baccalaureate degree.

The Federal Pell Grant program is intended to be the “floor” of the student’s financial aid package. This is usually the first program for which a student’s eligibility is determined. Many other federal aid programs require that a student’s Federal Pell Grant eligibility be considered prior to determining eligibility for other aid. Application for a Federal Pell Grant is made by using the Free Application for Federal Student Aid (FAFSA). Applicants will receive a Student Aid Report (SAR) directly from the FAFSA processor. Upon receipt of the SAR, students should review it for accuracy.

If eligible, the exact amount of the student’s award will be determined by the Financial Aid Office based upon the cost of attendance, the expected family contribution, and the student’s enrollment status.

In 2001–02, Pell Grant awards will range up to $3,750 per year. The Federal Supplemental Educational Opportunity Grants (FSEOG) Program provides grant funds for undergraduate students who have not completed their first baccalaureate degree and who are financially in need of this grant in order to pursue their education. Awards of FSEOG funds must be made first to students who show exceptional financial need (defined as those students with the lowest federal expected family contribution at the Institute). Priority for FSEOG funds must be given to Pell Grant recipients. No additional application is required. These grants are contingent upon federal appropriations. The minimum annual FSEOG award is $100, and the maximum annual award is $4,000.

Cal Grants are awarded to California residents by the California Student Aid Commission (CSAC). All students who are eligible to apply are required to do so each year at the time they apply for Caltech assistance. Students should complete a FAFSA and GPA Verification Form. Results from the FAFSA are sent by the processor to the CSAC, where eligibility is determined. Renewal materials are mailed to current recipients at their permanent addresses each year in December. Students must renew their Cal Grant eligibility on an annual basis by completing the FAFSA. The FAFSA deadline for new applicants is March 2.

Cal Grant A, which is awarded on the basis of financial need and academic achievement, is designed to assist with the cost of tuition and fees. In 2000–01, the Cal Grant A awards ranged from $8,184 to $9,708.

Cal Grant B is awarded to students from disadvantaged/low-income families. During the first year, Cal Grant B recipients are awarded a monthly stipend for living costs. Renewal Cal Grant B recipients are awarded the monthly stipend and, in addition, assistance with tuition and fees. In 2000–01, Cal Grant B recipients received a maximum of $1,548 total in quarterly stipends and a range of $8,184 to $9,708 in tuition and fee assistance.

Many other states provide scholarships and grants. A complete list of state scholarship agencies and their addresses is available from the Financial Aid Office. Students should contact the agency in their states of residence regarding programs available and application procedures.

Self-Help: Employment and Loans

A self-help award is a combination of loans and employment opportunities available to meet school expenses. At Caltech, in order to meet their expected self-help contribution, students are offered a suggested combination of loan and employment opportunities. Students often can choose how much they wish to earn and how much they wish to borrow, or they may decide to work or borrow less than the standard self-help amount. These choices will not affect the amount of their grant.

The amount of self-help expected of a student is established yearly by the Institute. For the 2001–02 academic year, a freshman typically was awarded $3,150 ($1,575 loan and $1,575 work) toward educational expenses. An eligible student is first awarded a combination of work and/or loan, with any remaining need being met with grant assistance.
Employment

Work programs offer students a double incentive—earning money to help meet college expenses plus gaining valuable job experience. In the competitive job market, employers look for applicants who have work experience with their education.

Student employment is generally available to all students regardless of whether they apply for financial aid. Interested students should contact the Caltech Career Development Center. Undergraduate students must receive approval from the dean of students to work more than 16 hours per week. Students typically work an average of 10 hours per week. Freshman students may not work during fall term. In subsequent terms they must receive permission from the dean of students to work before accepting their first work assignment.

The Federal Work Study Program provides jobs for eligible students who demonstrate need for such earnings to meet a portion of their educational expenses. Jobs may be located on campus or off campus. The employer may be Caltech; a federal, state, or local public agency (such as Caltech’s Jet Propulsion Laboratory); or a private nonprofit organization, such as a community service agency. Beginning with the 1994–95 school year, Caltech placed an increased emphasis on placing Federal Work Study students in community service jobs. Federal Work Study employees are paid at least the federal minimum wage rate.

The maximum amount of Federal Work Study wages that students may earn is determined by financial need. To locate a job, the student may contact the campus Career Development Center and the student newspaper. Summer Federal Work Study may also be available.

The Caltech Work Study Program is funded by the Institute to provide part-time employment for international students who have demonstrated financial need. This program is limited to the campus or JPL. The program is designed to parallel the Federal Work Study Program, and the same guidelines apply to its administration. Summer Caltech Work Study Program funding may also be available.

Loans

Loans are a valuable resource for many students and their families in financing a college education. Loans allow students to postpone paying a portion of their education costs until they complete their education or leave school. Loan repayment generally extends up to 10 years after students graduate or leave school.

Federal Perkins Loans are awarded by the Institute to students with demonstrated financial need. Funds are obtained from the federal government and from former Caltech students who have repaid or are in the process of repaying their loans. No interest is charged on the loan while a student maintains at least a half-time academic load. Repayment begins nine months after leaving school or dropping below half-time status. Interest is then charged at a rate of 5 percent on the unpaid balance. Federal Perkins Loans are limited to a total of $4,000 annually during undergraduate study, a total of $20,000 for all years of undergraduate study, and a maximum of $40,000 for the entire undergraduate and graduate career. Students may be allowed up to 10 years to repay, based upon the amount they have borrowed. A typical repayment chart is shown on the Caltech Financial Aid information home page, located at http://www.finaid.caltech.edu/process/chart.html. Information concerning deferment, repayment, postponement, and cancellation will be provided on each borrower’s loan promissory note and in a disclosure statement given to students prior to disbursements of the loan.

Caltech and Institute Loans are made from funds provided by many sources, and are used to supplement the Institute’s Federal Perkins Loan funds. Generally, no interest is charged and no repayment of principal is required while a student maintains a continuous course of study as an undergraduate at Caltech. Repayment begins nine months after leaving school or dropping below half-time status. For Caltech Loans, interest is then charged at a rate of 5 percent on the unpaid balance until the loan has been repaid in full. Institute Loans are interest-free. As with Federal Perkins Loans, if the student transfers to another institution or attends graduate school, no payments need be made on the principal or interest as long as half-time attendance is maintained. More specific information is provided to each borrower on the promissory note and in a disclosure statement given to students prior to disbursement of the loan. For example, Cecil L. Killgore Student Loans are available to members of all undergraduate and graduate classes, including freshmen, under the same general guidelines established for Caltech Loans as described above. It is the fund’s policy to make loans available at the lowest possible cost to the student, with priority given to students in the field of power engineering.

Other Loans/Emergency Loans may be available to students regardless of their eligibility for financial aid. The Hoover Loan Fund enables students to borrow small sums of money to cover unforeseen emergencies. These loans are usually payable within the same academic year and are administered by the dean of students on a case-by-case basis. Additional information and applications may be obtained from the Dean of Students’ Office.

The Caltech Y also has a no-interest, 30-day, emergency-loan program. Maximum loans are $50. Additional information and applications may be obtained from the Caltech Y.

The Federal Direct Student Loan Program is an opportunity for students to borrow money from the federal government to pay for a Caltech education. Under this program, the U.S. Department of Education makes loans, through Caltech, directly to students.
Caltech will use the Federal Direct Loan to pay tuition and fees, as well as room and board charges, and will give any remaining money to the student for personal expenses. Federal Direct Loans simplify loan repayment—payments go directly to the federal government.

Direct Loans include
1. the Federal Direct Stafford Loan Program;
2. the Federal Direct Unsubsidized Stafford Loan Program;
3. the Federal Direct PLUS Loan Program; and
4. the Federal Direct Consolidation Loan Program.

Federal Direct Stafford Loan
The Federal Direct Stafford Loans (subsidized and unsubsidized) are available to both graduate and undergraduate students. The federal government "subsidizes" a loan by paying the interest while the student is in school, during the grace period, and during periods of deferment. For an unsubsidized loan, the government does not provide the subsidy; therefore, interest on the loan accrues during those periods. The calculated family contribution is taken into consideration when determining a student's need for an unsubsidized loan. To determine eligibility for an unsubsidized loan, the family contribution is not considered. Other than these two differences, the provisions of the Federal Direct Stafford Loan Program apply to both subsidized and unsubsidized loans (i.e., loan limits, deferment provisions, etc.).

Before Caltech can determine loan eligibility, a determination of the student's eligibility for a Federal Pell Grant must be made. In order to make this determination, the applicant must complete a Free Application for Federal Student Aid (FAFSA). Subsidized Federal Direct Stafford Loans may not be used to substitute for the federally calculated expected family contribution; however, Federal Direct Unsubsidized Stafford Loans may be used in this capacity. Before a student can apply for a Federal Direct Unsubsidized Stafford Loan, eligibility for a subsidized loan will be determined. To reiterate, Federal Direct Unsubsidized Stafford Loan borrowers are not required to demonstrate need in order to be eligible. However, if the student is eligible for a Subsidized Federal Direct Stafford Loan, he or she will be awarded that loan first, and this award will be taken into consideration when determining eligibility for the Federal Direct Unsubsidized Stafford Loan. The amount borrowed under the subsidized and unsubsidized loans combined may not exceed the annual/aggregate loan limits, or the total cost of education.

The following chart summarizes loan limits for Federal Direct Stafford Loans and Federal Direct Unsubsidized Stafford Loans.

<table>
<thead>
<tr>
<th></th>
<th>Dependent Student</th>
<th>Independent Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum combined</td>
<td>Maximum combined</td>
<td></td>
</tr>
<tr>
<td>subsidized &</td>
<td>subsidized &</td>
<td></td>
</tr>
<tr>
<td>unsubsidized Federal</td>
<td>unsubsidized Federal</td>
<td></td>
</tr>
<tr>
<td>Direct Stafford Loan</td>
<td>Stafford Loan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stafford Loan</td>
<td></td>
</tr>
<tr>
<td>1st year undergraduate</td>
<td>$2,625</td>
<td>$6,625</td>
</tr>
<tr>
<td>2nd year undergraduate</td>
<td>$3,500</td>
<td>$7,500</td>
</tr>
<tr>
<td>3rd & 4th year undergraduate</td>
<td>$5,500</td>
<td>$10,500</td>
</tr>
<tr>
<td>Graduate/Professional</td>
<td>N/A</td>
<td>$18,500</td>
</tr>
</tbody>
</table>

Note: The loan amounts listed above cannot exceed the cost of the student's education minus other financial aid received.

Aggregate loan amounts are $23,000 for dependent undergraduates, $46,000 for independent undergraduates, and $138,500 for graduate and professional students (including Stafford amounts borrowed as an undergraduate).

All loans must be disbursed in at least two installments. Further, loan disbursements for first-time, first-year undergraduate borrowers may not be released to the student until he or she has been enrolled in his or her program of study for at least 30 days.

The maximum interest rate for new loans is 8.25 percent. The actual rate is variable, and is determined according to a formula linked to the 91-day Treasury-bill rate. For the 2001–02 academic year, the rate will be set in early summer of 2001. To offset the federal government's cost of the Federal Direct Stafford Loan program, the borrower must pay an up-front origination fee of 4 percent of the principal amount of the loan.

Federal Direct PLUS (Parent) Loan Program
Under the Federal Direct PLUS Program, parents of dependent undergraduate students may borrow up to the difference between the cost of attendance and all other financial aid, per dependent student. Federal Direct PLUS loans are also limited to parent borrowers who have "no adverse credit history," as determined by the Secretary of Education. Federal Direct PLUS loans may be used to replace the expected family contribution. There is no cumulative maximum limit that can be borrowed under the Federal Direct PLUS program. Federal Direct PLUS loan amounts are credited to the student's account and are disbursed in equal installments each term.

Interest rates on Federal Direct PLUS loans are variable, linked to the 91-day Treasury-bill rate, but may not exceed 9 percent.
For the 2001–02 academic year, the interest rate will be set in the summer of 2001. There is no federal interest subsidy on Federal Direct PLUS Loans. However, the government is authorized to charge the borrower an up-front origination fee of up to 4 percent to offset the federal government's cost of the program.

Unless the parent borrower qualifies for one of the deferments under the Federal Direct Stafford Loan Program, repayment of principal and interest must begin 60 days after final disbursement. Parent borrowers who qualify for deferment may pay interest only, beginning 60 days after disbursement, unless interest is capitalized (i.e., deferred and added to the loan principal).

Applications for Federal Direct PLUS loans are available from the Caltech Financial Aid Office. Applications must be returned to the Financial Aid Office for eligibility certification and processing.

Repayment Plans
Under the Direct Loan program, student borrowers have four types of repayment plans available:

1. the Standard Repayment Plan;
2. the Extended Repayment Plan;
3. the Graduated Repayment Plan; or
4. the Income Contingent Repayment Plan.

The plans vary in a number of ways to meet the different needs of individual borrowers. The following information describes these plans and provides suggestions on how to choose among them.

Standard Repayment
Minimum monthly payment $50
Maximum number of monthly payments 120 (10 years)
Under this plan no more than 120 monthly payments are required, and for small loan amounts, the number of monthly payments can be less than 120. Each monthly payment will be at least $50, and may be more if necessary to repay the loan within 10 years (excluding periods of deferment or forbearance). The number of monthly payments will be adjusted to reflect changes in the variable interest rate. This means that as the rate varies, the monthly amount will remain the same unless the borrower requests that the repayment amount be changed.

Extended Repayment
Minimum monthly payment $50
Maximum number of monthly payments see table next page

Graduated Repayment
Minimum monthly payment $25
Maximum number of monthly payments see table above

Under the Graduated Repayment Plan, payments are lower at first and will increase over a period of time that varies depending on the amount borrowed. The minimum monthly payment is the larger of 50 percent of the amount that would be required under the Standard Repayment Plan or the amount of interest that accrues monthly on the loan. The maximum number of months the borrower will pay excludes periods of deferment and forbearance and depends on the loan amount (see table above). With this plan the monthly payment amount during the earlier portion of the repayment period is reduced. Later in the repayment period, the monthly payment amount will increase, but will never be more than 150 percent of the amount required by the Standard Plan. The monthly repayment amount is increased (graduated) every two years. The number of monthly payments will be adjusted to reflect changes in the variable interest rate. This means that as the rate varies, the monthly amount will remain the same unless the borrower requests that the repayment amount be changed.

<table>
<thead>
<tr>
<th>Amount of Debt</th>
<th>Maximum number of Monthly Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least</td>
<td>Less than</td>
</tr>
<tr>
<td>$0</td>
<td>$10,000</td>
</tr>
<tr>
<td>10,000</td>
<td>20,000</td>
</tr>
<tr>
<td>20,000</td>
<td>40,000</td>
</tr>
<tr>
<td>40,000</td>
<td>60,000</td>
</tr>
<tr>
<td>60,000</td>
<td></td>
</tr>
</tbody>
</table>
The total AGI of both the borrower and his or her spouse (if married) will be used to calculate the monthly payments under the ICR Plan. The borrower will be required to provide his or her spouse’s written consent to disclose tax-return information. Further, if the borrower submits alternative documentation as noted above, he or she will be required to submit alternative documentation of spouse’s income.

If the borrower’s spouse has a Direct Loan, he or she can repay loans jointly. The repayment will be based on the joint income. While one is not required to repay loans jointly, it is important to remember that if only one spouse chooses to repay under the ICR Plan, the Department of Education will use the AGI (or alternative documentation of income) of the borrower and his or her spouse to determine the monthly payments.

Choosing a Repayment Plan
In selecting a repayment plan, there are several factors to understand before making a decision.

The Standard Repayment Plan has a shorter repayment term than under the other plans. This means the loan is paid off more quickly, and the amount of interest paid will be less than if the other plans were selected. However, the Standard Repayment Plan requires higher monthly payment amounts. If one will be able to pay a higher monthly amount, the Standard Repayment Plan may be best. If the higher repayment amount would be difficult or uncertainty exists about income level, one of the other repayment plans may be best.

The Extended or Graduated Plan features a longer repayment term. As a result, the monthly payment is lower than under the Standard Plan (unless the minimum monthly payment applies), but more interest over the life of the loan will be repaid. Under the Extended Plan, the payments are fixed amounts and less interest is paid than under the Graduated Plan.

The Income Contingent Repayment Plan features monthly repayment that will vary with the borrower’s income. When income is low, one probably will have a longer repayment period than under any of the other repayment plans. As a result, a greater amount of interest is repaid over the repayment period but it may be easier to keep up with the monthly payments. If the borrower’s income grows, the monthly repayment amount increases. This would reduce the repayment period and result in repaying a smaller total amount of interest over the repayment period. If the borrower’s income is high and he or she chooses to limit the monthly repayment to the amount he or she would be required to pay if the loan was repaid over 12 years in equal monthly installments, the repayment period is extended, which results in more total interest paid. However, this also helps to ensure that one’s payment will be manageable.
Examples of Debt Levels, Beginning Monthly Payments, and Total Amounts Repaid for All Direct Loan Repayment Plans

<table>
<thead>
<tr>
<th>Initial Debt when Loan Enters Repayment</th>
<th>Standard</th>
<th>Extended</th>
<th>Graduated</th>
<th>Income Contingent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per month</td>
<td>Total</td>
<td>Per month</td>
<td>Total</td>
</tr>
<tr>
<td>$ 2,500</td>
<td>$ 50</td>
<td>$ 0 1,074</td>
<td>$ 50</td>
<td>$ 1,074 25</td>
</tr>
<tr>
<td>5,000</td>
<td>61</td>
<td>2,769</td>
<td>61</td>
<td>2,769 35</td>
</tr>
<tr>
<td>7,500</td>
<td>92</td>
<td>11,019</td>
<td>92</td>
<td>11,019 53</td>
</tr>
<tr>
<td>10,000</td>
<td>123</td>
<td>14,718</td>
<td>123</td>
<td>14,718 70</td>
</tr>
<tr>
<td>15,000</td>
<td>184</td>
<td>22,077</td>
<td>184</td>
<td>22,077 105</td>
</tr>
<tr>
<td>20,000</td>
<td>245</td>
<td>29,437</td>
<td>245</td>
<td>29,437 140</td>
</tr>
<tr>
<td>25,000</td>
<td>307</td>
<td>36,796</td>
<td>307</td>
<td>36,796 175</td>
</tr>
<tr>
<td>30,000</td>
<td>368</td>
<td>44,535</td>
<td>368</td>
<td>44,535 210</td>
</tr>
<tr>
<td>40,000</td>
<td>491</td>
<td>58,873</td>
<td>491</td>
<td>58,873 280</td>
</tr>
<tr>
<td>50,000</td>
<td>613</td>
<td>73,392</td>
<td>613</td>
<td>73,392 350</td>
</tr>
<tr>
<td>75,000</td>
<td>920</td>
<td>110,387 563</td>
<td>202,842 526</td>
<td>212,324 119</td>
</tr>
<tr>
<td>100,000</td>
<td>1,227</td>
<td>147,183 751</td>
<td>270,456 701</td>
<td>283,099 119</td>
</tr>
</tbody>
</table>

Notes:
1. Payments are calculated using the maximum interest rate for student borrowers, 8.25 percent.
2. Assumes a 5 percent annual income growth (Census Bureau).
3. HOH is Head of Household. Assumes a family size of two.
to pay off the loan more quickly and reduce the interest expense, he or she will have a maximum of seven years left to repay the loan.

If repaying a Federal Direct Consolidation Loan (Direct Consolidation Loan) that one agreed to repay under the Income Contingent Repayment Plan due to a previous defaulted loan, the borrower must make six consecutive monthly payments before changing to another plan.

Loan Consolidation

If the borrower has several student loans (including other federal education loans), it may be to his or her advantage to consolidate loans into a single Direct Consolidation Loan. Consolidation means making only a single monthly payment to cover all of one's federal loans.

Because the interest rate will be the same as for Direct Loans, the borrower may also be able to pay less interest than he or she is paying on current loans. The borrower can choose the repayment plan that best suits his or her financial circumstances.

Note: If the borrower wants to consolidate during the grace period, he or she should wait until the last month of the grace period to apply. Repayment on consolidation loans begins within 60 days of the first loan disbursement, which means the grace period would be cut short if the borrower applied too early.

Once the borrower leaves school, he or she can consolidate a Federal Family Education Loan (FFEL) under Direct Loans only if an FFEL consolidation loan or an FFEL consolidation loan with income-sensitive repayment terms acceptable to him or her cannot be obtained.

Similar conditions apply to parents. They must have an outstanding balance on a Direct PLUS Loan or a Federal PLUS Loan (under the FFEL Program). Parents must not have an adverse credit history or, if they do, must either obtain an endorser for the loan who does not have an adverse credit history, or must document extenuating circumstances.

Even defaulted loans may be consolidated if the borrower agrees either to repay the loan under the Income Contingent Repayment Plan, or the borrower makes satisfactory arrangements to repay the loan (for consolidation purposes, defined as three consecutive, voluntary, on time, full monthly payments).

Note: Married couples may consolidate their loans jointly if at least one spouse meets the requirements for loan consolidation. Both spouses will be responsible for repayment of the loan, even if one spouse dies or they separate or divorce.

Listed below are the types of loans that may be consolidated:
- Direct Stafford/Ford Loans (subsidized and unsubsidized)
- FFEL Stafford Loans (subsidized and unsubsidized)
- Direct and Federal PLUS Loans
- Guaranteed Student Loans (GSL)
- Federal Perkins Loans
- National Direct/Defense Student Loans (NDSL)
- Health Professions Student Loans (HPSL)
- Health Education Assistance Loans (HEAL)
- Loans for Disadvantaged Students (LDS)
- Loans made under Subpart II of Part B of Title VIII of the Public Health Service Act, including nursing loans
- Direct and Federal Consolidation Loans

Borrowers can consolidate their loans at any time while they are still in school, during their six-month grace period, or after they begin repayment. If borrowers want to consolidate while they are in school, and they are attending a Direct Loan school, they must have at least one Direct Loan or FFEL that is in an “in-school period.” If borrowers are attending a non-Direct Loan school, they must have a Direct Loan in an “in-school period.” An “in-school period” begins when the loan is disbursed and ends when the borrower ceases to be enrolled half-time. Borrowers can consolidate only Direct Loans and FFELs while they are in school; the other types of loans listed above may be consolidated after they leave school.

This allows the borrower to extend his or her repayment term, reduce his or her monthly payments, and work with a single lender instead of several different lenders. Last, if the borrower is interested in a Direct Consolidation Loan, contact the Consolidations Department of the Direct Loan Servicing Center at 1-800-557-7392.

Loan Deferments

Once the borrower is no longer enrolled at least half-time in college and a six-month grace period has ended, loan repayment for Federal Direct Stafford Loans may be deferred:

- during any period in which one is pursuing at least a half-time course of study as determined by the institution;
- during any period in which the borrower is pursuing a course of study under an approved graduate fellowship program or rehabilitation training program for disabled individuals;
- for up to three years during periods in which one is actively seeking but unable to find full-time employment;
- for up to three years for any reason, which Caltech determines, that has caused or will cause the borrower to have an economic hardship;
- for up to three years during periods in which the borrower who is serving as a member of the Armed Forces is called or ordered to active military service for a period of more than 30 days.
Unlike the Federal Perkins Loan program, which provides for a six-month grace period following each period of statutory deferment, there are no postdeferral grace periods for Federal Direct Stafford Loans.

More specific information of repayment and deferments are included in the loan promissory note and the loan disclosure statement provided to student borrowers.

Financial Payment Plans

Several private organizations offer a variety of financing options (such as monthly payment plans and long-term loans) to assist students and families in meeting college expenses. Information describing these programs is available upon request from the Caltech Financial Aid Office and on the Caltech Financial Aid home page at http://www.finaid.caltech.edu/.

Merit Awards

Merit Awards are awarded annually to *returning* students solely on the basis of academic merit. Financial need is not factored in the recommendation process. These Upperclass Merit Awards include the endowed Caltech Prizes, Carnation Scholarships, Rosalind W. Alcott Awards, and several other private and corporate scholarships. The Faculty Committee on Scholarships and Financial Aid recommends a number of Caltech’s most academically talented students for receiving merit awards their sophomore, junior, and/or senior year. The John Stauffer Scholarship is also awarded to a student with a chemistry-related major. In 2000–01, students were awarded Caltech Merit Awards in amounts ranging from $13,162 (two-thirds of tuition) to $19,743 (full tuition). The honor is recorded on academic transcripts and listed in the commencement program when the scholar graduates.

In addition, the Freshman Admissions Committee selects admitted freshmen for a limited number of merit-based awards. No separate application is required. Selected students will be notified by letter.

Several corporations, including Intel and Green Hills Computer Software, offer partial- or full-tuition scholarships to students demonstrating particular talent in the options that represent the types of expertise the corporations need in their research and development groups. As these and other organizations announce competitions throughout the year, eligibility criteria and deadlines are advertised by the Financial Aid Office in the student newspaper—the *California Tech*—and on the Financial Aid Office home page at http://www.finaid.caltech.edu/.

Study Abroad

Caltech may provide student financial aid (in the form of grants, scholarships, and loans) to those undergraduates with demonstrated financial need who desire to participate in the Institute-sponsored Caltech Cambridge Scholars Program. Enrollment in a program of study abroad approved for credit by Caltech may be considered enrollment at the Institute, for the purpose of applying for and receiving federal student financial assistance. To be eligible for consideration in Caltech’s Cambridge Scholars Program, students must be in good academic standing, as defined in the Caltech Catalog and as certified by the Institute’s registrar. They must also meet the minimum GPA requirement as outlined in the information provided by the Fellowships Advising and Study Abroad Office. In addition, students selected to be Cambridge Scholars will be provided a Memo of Understanding outlining the terms of their study abroad participation. (For more information on the Caltech Cambridge Scholars Program, see page 122.)

For eligible students wishing to study abroad, the costs will not exceed the prorated costs of attending Caltech for the same academic period. These costs include but are not limited to tuition, fees, room, board, additional meals not covered by a board contract, books, supplies, personal expenses, and a standard transportation allowance from the student’s home to Caltech. Transportation expenses related to the student’s travel between Caltech and the study abroad institution are the responsibility of the student. The eligible student will have his or her expected family contribution and financial package calculated in the same manner as other students. Because students are usually unable to work while out of the country, they will receive a larger loan component as part of their financial aid award to compensate for their inability to work.

Students studying abroad are subject to the standard Caltech policy of a maximum of 12 terms of eligibility for financial aid.

Cambridge Scholars candidates must meet all financial aid priority deadlines and eligibility requirements to receive aid. It is the student’s responsibility to ensure that all necessary documents are filed and complete with regard to their application for financial aid. Cambridge Scholars will continue to be considered for available federal, state, and Caltech grant, scholarship, and loan funds. The Fellowships Advising and Study Abroad Office will make the necessary arrangements with the Bursar’s Office to ensure that scholars who may be eligible for funds in excess of the direct charges to the Institute receive those funds prior to their departure.
Other Resources

A number of both local and national organizations offer outside scholarships to continuing students throughout the year, some of these regardless of need. The student newspaper, the California Tech, announces eligibility criteria for several such scholarships. Those relevant to undergraduate students will also be posted in the Scholarship News section of the Caltech Financial Aid Office home page. Such scholarships can also be found with the help of a search service. We recommend fastWEB, SRN, ExPAN, MACH25, CASHE, and Fund Finder. (For more information on scholarship services, go to http://www.finaid.org/) Outside scholarships acquired by students are considered, by federal regulation, to be a resource available during the academic year. In general, the amount of each outside merit award will be used to replace a like amount of the self-help (work and/or loan) portion of the financial aid award. If the amount of the outside award exceeds the self-help portion, the excess amount will replace Caltech grant eligibility.

Satisfactory Academic Progress

In order to continue to receive financial aid at Caltech, students must maintain satisfactory academic progress toward completion of the baccalaureate degree as defined on pages 128 and 167. Whenever this is not maintained, approval for reinstatement by the Undergraduate Academic Standards and Honors Committee, the registrar, or the dean of undergraduate students (as described on pages 125 and 126) shall reestablish satisfactory progress for purposes of financial aid eligibility.

In general, assistance is available to eligible students for the first 12 terms of enrollment (or the equivalent for transfer or less-than-full-time students). Exceptions may be approved after submission of a petition to the Financial Aid Office. Petition forms are available in the Financial Aid Office.

Class Level

For financial aid purposes, undergraduate students are classified according to the number of units earned and the number of terms of residence at Caltech. Both these criteria must be satisfied for class-level eligibility. Students are regarded as freshmen until eligible for sophomore status, and as sophomores, juniors, or seniors if they meet the corresponding criteria set below. Units earned are defined as units completed with a passing grade.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Minimum Units Earned</th>
<th>Minimum Terms in Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore</td>
<td>108</td>
<td>3</td>
</tr>
<tr>
<td>Junior</td>
<td>216</td>
<td>6</td>
</tr>
<tr>
<td>Senior</td>
<td>324</td>
<td>9</td>
</tr>
</tbody>
</table>

Part-Time Enrollment (Underloads)

Underloads (see page 129) must be approved by the registrar or Undergraduate Academic Standards and Honors Committee. Students enrolled half-time (taking 18 to 26 units) will be expected to work additional hours during the academic year, as well as to accept a reduction in the books and supplies allowance of their college expense budget. All students planning to carry an underload (less than 36 units) should contact the Financial Aid Office.

PRIZES

Mabel Beckman Prize

The Mabel Beckman Prize is given in memory of Mrs. Beckman’s many years of commitment to Caltech’s educational and research programs. The $3,000 prize is awarded to an undergraduate woman who, upon completion of her junior or senior year at Caltech, has achieved academic excellence and demonstrated outstanding leadership skills, a commitment to personal excellence, good character, and a strong interest in the Caltech community.

Eric Temple Bell Undergraduate Mathematics Research Prize

In 1963 the department of mathematics established an Undergraduate Mathematics Research Prize honoring the memory of Professor Eric Temple Bell, and his long and illustrious career as a research mathematician, teacher, author, and scholar. His writings on the lives and achievements of the great mathematicians continue to inspire many hundreds of students at Caltech and elsewhere. A prize of $500 is awarded annually to one or more juniors or seniors for outstanding original research in mathematics, the winners being selected by members of the mathematics faculty. The funds for this prize come from winnings accumulated over the years by Caltech undergraduate teams competing in the William Lowell Putnam Mathematics Contest, an annual nationwide competition.

The Marcella and Joel Bonsall Prize for Technical Writing

The Marcella and Joel Bonsall Prize for Technical Writing was established by the late Marcella Bonsall to encourage SURF students to develop excellent technical writing skills. Mentors may nominate their students’ papers for consideration. A faculty committee recommends the winning papers. Five prizes can be awarded annually, a first prize of $300; second prize, $300; and three $200 third prizes.

Richard G. Brewer Prize in Physics

The Richard G. Brewer Prize is awarded to the freshman with the most interesting solutions to the Physics 11 “hurdles,” in recognition of demonstrated outstanding intellectual promise and
creativity at the very beginning of his or her Caltech education. The award is a stipend that will support the student for the summer while he or she works on an independent Physics 11 project. This award is made possible by a gift from Dr. Richard G. Brewer, a Caltech alumnus who received his B.S. degree in chemistry in 1951.

Fritz B. Burns Prize in Geology
This prize is awarded to an undergraduate who has demonstrated both academic excellence and great promise of future contributions in the fields represented by the Division of Geological and Planetary Sciences.

Caltech Prize Scholarships and Carnation Scholarships
Each year Caltech awards these prizes for academic excellence to continuing students. They are based solely on merit (selection is made on the basis of grades, faculty recommendations, and demonstrated research productivity) with no consideration given to need or any other nonacademic criterion.

Bonnie Cashin Prize for Imaginative Thinking
This $5,000 prize, established in 1997 by Bonnie Cashin, is awarded each year to the entering freshman who has written the most imaginative essays in the Application for Freshman Admission. The Freshman Admissions Committee will nominate awardees to the vice provost, who will approve the selection. The award may be shared if there is more than one deserving student in a particular year.

Donald S. Clark Memorial Awards
From a fund contributed by the Caltech Alumni Association, annual awards of $1,000 are made to two juniors in engineering options. The award recognizes service to the campus community and a grade point average equal to or greater than that required for graduation with honor. The awards honor the work of Professor Clark, class of 1929, both in the field of engineering and in his service to the Alumni Association.

Deans’ Cup and Residence Life and Master’s Award
Two awards, selected by the deans, and the director of residence life and the master, respectively, are presented to undergraders whose concern for their fellow students has been demonstrated by persistent efforts to improve the quality of undergraduate life and by effective communication with members of the faculty and administration.

Doris Everhart Service Award
The Doris Everhart Service Award is given annually to an undergraduate who has actively supported and willingly worked for organizations that enhance not only student life, but also the campus and/or community as a whole, and who has, in addition, exhibited care and concern for the welfare of students on a personal basis. The award was made possible by Sally V. Ridge and was established to honor Doris Everhart.

Richard P. Feynman Prize in Theoretical Physics
This prize was established through gifts in memory of Richard P. Feynman and the senior class gift of the class of 1989. It is awarded annually to a senior student on the basis of excellence in theoretical physics. The prize consists of a cash award and a copy of the three-volume set The Feynman Lectures on Physics.

Haren Lee Fisher Memorial Award in Junior Physics
Mr. and Mrs. Colman Fisher established the Haren Lee Fisher Memorial Award in Junior Physics in memory of their son. It is awarded to the junior who is selected by a physics faculty committee as demonstrating the greatest promise of future contributions to physics.

Henry Ford II Scholar Awards
Henry Ford II Scholar Awards are funded under an endowment provided by the Ford Motor Company Fund, a nonprofit organization supported primarily by contributions from the Ford Motor Company. Each award, up to $5,000, will be made annually to the engineering student with the best academic record at the end of the third year of undergraduate study, or to the engineering student with the best first-year record in the graduate program. The chair of the Division of Engineering and Applied Science names the recipient.

Jack E. Froehlich Memorial Award
The family and friends of the late Jack E. Froehlich, who did his undergraduate and graduate work at Caltech and was later the project manager for Explorer I for the Jet Propulsion Laboratory, established a prize fund that provides an award of $1,000 to a junior in the upper 5 percent of his or her class who shows outstanding promise for a creative professional career. The student is selected by the division chairs and the deans, together with the Undergraduate Academic Standards and Honors Committee.
George W. Green Memorial Prize
The George W. Green Memorial Prize was established in 1963 with contributions given in memory of George W. Green, who for 15 years served on the staff of the Caltech business office and was vice president for business affairs from 1956 to 1962. The prize of $1,200 is awarded annually to an undergraduate student in any class for original research, an original paper or essay, or other evidence of creative scholarship beyond the normal requirements of specific courses. The student is selected by the division chairs and the deans, together with the Undergraduate Academic Standards and Honors Committee.

Arie J. Haagen-Smit Memorial Fund
The Arie J. Haagen-Smit Memorial Award was established in 1977 to honor the memory of the pioneering bioorganic chemist who discovered the chemical constituents of smog. Dr. Haagen-Smit was a member of the Caltech faculty for 40 years, and his family and friends have arranged for a prize of $750 to be given at the end of the sophomore or junior year to a student in biology or chemistry who has shown academic promise and who has made recognized contributions to Caltech. The selection is made by a committee of representatives from the biology and chemistry divisions, and the deans.

Frederic W. Hinrichs, Jr., Memorial Award
The Board of Trustees of the California Institute of Technology established the Frederic W. Hinrichs, Jr., Memorial Award in memory of the man who served for more than 20 years as dean and professor at the Institute. In remembrance of his honor, courage, and kindness, the award bearing his name is made annually to the senior who throughout his or her undergraduate years at the Institute has made the greatest contribution to the student body and whose qualities of character, leadership, and responsibility have been outstanding. At the discretion of the deans, more than one award, or none, may be made in any year. The award, presented at commencement, consists of a cash award and a certificate.

The Alexander P. and Adelaide F. Hixon Prize for Writing
The Hixon Prize for Writing was established in 2000 by Alexander P. and Adelaide F. Hixon. The prize will be awarded annually to an undergraduate student for the best composition in a freshman humanities course. The prize is administered by the writing center, and the winner will be chosen by a committee from the Humanities division, with preference given to the paper best illustrating the relationship between the humanities and science and/or engineering.

Bibi Jentoft-Nilsen Memorial Award
Family and friends of Bibi Jentoft-Nilsen, class of 1989, have provided this award in her memory. The cash award of $500 is for an upperclass student who exhibits outstanding qualities of leadership and who actively contributes to the quality of student life at Caltech.

Scott Russell Johnson Undergraduate Mathematics Prize
This prize of $2000 is awarded to the best graduating mathematics major. The prize may be split between two students. In deciding on the winner, special consideration will be given to independent research done as a senior thesis or SURF project. The executive officer for mathematics, in consultation with the faculty, determines the recipient. The prize is made possible by a gift from Steve and Rosemary Johnson in memory of Scott Johnson, BS ’83.

D. S. Kothari Prize in Physics
This prize was established in 1998 in memory of Dr. D. S. Kothari, who received his Ph.D. under Lord Rutherford in 1933, and subsequently made significant contributions in theoretical astrophysics and science education. The award of $500 is given each year to a graduating senior in physics who has produced an outstanding research project during the past year.

Margie Lauritsen Leighton Prize
From a fund established by Dr. Fay Ajzenberg-Selove and Dr. Walter Selove, the departments of physics and astronomy will annually award the Margie Lauritsen Leighton Prize to one or two undergraduate women who are majoring in physics, astrophysics, or astronomy, and who have demonstrated academic excellence. The prize consists of a cash award and will be made at the end of the sophomore year.

Dorothy B. and Harrison C. Lingle Scholarship
Each year, the Freshman Admissions Committee selects one incoming freshman for a $7,500 annual merit award. The Lingle Scholarship is awarded in recognition of interest in a career in science or engineering, outstanding academic record, demonstrated fair-mindedness, good work ethic, and unquestioned integrity. The award is renewable for three years, regardless of financial need, contingent upon continuing high academic performance. Such performance is defined as not failing any courses and maintaining honors standing. All admitted freshman applicants will be considered. No special application is required.

Artur Mager Prize in Engineering
The Aerospace Corporation established the Artur Mager prize to honor Dr. Artur Mager, an alumnus of the California Institute of Technology and formerly group vice president, engineering, of the Aerospace Corporation. Dr. Mager demonstrated outstanding
qualities of technical creativity, leadership, and character throughout his career. The prize is awarded to a senior student in engineering selected by the chair of the Division of Engineering and Applied Science based on excellence in scholarship and the promise of an outstanding professional career. The prize consists of a cash award and a certificate.

Mary A. Earl McKinney Prize in Literature
The Mary A. Earl McKinney Prize in Literature was established in 1946 by Samuel P. McKinney, M.D., of Los Angeles. Its purpose is to promote proficiency in writing. The terms under which it is given are decided each year by the literature faculty. It may be awarded for essays submitted in connection with regular literature classes, or awarded on the basis of a special essay contest. The prize consists of cash awards amounting to $750.

Millikan Scholarships
Millikan Scholarships are awarded to selected freshmen whose record of personal and academic accomplishment is judged outstanding among the remarkable group of incoming freshmen.

Robert L. Noland Leadership Award
The Robert L. Noland Leadership Award is a cash award of $2,000 for upperclass students who exhibit qualities of outstanding leadership. The kind of leadership to be recognized is most often expressed in personal actions that have helped other people and that have inspired others to fulfill their leadership capabilities. The scholarship was set up by Ametek in 1978 in honor of its president, Robert L. Noland, a Caltech alumnus. Two or more awards are generally made each year.

Rodman W. Paul History Prize
The Rodman W. Paul History Prize was established in 1986 by some of his many colleagues and friends to honor Professor Paul’s 35 years of teaching and research at the Institute. The prize is awarded annually to a junior or senior who has shown unusual interest in and talent for history.

The Doris S. Perpall SURF Speaking Prize
Robert C. Perpall (BS ’52, MS ’56) endowed this prize in memory of his late wife, Doris S. Perpall, to encourage students to prepare excellent SURF presentations. SURF Seminar Day is the first round of the Perpall Speaking Competition. The best presentations in each session are nominated for advancement to a second round, held in November. The final round is held in January. Three prizes are awarded annually, a first prize of $500; second prize, $300; third prize, $200.

Howard Reynolds Memorial Prize in Geology
The Howard Reynolds Memorial Prize in Geology is awarded to a sophomore or junior who demonstrates the potential to excel in the field of geology, and who actively contributes to the quality of student life at Caltech.

Herbert J. Ryser Scholarships
The Herbert J. Ryser Scholarships were established in 1986 in memory of H. J. Ryser, who was professor of mathematics at Caltech from 1967 to 1985. Professor Ryser contributed greatly to combinatorial mathematics and inspired many students with his carefully planned courses. The scholarships are given on the basis of merit, preferably in pure mathematics. Recipients are selected by the executive officer for mathematics after consulting the faculty. This year the scholarship is worth $6,000.

Richard P. Schuster Memorial Prize
This award is made from a fund established by family, friends, and colleagues of Richard P. Schuster, Jr., a graduate of Caltech and the Institute’s director of development at the time of his death. The recipient is a junior or senior in chemistry or chemical engineering; selection is based on financial need and a demonstration of academic promise.

Eleanor Searle Prize in Law, Politics, and Institutions
The Eleanor Searle Prize was established in 1999 by friends and colleagues to honor Eleanor Searle. The prize will be awarded annually to a junior or senior whose work in history or the social sciences exemplifies Eleanor Searle’s interests in the use of power, government, and law.

Don Shepard Award
Relatives and friends of Don Shepard, class of 1950, have provided this award in his memory. The award is presented to a student, the basic costs of whose education have already been met but who would find it difficult, without additional help, to engage in extracurricular activities and in the cultural opportunities afforded by the community. The recipients—freshmen, sophomores, and juniors—are selected on the basis of their capacity to take advantage of and to profit from these opportunities, rather than on the basis of their scholastic standing.

Sigma Xi Award
In accordance with the aim of Sigma Xi, the Scientific Research Society, to encourage original investigation in pure and applied science, the Institute chapter of the society annually awards a prize of $1,200, funded from membership dues, to a senior selected for an outstanding piece of original scientific research. The student is selected by the division chairs and the deans, together with the Undergraduate Academic Standards and Honors Committee.
The Hallett Smith Prize was established in 1997 to commemorate Professor Smith's long career as one of this century's most distinguished Renaissance scholars. The cash prize is given annually by the literature faculty to the student who writes the finest essay on Shakespeare.

The Paul Studenski Memorial Fund Prize is awarded to a Caltech undergraduate who would benefit from a period away from the academic community in order to obtain a better understanding of self and his or her plans for the future. The recipient is selected by the Caltech Y Studenski Committee.

The Alan R. Sweezy Economics Prize was established in 1995 by family, friends, and colleagues to honor Professor Sweezy for his 36 years of teaching and research at the Institute. The prize is awarded annually to a junior or senior who has shown unusual interest in and talent for economics.

The Frank Teruggi Memorial Award was established in 1998 by friends and classmates of the late Frank Teruggi, a Caltech undergraduate who was murdered in Chile in 1973, during the military coup led by Augusto Pinochet. The annual award of $500 honors the spirit of Frank's life, especially “in the areas of Latin American Studies, radical politics, creative radio programming, and other activities aimed at improving the living conditions of the less fortunate.” The awardee is chosen by a faculty committee from the Division of the Humanities and Social Sciences.

The Morgan Ward Prize was established by the department of mathematics in 1963 to honor the memory of Professor Morgan Ward in recognition of his long service to mathematics and to the Institute. The competition is open only to freshmen and sophomores. An entry consists of a mathematical problem together with a solution or a significant contribution toward a solution. One or more winners are selected by a faculty committee acting on the advice of student judges. Each prize of $75 is funded by the same source used to sponsor the Eric Temple Bell Prize.

The Fredrick J. Zeigler Memorial Award was established in 1989 to honor Fredrick J. Zeigler, a member of the class of 1976 and an applied mathematics major. The award, which carries a cash prize of $2,500, is given to a pure or applied mathematics student in his or her sophomore or junior year. Selected by the faculty in pure and applied mathematics, the award recognizes excellence in scholarship as demonstrated in class activities or in the preparation of an original paper or essay in any subject area.

GRADUATION REQUIREMENTS, ALL OPTIONS

To qualify for a Bachelor of Science degree at the Institute, a student must obtain passing grades in each of the required courses listed below; must satisfy the additional requirements listed under the undergraduate options; and must achieve a grade-point average of not less than 1.9. The student must also register for programs that make normal progress toward a B.S. degree.

Students must register for the Institute requirements in the year specified, unless they have previous credit. If for some reason they are not able to complete the requirements at the proper time, they must register at the earliest possible opportunity. (The Curriculum Committee may in unusual cases excuse undergraduate students from any of the following Institute or option requirements upon presentation of petitions.)

The Institute unit system is described in the opening paragraphs of Section Five.

Core Institute Requirements, All Options

The following requirements are applicable to incoming freshmen for 2001–02 and subsequent years. Some information for continuing students has been provided as footnotes, but guidance on special cases must be sought. Courses used to satisfy core requirements may not be used to satisfy option electives.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Freshman Mathematics (Ma 1 abc)</td>
<td>27</td>
</tr>
<tr>
<td>2. Sophomore Mathematics (Ma 2 ab)</td>
<td>18</td>
</tr>
<tr>
<td>3. Freshman Physics (Ph 1 abc)</td>
<td>27</td>
</tr>
<tr>
<td>4. Sophomore Physics (Ph 2 ab or Ph 12 abc)</td>
<td>18</td>
</tr>
<tr>
<td>5. Freshman Chemistry (Ch 1 ab)</td>
<td>15</td>
</tr>
<tr>
<td>6. Freshman Biology (Bi 1)</td>
<td>9</td>
</tr>
<tr>
<td>7. Menu Class (currently Ay 1, Ge 1, or Ma 7)</td>
<td>9</td>
</tr>
<tr>
<td>8. Freshman Chemistry Laboratory (Ch 3 a)</td>
<td>6</td>
</tr>
<tr>
<td>9. Additional Introductory Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>10. Science Communication Requirement (Core 1 ab)</td>
<td>3</td>
</tr>
<tr>
<td>11. Humanities Courses (as defined below)</td>
<td>36</td>
</tr>
<tr>
<td>12. Social Sciences Courses (as defined below)</td>
<td>36</td>
</tr>
<tr>
<td>13. Additional Humanities and Social Sciences Courses</td>
<td>36</td>
</tr>
<tr>
<td>14. Physical Education</td>
<td>9</td>
</tr>
</tbody>
</table>
unit requirement. However, SES majors and minors who have already completed 18 units of Freshman Humanities may count SES 10 ab towards this requirement.

Entering freshmen are required to take two terms of “Freshman Humanities,” humanities courses numbered 10 or below in the Catalog. These classes introduce students to the basic issues in the three core disciplines of history, literature, and philosophy, and successful completion of two terms of freshman humanities is a prerequisite for all advanced humanities courses, except for foreign languages. It is not a prerequisite, however, for introductory social sciences. The freshman humanities classes may be taken in any two terms of the freshman year.

A student must take 18 units of advanced humanities courses as well. The classes that count as advanced humanities courses are those numbered 99 or above in art history; history; literature; music; philosophy; and science, ethics, and society. The advanced humanities classes also include all foreign language classes beyond the fourth term. The first four terms of a foreign language do not count toward the 36-unit humanities requirement; however, every term receives credit toward the final 36 units of the 108-unit requirement in HSS.

To encourage breadth, students will have to take their two freshman humanities classes in different disciplines, the disciplines for the freshman classes being history, literature, and philosophy. When they take their two required advanced courses, students will have to choose at least one class from a third discipline. For the advanced courses, the disciplines will include not only history, literature, and philosophy, but also art history, music history, and languages beyond the fourth term. If a student meets his or her freshman humanities requirement by taking SES 10 ab, which mixes history and philosophy of science, then he or she must meet the advanced breadth requirement by taking a class outside of SES, and outside of history and philosophy as well; otherwise, he or she would be leaving Caltech with no contact whatsoever with art, languages, or literature.

Since writing is important, all humanities courses, with the exception of foreign languages, will require at least 4,000 words of composition. The instructors will give extensive feedback on written work and will help students improve their prose. In addition, all freshmen will take a writing examination administered at Caltech before the beginning of the fall term. Freshmen who fail this examination may not enter freshman humanities classes until they successfully complete En 1 ab, English as a Second Language, or En 2, Basic English Composition. These courses count as general Institute credit only. Finally, all students will have to satisfy a writing proficiency requirement in both of their freshman humanities classes. If a student fails to meet this requirement in either class, he or she will have to pass En 1 ab, En 2, or another suitable
composition course before taking further freshman or advanced humanities.

Students are required to take 18 units of introductory science courses, consisting of two courses of 9 units each, chosen from anthropology: An 22; economics: Ec 11; law: Law 33; political science: PS 12; psychology: Psy 15; Psy 20; or social science: SS 13.

Students must also take 18 units of courses numbered 100 or above, selected from the following categories: anthropology, economics, law, political science, psychology, and social science, but only from a field in which they have completed an introductory course. All 18 units of advanced social science credit can be taken from the same area as long as the appropriate introductory course has been taken.

First-Year Course Schedule, All Options

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 1 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 1 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ch 1 ab</td>
<td>6</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Bi 1</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Ch 3 a</td>
<td>6 or 6 or 6</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Introductory courses in the humanities and social sciences. A wide choice of alternatives will be available to students; the registrar will announce the offerings for each term.

Introductory Laboratory Courses

Menu course or Additional Electives

PE

Physical Education

x—Except for the minimum laboratory unit requirement, the number of units chosen here is optional. If a student chooses no electives except physical education and takes the minimum permissible laboratory courses, the total unit requirement will usually be in the range 39 to 45. A total load—including electives—of more than 48 units per term is considered a heavy load. Loads of more than 51 units for freshmen or 54 units for upperclass students require approval by the dean of students.

1. This course is offered in each of the three terms.
2. The additional 6 units must be chosen from one of the following: APh 9 (6 units), Bi 10 (6 units), Ch 3 b (6 units), Ch 4 ab (6 units per term), E 5 (6 units), Ph 3 (6 units), or a more advanced laboratory course.
3. Students entering 1996-97 or later years must take a menu course (currently Ay 1, Ge 1, or Ma 7) in their freshman or sophomore year. These courses are offered third quarter only.

It is also possible to take one of these courses as an elective.

A partial list of electives particularly recommended for freshmen includes the following: Ay 1, Bi 8, ChE 10, Ch 10, CS 2, CS 3, ESE 1, Ge 1, Ma 7, Ph 10, Ph 20, Ph 21, Ph 22.

Applied and Computational Mathematics Option

The undergraduate option in applied and computational mathematics is for those students who want to combine their basic studies in mathematics with considerable involvement in applications. The program is similar in general outline to the mathematics option, with additional requirements to ensure a balance between courses that develop mathematical concepts and courses that show the interplay of these concepts with a variety of applications. Complete programs will be worked out with faculty advisers.

Option Requirements

1. Ma 5 abc, ACM 95 abc, ACM 101 abc, and E 10.
2. An approved sequence of three one-quarter courses to be selected from the following: ACM 104, ACM 110, ACM 111, ACM 112, ACM 113.
3. One of the following (or an approved combination): Ma 108 abc, Ma 109 abc, Ma 110 abc, Ma 120 abc, Ma 121 abc, Ma 122 a, EE/Ma 126 ab, EE/Ma 127 ab, CS/EE/Ma 129 abc, Ma 151 abc.
4. One 27-unit 100 or higher level course in science or engineering not in ACM or Ma and approved by the student’s adviser.
5. Passing grades must be obtained in a total of 483 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Ma 2 ab</td>
</tr>
<tr>
<td>Ph 2 ab</td>
</tr>
<tr>
<td>Ma 5 abc</td>
</tr>
<tr>
<td>Humanities Electives</td>
</tr>
<tr>
<td>Electives</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>ACM 95 abc</td>
</tr>
<tr>
<td>Humanities Electives</td>
</tr>
<tr>
<td>Electives</td>
</tr>
</tbody>
</table>

39 | 39 | 39
Applied Physics Option

The applied physics option is designed to connect what are conventionally considered "engineering" and "pure physics." Research in applied physics is an effort to answer questions related to problems of technological concern. Since the interests of both engineering and pure physics cover fields that overlap, a definite dividing line cannot be drawn between them. Realizing this, the applied physics option draws its faculty from the Divisions of Physics, Mathematics and Astronomy; Engineering and Applied Science; Chemistry and Chemical Engineering; and Geological and Planetary Sciences. This interdivisional aspect of the option allows a flexibility and range in curriculum, appropriate to the student’s particular research interests, that may result in a mixture of courses and research in different divisions.

Specific subject areas of interest in the program cover a broad spectrum of physics related to important fields of technology. Photonics areas include multiwavelength fiber telecommunications, integrated microphotonic and nanophotonic devices, holographic data processing and storage, and optical approaches to quantum computation. Solid state materials and device work is focused on nanostructured materials and devices, wide bandgap semiconductors and heterostructures for optoelectronics, photovoltaics, novel memory devices, and spin-dependent transport. Biophysics topics include single molecule scale studies, microfluidic devices, and colloidal systems science. Plasma physics research is concentrated on spheromak plasmas for fusion application, plasma processes occurring in the sun, and dynamics of pure electron plasmas. Applied physics research also encompasses fluid dynamics in liquids and gases for applications ranging from aeronautics to thin-film growth processes.

The undergraduate curriculum attempts to reflect and maintain a close relationship with the various disciplines. This facilitates a transition to or from any of these, if at any time in the student's course of study and research this would be considered beneficial.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of the academic year in the subjects listed below under option requirements may be refused permission to continue work in this option.

Option Requirements

1. Any three of the following: APh 9 b, APh 24, Ph 3, Ph 5, Ph 6, Ph 7; and E 10.
2. APh 17 abc, APh 25, APh 125 ab or Ph 125 ab, and Ph 106 abc.
3. ACM 95 abc.
4. Either APh 78 abc or one term of APh 77 and one chosen from the following: APh 77, Ph 77, EE 91, Ch 6, Ae/APh 104 bc, MS 125, APh 124.
5. 27 additional units of APh courses numbered over 100, which must include one of the following sequences: APh 101 abc, APh 105 abc, APh 114 abc, APh/MS 141 bc, APh 156 abc, APh/EE 183 ab, APh 190 abc, or the sequence APh/EE 130 abc. Note that APh 100 and APh 200 do not satisfy this requirement.
6. Passing grades must be earned in a total of 486 units, including the courses listed above. None of the courses taken to satisfy option requirements may be taken on a pass/fail basis.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Laboratory Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>APh 17 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>APh 25</td>
<td>Thermo (3-0-6)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Third Year			
Ph 125 ab	9	9	-
APh 110 abc	Topics in Applied Physics	2	2
ACM 95 abc	Introductory Methods of Applied Mathematics (4-0-8)	12	12
Electives	50	50	50

Fourth Year			
APh 78 abc	Senior Thesis, Experimental	9	9
or	Laboratory in Applied Physics	9	9
APh 77	Topics in Classical Physics	9	9
Electives	9	9	9
Humanities Electives	9	9	9
Electives	54	54	54

1. See item 2 and 3 under option requirements.
2. See item 4, option requirements.
Suggested Electives

The student may elect any course that is offered in any term provided he or she has the necessary prerequisites for that course. The following subjects are especially suitable for a well-rounded course of study. They need not be taken in the year suggested.

More Specialized Courses

Astronomy Option

The astronomy option is designed to give the student an understanding of the basic facts and concepts of astronomy, to stimulate his or her interest in research, and to provide a basis for graduate work in astronomy. The sophomore-junior sequence (Ay 20, Ay 21, Ay 101, Ay 102) constitutes a solid introduction to modern astronomy. More advanced courses may be taken in the junior and senior years.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in the subjects listed in the Division of Physics, Mathematics and Astronomy may, at the discretion of his or her department, be refused permission to continue the work in this option.

Option Requirements

1. Ay 20, Ay 21 or Ay 101, Ay 102, Ay 30 or Ay 141, Ay 101, 14 units of Ay electives (excluding Ay 1), Ph 3, Ph 5 or Ph 6, Ph 7, Ph 125 abc or Ph 125 abc, and Ph 106 abc.
2. 54 additional units of Ay or Ph courses.
3. 27 additional units of science or engineering electives, of which 18 must be outside the Division of Physics, Mathematics and Astronomy. Core classes (e.g., Ay 1, Ge 1, Bi 1, etc.) do not count towards fulfillment of this requirement.
4. Passing grades must be earned in a total of 486 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>Sophomore Physics (4-0-5)</td>
</tr>
<tr>
<td>or Ph 12 abc</td>
<td>Waves, Quantum Physics, and Statistical Mechanics (4-0-5)</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>Sophomore Mathematics (4-0-5)</td>
</tr>
<tr>
<td>Ay 20</td>
<td>Basic Astronomy and the Galaxy (3-0-6)</td>
</tr>
<tr>
<td>Ay 21</td>
<td>Galaxies and Cosmology (3-0-6)</td>
</tr>
<tr>
<td>Ay 30</td>
<td>Current Trends in Astronomy (2-0-1)</td>
</tr>
<tr>
<td>Ph 3, 5, 6, 7</td>
<td>Physics Laboratory^</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives^</td>
<td>0-9</td>
</tr>
<tr>
<td>Suggested total number of units</td>
<td>36-51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Ph 125 abc</td>
<td>Quantum Physics (3-0-6)</td>
</tr>
<tr>
<td>Ph 106 abc</td>
<td>Topics in Classical Physics (3-0-6)</td>
</tr>
<tr>
<td>Ay 101</td>
<td>The Physics of Stars (3-2-6)</td>
</tr>
<tr>
<td>Ay 102</td>
<td>Physics of the Interstellar Medium (3-0-6)</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>9-12</td>
</tr>
<tr>
<td>Suggested total number of units</td>
<td>47-50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Astronomy or Physics Electives</td>
<td>18</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18-24</td>
</tr>
<tr>
<td>Suggested total number of units</td>
<td>45-51</td>
</tr>
</tbody>
</table>

An ability to verbally present one’s work is vital to a successful career in research and teaching. Ay 30 satisfies the oral communications requirement, but for further development, students are also urged to sign up for Ay 141 in their junior and senior years. Students are encouraged (but not required) to undertake research leading to a senior thesis; credit for this work is provided through Ay 78.
Suggested Electives

The student may elect any course offered in any division in a given term, provided that he or she has the necessary prerequisites for that course. The following courses are useful to work in various fields of astronomy and astrophysics: ACM 95, APH 23/24, Ay 105, Ay 121, Ay 122, Ay 123, Ay 124, Ay 125, Ay 126, Ay 127, Ay/Ph 145, EE 20, EE 91, EE/Ge 157, Ge 1, Ge/Ay 11 c, Ge/Ay 103, Ge 131, Ge/Ay 132, Ge 153, Ge 167, Ma 5, Ma 112, Ph 77, Ph 125, Ph 129, Ph 136, Ph 236.

Biology Option

The undergraduate option in biology is designed to build on a solid foundation in mathematics and physical science by providing an introduction to the basic facts, concepts, problems, and methodologies of biological science. The option serves as a basis for graduate study in any field of biology or for admission to the study of medicine. Instruction is offered in the form of participation in the ongoing research programs of the division, as well as in formal course work. Course work emphasizes the more general and fundamental properties of living organisms, and areas of current research interest, rather than the traditional distinct fields within the life sciences.

The division encourages undergraduate participation in its research program and believes that research participation should be a part of each student's program of study. Students may elect to prepare an undergraduate thesis (Bi 90). Research opportunities may be arranged with individual faculty members, or guidance may be obtained from a student's individual faculty adviser in the division or from the biology undergraduate student adviser.

The requirements listed below for the biology option are minimal requirements. An adequate preparation for graduate work in biology will normally include additional elective research or course work in biology and/or advanced course work in other sciences or in mathematics. Flexibility to accommodate varied individual scientific interests, within the broad scope of biology, is achieved through the provision of elective courses, arrangements for individual research (Bi 22), and tutorial instruction (Bi 23). In addition, arrangements may be made to take courses at neighboring institutions in fields of biology that are not represented in our curriculum.

Premedical Program

The undergraduate course for premedical students is essentially the same as that for biology students and is intended as a basis for later careers in research as well as in the practice of medicine. It differs in some respects from premedical curricula of other schools; however, it has been quite generally accepted as satisfying admission requirements of medical schools.

It is recommended that all students contemplating application to medical school consult with the premed advisers, Jo-Ann Fantino-Ruffolo or Angela Wood, at the Career Development Center.

Option Requirements

1. Bi 8, Bi 9, Bi 12, Bi/Ch 110, Bi 122, Bi/CNS 150, and Ch 41 abc.
2. One advanced laboratory course chosen from Bi 123, Bi/CNS 161, Bi/CNS 162, or Bi 180.
3. Three courses chosen from Bi/Ch 111, Bi/Ch 113, Bi 114, Bi/CNS 161, BMB/Bi/Ch 170, Bi 188, or Bi 190. Only one of the three may be a six-unit course (these are 188 and 190).
4. 3 units of Biology Major Seminar, Bi 80.
5. 34–49 elective units in Biology courses numbered above 20, to reach a total of 143 units of Biology course work. Pass/fail grading may be elected, in the manner specified on page 43, for these Biology course electives, but not for courses taken to fulfill requirements (1) to (4).
6. Passing grades must be earned in a total of 486 units, including the courses listed above.

Recommended Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Bi 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Molecular Biology (3-0-6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi 9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Bi 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Biology Laboratory 1 (1-3-2)</td>
<td>9-15</td>
<td>0-6</td>
<td>9-18</td>
</tr>
<tr>
<td>Electives 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-51</td>
<td>45-51</td>
<td>42-51</td>
<td></td>
</tr>
</tbody>
</table>

1 Prerequisite for Ph 123.
2 Students are required to take (a) Ph 3 if not already taken, (b) Ph 5 or Ph 6, and (c) Ph 7.
3 Sophomore electives include at least 27 units of science and engineering courses, of which at least 18 units must be in subjects other than mathematics, physics, and astronomy. It is desirable for a student to acquire as broad a background as possible in other related fields of science and engineering.
4 Students who plan to do graduate work in astronomy should elect some of these courses during their third and fourth years, in consultation with their advisers.
Option Requirements
2. Statistics (Ma 112a), Introduction to Political Science (PS 12).
3. Six courses, to be chosen from the menu of BEM courses (excluding the ones listed under (1) above), Ec 105, Ec 121 ab, Ec 122, Ec 135, Ec 145, Ec/PS 160 abc, Ec 161, Ec 162, PS/Ec 173, Law 133, Psy 15, Psy 20, Psy 115.
4. 45 additional units of science (including anthropology, economics, political science, psychology, social science), mathematics, and engineering courses; this requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by any course with a number less than 10.
5. Passing grades must be earned in a total of 486 units, including all courses used to satisfy the above requirements.

Recommended Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ec 11</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BEM 101</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Law 33</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS 12</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electives¹</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEM 103</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Ma 112a</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS/Ec 172</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electives¹</td>
<td>18</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives¹</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

¹See option requirements 3, 4 and 5.

Business Economics and Management Option

The business economics and management (BEM) option provides students with the analytical tools to operate successfully in a modern, volatile, business environment. The emphasis is on strategy, design (markets, organizations, networks), finance, and law in a free-market competitive or strategic situation, as well as in a highly politicized environment. Today's business environment is extremely complex; the required courses in this option are therefore highly analytical. The formal nature of the required courses can be complemented by case-study courses.
Chemical Engineering Option

The chemical engineering option is designed to prepare its students for either graduate study, or research and development work in industry. It accomplishes this by building on the core curriculum to provide a broad and rigorous exposure to the fundamentals of chemical engineering while maintaining a balance between classroom lectures and laboratory and design experience. The program also strives to develop in each student self-reliance, creativity, professional ethics, and an appreciation of the societal impact of chemical engineering and the importance of continuing intellectual growth.

Chemical engineering involves applications of chemistry, physics, mathematics, and, increasingly, biology and biochemistry. In addition to basic physics, chemistry, and mathematics, the chemical engineering curriculum includes the study of applied and computational mathematics, fluid mechanics, heat and mass transfer, thermodynamics, chemical kinetics and chemical reactor design, separations, and the integrating subjects of process design and process control. Because of this broad-based foundation that emphasizes basic and engineering sciences, chemical engineering is perhaps the broadest of the engineering disciplines.

Because many industries utilize some chemical or physical transformation of matter, the chemical engineer is much in demand. He or she may work in the manufacture of inorganic products (ceramics, semiconductors, and other electronic materials); in the manufacture of organic products (polymer fibers, films, coatings, pharmaceuticals, hydrocarbon fuels, and petrochemicals); in the metallurgical industries; or in the biotechnology industry. Chemical engineering underlies most of the energy field, including the efficient production and utilization of coal, petroleum, natural gas, and newer technologies like fuel cells. Air and water pollution control and abatement are also within the domain of expertise of chemical engineers. The chemical engineer may also enter the field of biochemical engineering, where applications range from the utilization of microorganisms and cultured cells, to enzyme engineering and other areas of emerging biotechnology, to the manufacture of foods, to the design of artificial human organs.

Freshman and sophomore students normally take the core courses in mathematics, physics, chemistry, and biology (Ma 1 abc, Ma 2 ab, Ph 1 abc, Ph 2 ab, Ch 1 ab, and Bi 1). They also take the second-year chemistry course, Ch 41 abc, and the basic chemical engineering courses, ChE 63 ab and ChE 64. It is strongly recommended that they also take a course in computer programming (e.g., CS 1 or CS 2).

Undergraduate research is emphasized, and students are encouraged, even in the freshman year, to participate in research with the faculty. An optional senior thesis is a unique aspect of the chemical engineering program.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in the subjects listed under the Division of Chemistry and Chemical Engineering may, at the discretion of the faculty in this division, be refused permission to continue the work in this option.

Option Requirements
1. Ch 3 b, Ch 41 abc, ChE 63 ab, ChE 64, ACM 95 abc, Ch 21 ac, ChE 101, ChE 103 abc, ChE 104, ChE 110 ab, ChE 126 a, ChE 126 b or ChE 90 ab, CDS 110 a, and either Ec 11, BEM 101, or BEM 103.
2. 9 units of chemistry electives.
3. 33 units of engineering electives.
4. Passing grades must be earned in all courses required by the Institute and the option.

1 These 9 units partially satisfy the Institute requirements in humanities and social sciences.
2 These electives may include up to 18 units of ChE 80.

Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 ab</td>
<td>9 9 -</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9 9 -</td>
</tr>
<tr>
<td>Ch 3 b</td>
<td>8 - -</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>ChE 63 ab</td>
<td>9 9 -</td>
</tr>
<tr>
<td>ChE 64</td>
<td>- - 9</td>
</tr>
<tr>
<td>Electives</td>
<td>- 9 9</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM 95 abc</td>
<td>12 12 12</td>
</tr>
<tr>
<td>Ch 21 ac</td>
<td>9 - 9</td>
</tr>
<tr>
<td>ChE 103 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Electives</td>
<td>18 18 18</td>
</tr>
</tbody>
</table>

44 45 27

48 39 48
Double Majors

For students simultaneously pursuing a degree in a second option, courses taken as required courses for that option can also be counted as chemistry electives (requirement 3, below) where appropriate. However, courses that count toward the electives requirement in the other option cannot simultaneously be counted toward satisfying the elective requirement in chemistry.

The courses listed below would constitute a common core for many students in the option.

Any student of the chemistry option whose grade-point average is less than 1.9 will be admitted to the option for the following year only with the special permission of the Division of Chemistry and Chemical Engineering.

Option Requirements

1. Ch 14, Ch 21 abc (or Ch 21 a, Ch 24 ab), Ch 41 abc, Ch 90.
2. A minimum of five terms of laboratory work chosen from Ch 4 ab, Ch 5 ab, Ch 6 ab, Ch 7, Ch 15, and Bi 10.
3. A minimum of five terms of advanced chemistry electives taken for a letter grade from chemistry course offerings at the 100 and 200 level, including cross-listed offerings such as Bi/Ch 110, Bi/Ch 111, Bi/Ch 113, Bi/Ch 132, and ChE/Ch 164, but excluding Ch 180, Ch 280, BMB/Bi/Ch 170, CNS/Bi 176.
4. Passing grades must be earned in the courses that constitute the approved program of study, including those listed above.
5. Passing grades must be earned in a total of 486 units, including courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>Organic Chemistry (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>Sophomore Physics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ch 4 ab</td>
<td>Synthesis and Analysis of Organic and Inorganic Compounds (1-6-2)</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Ch 5 a</td>
<td>Advanced Techniques of Synthesis and Analysis (1-6-2)</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6-9</td>
<td>6-9</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education (0-3-0)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>36-39</td>
<td>54-57</td>
</tr>
</tbody>
</table>

Chemistry Option

Study in the chemistry option leads, especially when followed by graduate work, to careers in teaching and research at colleges and universities, in research for government and industry, in the operation and control of manufacturing processes, and in management and development positions in the chemical industry.

A first-year general chemistry course is taken by all freshman students. The emphasis is on fundamental principles and their use in systematizing descriptive chemistry. Students who show themselves to be qualified and receive the instructor's consent may elect to take an Advanced Placement chemistry course (at least two terms from Ch 21 abc or Ch 41 abc). The one-term required laboratory course (Ch 3 a) presents basic principles and techniques of synthesis and analysis and develops the laboratory skills and precision that are fundamental to experimental chemistry. The laboratory in the following two terms (Ch 4 ab), normally taken concurrently with Ch 41, introduces the student to methods of synthesis, separation, and instrumental analysis used routinely in research.

Qualified students, with the instructor's consent, are allowed to substitute either Ch 3 b or Ch 4 a for the core requirement of Ch 3 a.

Beyond the freshman year, each student in the chemistry option, in consultation with his or her adviser, selects a suitable course of study under the supervision of the division. The requirements of the option are listed below. A student wishing to deviate from these requirements should submit an alternate curriculum, with justifications, for consideration by his or her adviser and the Undergraduate Study Committee.

Undergraduates in the option must also take chemistry courses below the 100 level for a letter grade with the exception of the following courses, which are only offered on a pass/fail basis: Ch 1, Ch 3 a, Ch 90, and, if taken during the first or second terms of the freshman year, Ch 4 ab, Ch 21 abc, and Ch 41 abc. Within the total period of undergraduate study there are additional Institute requirements for Ma 1 abc, Ph 1 abc, Ma 2 ab, Ph 2 ab, and 108 units of humanities and/or social science as well as 9 units of PE.
A significant fraction of the chemical literature, especially in organic chemistry, is in German. A reading knowledge of German is therefore useful in research at the doctoral level. Russian is another important language for chemistry; however, the leading Russian periodicals are translated and published in English.

Experience in computer programming and use is now important to all areas of chemistry.

Requires Ch 4 ab.

Ch 112, Ch 117, Ch 120 ab, Ch 121 ab, Ch 122 abc, Ch 135 ab, Ch 143, Ch 144 ab, Ch/ChE 140, Ch 149, Ch/ChE 147, ChE/Ch 148, ChE/Ch 155, ESE/Ch/Ge 175 abc, Ch 212, Ch 213 abc, Ch 221.

Students without sufficient math preparation may delay Ch 21 abc and Ch 6 ab until their junior year and take Ch 5 ab and Ch 41 abc during their sophomore year.

Ch 5 ab, Ch 15, Bi 10.

See “Research Opportunities for Undergraduates in Chemistry,” which may be obtained from the Chair of the Undergraduate Studies Committee. No more than 27 units of Ch 80 will count toward the 486-unit graduation requirement without a senior thesis.

Students without sufficient math preparation may delay Ch 21 abc and Ch 6 ab until their junior year and take Ch 5 ab and Ch 41 abc during their sophomore year.

Ch 112, Ch 120 ab, Ch 121 ab, Ch 122 abc, Ch 135 ab, Ch/ChE 140, Ch 144 ab, Ch/ChE 147, ChE/Ch 148, ChE/Ch 164, Ch 165, Ch 221, Ch 224, Ch 227 ab, Ph 106 abc.

Ch 112, Ch 120 ab, Ch 121 ab, Ch 122 abc, Ch 135 ab, Ch/ChE 140, Ch 144 ab, Ch/ChE 147, ChE/Ch 148, ChE/Ch 164, Ch 165, Ch 221, Ch 224, Ch 227 ab, Ph 106 abc.

This typical program is not specifically required for graduation in the option, nor is it in any sense a complete program. Students are expected to work out individual programs suitable for their interests and professional goals in consultation with their advisers. Several representative programs, including sets of possible electives, are shown below. These may well approximate choices by students who intend to do graduate work in conventional areas of chemistry.

Suggested Elective Courses for the Chemistry Option

1. Chemical Engineering: Introduction to Chemical Engineering Systems (ChE 10), Chemical Engineering Thermodynamics (ChE 63), Undergraduate Research (ChE 80), Chemical Reaction Engineering (ChE 101), Transport Phenomena (ChE 103), Separation Processes (ChE 104), Physical and Chemical Rate Processes (ChE 151), Special Topics in Transport Phenomena (ChE 174).

2. Biology: Cell Biology (Bi 9), Genetics (Bi 122), Immunology (Bi 114), Molecular Basis of Behavior (Bi 156), Methods in Molecular Genetics (Bi 180).

4. Physics: Physics Laboratory (Ph 3, Ph 4, Ph 5, Ph 6, Ph 7), Topics in Classical Physics (Ph 106), Quantum Mechanics (Ph 127), Mathematical Methods of Physics (Ph 129), Statistical Physics (Ph 127).
5. *Humanities:* Introduction to Economics (Ec 11), Elementary French (L 102) or Elementary German (L 130).

6. *Miscellaneous:* The Evolving Universe (Ay 1), Engineering Problems of the Environment (ESE 1), Fundamentals of Materials Science (MS 15), Earth and Environment (Ge 1), Introduction to Isotope Geochemistry (Ge 140), Classical Analysis (Ma 108).

Economics Option

The economics option provides students with an understanding of the basic principles underlying the functioning of economic institutions. It offers a modern and quantitative approach to economics seldom available to undergraduates. The emphasis on economic principles and modern methodology provides students with an excellent preparation for graduate study in economics or for professional study in the fields of business or law and economics.

The option is sufficiently flexible that students can combine their pursuit of economics with studies in other areas, such as engineering, physics, or mathematics. The core of the option consists of Introduction to Economics, Ec 11; Theory of Value, Ec 121; and Econometrics, Ec 122. Students are strongly encouraged to supplement this core with additional electives in economics, political science, and mathematics.

Option Requirements

1. Ec 11, Ec 121 ab, and Ec 122, Ec/SS 20.
2. Ma 112 a.
3. Ec 161 or Ec 162.
4. Ec 105 or Ec 145.
5. 54 additional units of advanced economics and social science courses. (Courses that are used to fulfill the Institute upperclass social science requirement [courses numbered 100 and above] will also count toward the 54 additional units required under the economic and social science options.) Students may take BEM 104 or BEM 105 (or BEM 110 with the consent of the option) in partial fulfillment of this requirement.
6. 45 additional units of science, mathematics, and engineering courses. The requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by any course with a number less than 10.
7. Passing grades must be earned in a total of 486 units, including all courses used to satisfy the above requirements.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Menu Course</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Ec 11</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS 12</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>27</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ec 105</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ec 121 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ec 122</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ec 162</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ma 112 a</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>54</td>
<td>27</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

See requirements 6 and 7 above.

Electrical and Computer Engineering Option

Modern technology increasingly combines communications, whether by optical fiber or wireless, and computing in all its forms. Communications is traditionally an area of electrical engineering, and computing is the domain of computer science. The undergraduate option in electrical and computer engineering is offered jointly by the electrical engineering and the computer science faculties. It provides an intellectual foundation in both computer science and electrical engineering.

The option begins with CS 20 abc and EE 20 ab in the sophomore year. CS 20 is an introduction to computer science. EE 20 is an introduction to electrical engineering, with an emphasis on communication electronics and laboratory work. CS 20 and EE 20 are prerequisites for the junior classes. In the junior year, the students take CS 138 ab, Computer Algorithms, which discusses the design of algorithms in many areas of computer science and provides a strong foundation for advanced courses. In addition, students take EE 32 ab, Signals, Systems, and Transforms, which provides an introduction to Fourier, Laplace, and Z transforms, as well as signals, modulation, sampling, and noise. In their senior year, students take CS/EE 145 a, Networking; a project or a thesis; and electives.

Attention is called to the fact that any student who has a grade-point average less than 1.9 at the end of the academic year in the subjects listed in the option requirements may be refused permission to continue work in this option.

Option Requirements

1. E 10.
2. ACM 95 abc.
3. CS 20 abc, EE 20 ab.
4. CS 158 ab, EE 32 ab, and CS/EE 145 a.
5. CS 141 abc, or CS/EE 181 abc, or EE/CS 80 abc, or 27 units selected from EE/CS 51, EE/CS 52, EE/CS 53, EE 55, EE 90, and EE 91.
6. In addition to the above courses, 27 units of CS or EE courses numbered 100 or over.
7. Passing grades must be earned in a total of 486 units, including all courses used to satisfy the above requirements.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>CS 20 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>EE 20 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>45</td>
<td>36</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM 95 abc</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>CS 138 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>EE 32 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CS/EE 145 a</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E 10</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Projects</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>48</td>
<td>45</td>
</tr>
</tbody>
</table>

1. See Institute requirements regarding humanities electives.
2. See option requirement 5.

Electrical Engineering Option

The electrical engineering option is designed to prepare its students for either graduate study or research and development work in government or industrial laboratories. It accomplishes this by building on the core curriculum to provide a broad and rigorous exposure to the fundamentals of electrical engineering. It strives to maintain a balance between classroom lectures and laboratory and design experience, and emphasizes the problem formulation and solving skills that are essential to any engineering discipline. The program also strives to develop in each student self-reliance, creativity, professional ethics, and an appreciation of the importance of continuing intellectual growth.

Students electing this option will normally choose to take APh 9, Solid-state electronics for integrated circuits, as a freshman-year elective. Then in the sophomore year, the formal study of electrical engineering will begin with the theory and laboratory practice of analog and digital electronics, EE 20 ab and EE/CS 51/52, respectively. The junior year features a basic course in linear systems and signal processing, EE 32 ab; an introduction to sensors and actuators, EE 40; an introduction to analog and digital communications, EE 160; and an analog electronics laboratory, EE 90. In the senior year, the student will take electromagnetic engineering, EE 151; and will also be asked to demonstrate his or her ability to formulate and carry out an independent research or design project through either a senior thesis, EE/CS 80 abc, or the senior project design laboratory, EE 91 ab. In addition, the student, especially in the senior year, will have a significant opportunity to take elective courses that will allow him/her to explore earlier topics in depth, or to investigate topics that have not been covered previously. (See the “suggested electives” section, below.)

A student whose interests lie in the electrical sciences but who wishes to pursue a broader course of studies than that allowed by the requirements of the electrical engineering option may elect the engineering and applied science option.

Attention is called to the fact that any student who has a grade-point average less than 1.9 at the end of the academic year in the subjects listed under electrical engineering may be refused permission to continue work in this option.

Option Requirements

1. E 10.
2. ACM 95 abc.
3. EE 20 ab, EE 32 ab, EE 40, EE 151, EE 160.
4. EE/CS 51, EE/CS 52, EE 90.
5. EE 80 abc, or two courses selected from EE 91 ab and EE/CS 53.
6. APh 9 ab.
7. In addition to the above courses, 27 units selected from any EE...
Suggested Electives
First-year students interested in electrical engineering should consider taking APh 9 ab, which is an EE option requirement (though it need not be taken freshman year).
Suggested elective courses for the second, third, and fourth year for various specializations within electrical engineering are given below. Students interested in other areas of specialization or interdisciplinary areas are encouraged to develop their own elective program in consultation with their faculty adviser.

Communications and Signal Processing
Second Year: Selected from APh 17 abc, APh 23, APh 24, EE/CS 53
Third and Fourth Year: EE 112 abc, EE/Ma 126, EE/Ma 127 ab, EE 161, EE 162, EE 163 ab, EE 164, EE 167, APh/EE 130 ab, and selections from CNS/EE 124, APh/EE 132, EE/CS 54, Ma 112 a

Control
Second Year: APh 17 abc
Third and Fourth Year: CDS 110 ab, CDS 111, and selections from EE 112 abc, EE 162, EE 164

Electronic Circuits
Second Year: APh 17 abc
Third and Fourth Year: CDS 111, EE 112 abc, EE 114 ab, and selections from EE/Mu 17 abc, EE 50, EE 55, EE 105, EE 153, CS/EE 181 abc, CS 185 abc, APh/EE 183 ab

Microwave and Radio Engineering
Second Year: APh 23, APh 24, APh 17 abc
Third and Fourth Year: EE 153, EE/Ge 157 abc, EE/Ge 158, EE 114 ab, APh/EE 130 abc, APh/EE 132, APh/EE 183 ab

Optoelectronics
Second Year: APh 23, APh 24, APh 17 abc
Third and Fourth Year: APh 124, APh/EE 130 abc, APh/EE 132, APh 105 abc, APh/EE 130 ab, APh/EE 183 ab, APh 190 abc, EE 153

Solid-State Electronics
Second Year: APh 17 abc
Third and Fourth Year: EE 185 ab, APh/EE 183 ab, and selections from APh 105 abc, APh 114 ab, EE 153

1 A student who follows this “typical schedule” exactly, and who takes APh 9 ab as a freshman, will have taken about 540 units prior to graduation, whereas only 486 are required. This means that by taking fewer electives than given in the typical schedule, the student can take lighter loads and have considerable flexibility in arranging his or her individual schedule.

2 See Institute requirements for specific rules regarding humanities.

3 See option requirement 5.
Engineering and Applied Science Option

The engineering and applied science option offers the opportunity for study in challenging areas of science and technology. In addition to such engineering disciplines as mechanical or civil engineering, computer science, etc., the student may undertake work in such diverse fields as environmental science and engineering, energy engineering and thermal science, the physics of fluids, earthquake engineering, aeronodynamics, solid mechanics, materials science, elasticity and plasticity, the theory of waves and vibrations, mechanical systems, and engineering design. The option in engineering and applied science offers an unusually broad curriculum that permits students to tailor a course of study to their individual needs as well as pursue one of the more traditional engineering curricula.

The aim of the undergraduate program in engineering and applied science at Caltech is to prepare students for research and professional practice in an era of rapidly advancing interdisciplinary technology. The program builds on the core curriculum to combine individual depth of experience and competence in a particular chosen engineering major speciality, and a strong background in the basic and engineering sciences, with laboratory and design experience. It strives to develop professional independence, creativity, leadership, and the capacity for continuing professional and intellectual growth.

The first year of the four-year course of study leading to a Bachelor of Science degree is common for all students of the Institute, although freshman elective subjects are available as an introduction to various aspects of engineering and applied science. At the end of the first year, students who elect the engineering and applied science option are assigned advisers as close to their expressed field of interest as possible, and, together, they develop programs of study for the next three years. Beyond the Institute-wide requirements of physics, mathematics, and humanities, these programs require one year of applied and computational mathematics and a certain number of units selected from a wide variety of engineering and applied science courses. Engineering design (synthesis), as distinct from analysis, is considered an essential part of every engineer’s capability. Advisers will expect students to select a sufficient number of courses that place emphasis on design.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in subjects with the prefix Ae, AM, APh, CDS, CE, ChE, CNS, CS, E, EE, ES, ESE, JP, MS, or ME may, at the discretion of the division faculty, be refused permission to continue the work of that option.

Option Requirements
1. E 10 (or equivalent).
2. ACM 95 abc or Ma 108 abc or Ma 109 abc. Neither sequence of courses may be taken pass/fail.

3. 126 additional units in courses in the following: Ae, AM, APh, CDS, CE, ChE, CNS, CS, E, EE, ES, ESE, JP, MS, or ME. Note that the student cannot exercise the pass/fail option on any courses offered to meet this requirement.
4. 9 units of courses taken from the following list: APh 24, APh 77, APh 124, APh/MS 141, Ae/APh 104 bc, CDS 111, CE 95, CE/ME 97, CE 180, CS 40 ab, CS 134 b, CS/CNS 171, 173, and 174, CS/EE 137 b, EE/CS 52, EE/CS 53, EE/CS 54, EE 55, EE 90, EE 91 ab, ESE 116, ESE 143, MS 90, MS 125, ME 72, ME 90 bc, ME/CE 96.
5. 9 units of additional laboratory, excluding those for which freshman laboratory credit is allowed.
6. Passing grades must be earned in a total of 486 units, including courses listed above.

1 These units will partially satisfy requirement 3 when taken from the list in item 4.
2 These electives must either be from the list in item 4 or they must be from courses with the word “laboratory” in the title.

All students selecting the E&AS option should have a minimum competency in computer science by the end of the first year. This competency may be established in one of two ways. Students with little or no programming skills should take CS 1, 2 in their freshman year. Students possessing basic programming skills may omit CS 1. Students especially interested in computer science should take the full sequence of CS 1, 2, 3 in consecutive terms of their freshman year.

Concentrations within the E&AS option
Students who wish to focus their studies in a particular field of engineering and applied science may declare one concentration within the E&AS option. Currently, two concentrations are available—aeronautics and mechanical engineering. Students who satisfy their E&AS option requirements using courses from the lists below will have both the option (E&AS) and the concentration (aeronautics or mechanical engineering) noted on their transcript.

Aeronautics Requirements
A student can earn a concentration in aeronautics by completing the following courses as part of the option requirements for E&AS: AM 35 abc, ME 18 ab, ME 71, ME 19 abc, MS 15 ab, AM 65, CDS 110 a, and Ae/JP 103 abc.

Mechanical Engineering Requirements
A student can earn a concentration in mechanical engineering by completing the following courses as part of the option requirements for E&AS:
1. CS 1 or CS 2, AM 35 abc, ME 18 ab, ME 19 ab, ME 70, ME 71, AM 65 (or MS 15 a), and CDS 110 a.
2. 9 units of CE/ME 96 and 9 units of additional laboratory
Typical Course Schedules

Typical course schedules and typical course sequences are given on the following pages for several engineering disciplines. These should be considered not as requirements but as guides, with the details to be worked out by the student and his or her adviser.

Units per term

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>Sophomore Physics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM 95 abc or Ma 108 abc or Ma 109 abc</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 10</td>
<td>Technical Seminar Presentations (1-0-2)</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Aeronautics (suggested schedule of requirements)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Year</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Second Year</td>
<td>AM 35 a</td>
<td>AM 35 b</td>
<td>AM 35 c</td>
</tr>
<tr>
<td>ME 18 a</td>
<td>ME 18 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Year</td>
<td>ME 19 a</td>
<td>ME 19 b</td>
<td>ME 19 c</td>
</tr>
<tr>
<td>MS 15 a</td>
<td>MS 15 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Ae/JP 103 a</td>
<td>Ae/JP 103 b</td>
<td>Ae/JP 103 c</td>
</tr>
<tr>
<td>CD 110 a</td>
<td>CD 110 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Recommend two courses selected from CS 1, CS 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Suggested electives include APb 23, APb 24.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>APb 17 abc is a suggested alternative for ME 18 ab.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Suggested electives include CE/ME 97, CS 3, MS 90.
2. Suggested electives include Ae/AM 101 abc, ACM 101 abc, CS 102 ab, JP 121 abc, ME 20, ME/CE 96, ME 115, ME 171.

1. Recommend one course per term selected from CS 1, CS 2, E 5, ESE 1, Ge 1.
2. Recommended electives include Bi 1, ME 71, MS 15 ab, MS 90.
3. Recommended electives include APb 25, MS 15 ab, MS 90, Ph 106 abc.
4. Recommended electives include Ae/AM/CE/ME 101 abc, CE/ME 97, ME/CE 96, CD 110 ab, CD 111, and AM 125 abc or ACM 101 abc.
5. Both Ae/AM 102 abc and AM 151 abc are strongly recommended.
Materials Science

First Year
- APh 9 a
- Elective

Second Year
- APh 17 a
- APh 17 b
- APh 17 c
- MS 15 a
- MS 15 b
- MS 90

Third Year
- MS 131
- MS 132
- MS 133
- AM 35 a
- AM 35 b
- AM 35 c
- APh 25

Fourth Year
- Electives
- APh/MS 141
- Electives

1. Recommend at least one term from CS 1, CS 2, E 5, ESE 1, Ge 1.
2. Recommended electives include ME 71, MS 15 ab.
3. Recommended electives include CE/ME 97, ME/CE 96, MS 15 ab, MS 90.
4. Recommended electives include Ae/AM 102 abc, AM 151 abc, CE/ME 97, CE 113 ab, ESE 146, ESE/Ch/Ge 175 ab, ME/CE 96.

Computer Science

First Year
- CS 1
- CS 2
- CS 3

Second Year
- CS 20 a
- CS 20 b
- CS 20 c
- CS/Ma 6 a
- CS/Ma 6 b
- CS/Ma 6 c

Third Year
- CS 138 a
- CS 138 b
- CS 138 c
- Electives
- Electives
- Electives

Fourth Year
- Electives
- Electives
- Electives

1. At least one 100-level CS laboratory course, and at least one 100-level CS nonlaboratory course.

Environmental Science and Engineering

First Year
- Elective
- Elective
- Elective

Second Year
- Me 18 a
- Me 18 b
- Electives
- Elective

Third Year
- Me 19 a
- Me 19 b
- CE/ME 97
- Electives
- Electives

Fourth Year
- Electives
- Electives
- Electives

1. Recommend additional electives selected from Bi 9, CHE 10, CS 1, CS 2, E 5, Ge 1.
2. APh 17 abc and CHE 63 ab are alternatives.
3. Recommended one course per term selected from Ch 14, Ch 15, Ch 41 abc, ESE 144, ESE 145, MS 15 a.
4. CHE 103 ab is an alternative.
5. Junior and senior electives should be individually planned with the adviser to provide coherent sequences depending on the student's special interests (e.g., air quality, water quality, fluid mechanics and hydrology, and applied biology). Strongly recommended electives by area are air quality, CHE/ESE 177, 178: water quality, ESE 142, 143, and applied biology, ESE/Bi 166, 168. Other recommended electives include: ACM 101 abc, ACM 104, ACM 105, Bi/Ch 110, Ch 21 abc, Ch 24 ab, CE 113 ab, Ae/APh/CHE/ME 101 abc, ESE 146, ESE/Ge 152 abc.

Geology, Geobiology, Geochemistry, Geophysics, and Planetary Science Options

The aim of this undergraduate program is to provide thorough training in the geological and planetary sciences and, wherever possible, to integrate these studies with, and build upon, the courses in mathematics, physics, chemistry, and biology taken during the student's earlier years at the Institute. Active involvement in research, particularly during the summer, is encouraged. For geologists, field work is emphasized because it provides firsthand experience with geological phenomena that can never be satisfactorily grasped or understood solely from classroom or laboratory treatment. Options are offered in geology, geobiology, geochemistry, geophysics, and planetary science. Electives permit students to
follow lines of special interest in related scientific and engineering fields. Those who do well in the basic sciences and at the same time have a compelling curiosity about the earth and the other planets are likely to find their niche in these options, especially if they enjoy grappling with complex problems involving many variables. Most students majoring in the earth and planetary sciences now pursue further training at the graduate level.

Under the geobiology option a student can be associated with either Biology or GPS. This association formally will only affect which course the students elect to satisfy the institute-wide oral presentation requirement; all other geobiology option requirements are independent of GPS or Biology affiliation. In practice, however, we expect that students’ affiliation with one division or another will significantly shape their choice of elective courses.

For students beginning their junior year, it is possible to complete the requirements for all but the geobiology option within two years, but there are benefits from starting with Ge 11 abc in the sophomore year.

Passing grades must be earned in a total of 486 units, including courses listed below. Any student whose grade-point average in science and mathematics courses is less than 1.9 at the end of an academic year may be refused permission to register in the geological and planetary science options.

Division and Option Requirements

Typical Course Schedule

<table>
<thead>
<tr>
<th></th>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division Requirements (All Options)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 11 ab</td>
<td>Introduction to Earth and Planetary Sciences</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ge/Ay 11 c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM 95 abc¹</td>
<td>Introductory Methods of Applied Mathematics (4-0-8)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM 95 abc¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 109²</td>
<td>Oral Presentation (1-0-2)</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 121 ab</td>
<td>Advanced Field and Structural Geology (0-9-3)</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

¹ For students entering geobiology, Ch 41 abc plus Bi/Ch 110 may be substituted for ACM 95 abc.
² For geobiology students associated with the Biology division, Bi 80 will satisfy this requirement.

Geology Option Requirements

<table>
<thead>
<tr>
<th></th>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 112</td>
<td>Geomorphology and Stratigraphy (3-5-4)</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ge 114</td>
<td>Mineralogy (3-6-3)</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ge 106</td>
<td>Introduction to Field and Structural Geology (3-6-3)</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Ge 115 a</td>
<td>Igneous Petrology (3-6-3)</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Ge 111 a</td>
<td>Applied Geophysics Seminar (3-3-0)</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Ge 115 b</td>
<td>Metamorphic Petrology (3-6-3)</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Summer (Recommended in Third Year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 111 b</td>
<td>Applied Geophysics Field Course (0-3-6)</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Ge 120</td>
<td>Summer Field Geology (0-12-0)</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
</tbody>
</table>

Geobiology Option Requirements

<table>
<thead>
<tr>
<th></th>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 11 ab,</td>
<td>Introduction to Earth and Planetary Sciences</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ge/Ay 11 c</td>
<td>Introduction to Molecular Biology (3-0-6)</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Bi 8</td>
<td>Cell Biology (3-0-6)</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Bi 10</td>
<td>Cell Biology Laboratory (1-3-2)</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Ch 41 abc³</td>
<td>Organic Chemistry (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 114</td>
<td>Mineralogy (3-6-3)</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bi/Ch 110³</td>
<td>Introduction to Biochemistry (4-0-8)</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ESE/Bi 168</td>
<td>Microbial Diversity (3-0-6)</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 121 ab</td>
<td>Advanced Field and Structural Geology (0-9-3)</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

³ For students entering geobiology, Ch 41 abc plus Bi/Ch 110 may be substituted for ACM 95 abc.
⁴ For geobiology students associated with the Biology division, Bi 80 will satisfy this requirement.
Geophysics Option Requirements

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 111 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ge 66</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Summer (Recommended in Third Year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 111 b</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophysics Electives (^7)</td>
<td>18</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Planetary Science Option Requirements

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 106 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option Electives (^8)</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Outside Electives (^10)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

History Option

History majors must take not less than 99 units of history courses (including Freshman Humanities) during their four years as undergraduates. Of these, not less than 45 must be in junior and senior tutorial (H 97 ab and H 99 ab), and another 18 may be in H 98 ab if students wish and their instructors agree.

The courses and tutorials in the history option concentrate on three areas: Europe, the United States, and Asia. Each history major will concentrate in one of these areas and write a research paper in it; each student must also take at least 36 units of history in other areas as approved by the adviser or as required by the history option.

A student considering the history option when he or she comes to Caltech will be well advised to take one course from Hum/H 1, 2, or 3. In the sophomore year the student should take upper-level
history courses, but this is also a good time to pursue the study of literature or philosophy, to begin or continue a foreign language (particularly desirable if the area of concentration is to be Europe or Asia), and to do introductory work in the social sciences. A student will normally make a commitment to an area of concentration early in the junior year, exploring this area through regular course work supplemented during the second and third terms by tutorial study in H 97 ab. At the beginning of the senior year, a history major will enroll in H 99 abc and be assigned to a faculty member in the student’s chosen area. The first term will be devoted to preparation, the second to research, and the third to the writing of a substantial research paper.

Since statistics can be a useful tool in historical analysis, the option recommends that some of the science and math courses that a history major takes beyond the sophomore year (to satisfy the 54-unit Institute requirement) be in that area. Students who wish to write their senior research papers in the history of science are encouraged to use the rest of the 54 units to advance their understanding of one or two particular scientific disciplines.

Option Requirements
1. H 97 ab, H 99 abc. H 99 c fulfills the Institute science communication requirement.
2. 54 additional units of history courses (including, if appropriate, H 98 ab).
3. 36 of the total history units must be in an area or areas other than the area of concentration. At the discretion of the adviser and the history option representative, a student may use H 97 ab (but not H 99 abc) to help satisfy this requirement.
4. 54 additional units of science, mathematics, and engineering courses. This requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by Ay 1, ESE 1.
5. Passing grades must be earned in a total of 486 units, including the courses listed above.

Independent Studies Program
The Independent Studies Program (ISP) is an undergraduate option that allows the student to create his or her own scholastic requirements, under faculty supervision, and to pursue positive educational goals that cannot be achieved in any of the other available options. A student’s program may include regular Caltech courses, research courses, courses at other schools, and independent study courses (item 5 next page). In scope and depth, the program must be comparable to a normal undergraduate program, but it need not include all of the specific courses or groups of courses listed in the formulated Institute requirements for undergraduates.

The Curriculum Committee, a standing committee of the faculty, has overall responsibility for the program. In addition, each student has his or her own committee of three advisers, two of whom must be professorial faculty. Application material may be obtained at the registrar’s office or from the dean of students.

Administrative Procedures and Guidelines
1. An interested student must recruit three individuals, representing at least two divisions of the Institute, who approve of his or her plans and agree to act as an advisory “committee of three.” The committee of three forms the heart of the program and bears the chief responsibility for overseeing the student’s progress. The chair and one other member must be on the professorial staff. The third member may be any qualified individual, such as a postdoctoral fellow, graduate student, or faculty member of another institution.
2. The student must submit a written proposal to the dean of students, endorsed by the committee of three, describing his or her goals, reasons for applying, and plan of study for at least the next year. If persuaded that the proposal is sound and workable, the dean endorses it and passes it on to the Curriculum Committee. This committee, in turn, reviews the proposal and, if it is acceptable, assumes responsibility for oversight of the program.
3. To implement the program, a written contract is now drawn up between the student, the committee of three, and the Curriculum Committee. This contract includes the agreed-upon content of the student’s program and the methods for ascertaining satisfactory progress for those parts of the student’s program that are not standard Institute courses. This contract may of course be amended, but any amendments must be approved by the committee of three and the Curriculum Committee. Copies of each student’s contract and of all amendments thereto, along with all ISP records for each student and his or her transcript, are kept in the permanent files of the registrar’s office.
4. The progress of each student in the ISP is monitored each quarter by the registrar, and any deviations from the terms of the contract are reported to the Chair of the Curriculum Committee. Standards for acceptable progress and for satisfactory completion of the terms of the contract are the responsibility of the Curriculum Committee. When the Committee is satisfied that the terms of the contract have been fulfilled by the student, it recommends the student to the faculty for graduation.
5. A plan of study may include special ISP courses to accommodate individual programs of study or special research that falls outside ordinary course offerings. In order that credit be received for an ISP course, a written course contract specifying
the work to be accomplished, time schedule for progress reports and completed work, units of credit, and form of grading must be agreed upon by the instructor, the student, and the committee of three, and submitted to the registrar prior to initiating the work in the course. ISP courses are recorded on the student's transcript in the same manner as are other Caltech courses.

Literature Option

Students majoring in literature can take a broad range of literature courses or, if they wish, concentrate on American, English, or comparative (cross-national) literature. All majors are assigned an adviser who will help them select the courses best suited to their needs, including courses in fields closely related to literature. Majors will be expected to consult their adviser before registering for each quarter's work. Those who are preparing for graduate work should take more than the minimum requirements listed below, and should be prepared to take courses in several periods of English literature and in the literature of one or more foreign languages. All literature courses must be taken for grades.

Option Requirements
1. 108 units in the Lit 98–180 group of courses (or, with authorization, certain Hum courses), to be taken under the guidance of the major adviser, and including at least one quarter of Lit 114 (Shakespeare) and Lit 99. An additional quarter concentrating on a second major author (e.g., Chaucer, Milton, Wordsworth, Melville, Joyce) is also recommended. L 99 fulfills the Institute science communication requirement.
2. 54 additional units of science, mathematics, and engineering courses. This requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by Ay 1, ESE 1.
3. Passing grades must be earned in a total of 486 units, including the courses listed above.

Mathematics Option

The four-year undergraduate program in mathematics leads to the degree of Bachelor of Science. The purpose of the undergraduate option is to give students an understanding of the broad outlines of modern mathematics, to stimulate their interest in research, and to prepare them for later work, either in pure mathematics or allied sciences. Unless students have done exceptionally well in their freshman and sophomore years, they should not contemplate specializing in mathematics. An average of at least "B" in mathematics courses is required of students in order to major in mathematics.

Since the more interesting academic and industrial positions open to mathematicians require training beyond a bachelor's degree, students who intend to make mathematics their profession must normally plan to continue with graduate study. Some students use their background in mathematics as an entry to other fields such as physics, computer science, software engineering, economics, business, finance, medicine, or law.

The schedule of courses in the undergraduate mathematics option is flexible. It enables students to adapt their programs to their needs and mathematical interests and gives them the opportunity of becoming familiar with creative mathematics early in their careers. In particular, students are encouraged to consider courses in areas such as applied and computational mathematics, physics, finance, economics, control and dynamical systems, computer science, electrical engineering, and computation and neural systems.

Each term during their junior and senior years, students normally take 18 units of courses in mathematics or applied and computational mathematics, including the required courses Ma 108 abc and 109 abc. Any course listed under applied and computational mathematics is regarded as an elective in mathematics and not as an elective in science, engineering, or humanities. Those who have not taken Ma 5 as sophomores must do so as juniors. Overloads in course work are strongly discouraged; students are advised instead to deepen and supplement their course work by independent reading.

Attention is called to the fact that students whose grade-point averages are less than 1.9 at the end of the academic year in the subjects under mathematics and applied and computational mathematics may, at the discretion of the department, be refused permission to continue the work of the mathematics option.

Option Requirements
1. Ma 5 abc, Ma 108 abc, Ma 109 abc, Ma 10.
2. Ma/CS 6 a or Ma 121 a.
3. Ma/CS 6 c or Ma 116 a or Ma/CS 117 a.
4. 45 additional units in Ma or ACM. Courses in other options with high mathematical content may be used to fulfill this requirement with the approval of the executive officer for mathematics.
5. Math majors must take two quarters (18 units) of a single course, chosen from the mathematics course listings with numbers between 110 and 190, inclusive. (In years where one of these courses is given as a one-term course only, it cannot be used to satisfy this requirement.) These two quarters may be used to meet requirements 2, 3, or 4.
6. Passing grades must be earned in a total of 483 units, including the courses listed above.
Physics Option

The physics option offers instruction in the fundamentals of modern physics and provides a foundation for graduate study, which is generally necessary for a career in basic research. Many individuals have also found that the physics program forms an excellent basis for future work in a wide variety of allied fields.

While all Caltech students must take the five terms of introductory courses, an intensive version of the sophomore course (waves, quantum mechanics, and statistical mechanics) is offered for those planning further study in physics. The required junior-level courses give a thorough treatment of fundamental principles. Elective courses taken during the junior and senior years allow students to explore their particular interests. Some electives offer broad surveys, while others concentrate on particular fields of current research. A choice of laboratory courses is offered at several levels. Students are encouraged to become active participants in research on campus. Academic credit for physics work done outside of the classroom can be awarded in a variety of ways.

Students must maintain a grade-point average of 1.9 or better each year in the subjects listed under this division to remain in the physics option.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>Sophomore Physics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td>Introduction to Abstract Algebra (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 10</td>
<td>Oral Presentation (2-0-1)</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td>Classical Analysis (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma/CS 6 ac</td>
<td>Introduction to Discrete Math (3-0-6)</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 109 abc</td>
<td>Introduction to Geometry and Topology (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

1 Includes menu course (second year, if not taken in freshman year). Also must include courses to meet items 4, 5 under option requirements.

Option Requirements

The first three requirements should be completed by the end of the second year. In planning a program, note that Ph 6 and Ph 7 are each offered only once per year, in the second and third terms, respectively.

1. Ph 3.
2. Ph 6 or APh 24.
4. 18 units of Ph 78, or 18 units from Ph 77 and Ph 76, or 9 units from Ph 77 or Ph 76 and 9 units from APh 77 or Ay 105.
5. Ph 70.
6. Ph 106 and Ph 125.
7. 54 units, in addition to the above, of any of the following: Ph 78, Ph 79, any Ph, Ay, or APh course numbered 100 or above, or ACM 101. Students wishing to apply more than 9 units of Ph 171, Ph 172, or Ph 173 toward this 54-unit requirement must petition the Physics Undergraduate Committee for approval. Nine units toward the 54 elective units will be given for taking Ph 5. Nine units toward the 54 will be given for taking three terms from Ph 76 and Ph 77 combined. Other courses in other departments with substantial physics content may be approved by the Physics Undergraduate Committee in individual cases; seniors must submit their petition for this purpose before the first day of the third term. The student cannot exercise a pass/fail option for any courses offered to meet this requirement.
8. 27 units of science or engineering electives outside of Ph, APh, Ma, and ACM. Core Science Electives can be counted. If the student has taken Bi 1, then only 18 units are required.
9. Passing grades must be earned in a total of 486 units, including the courses listed above.

1 Some laboratory courses from other options have considerable physics content, and students wishing to satisfy this requirement with such a course may petition the Physics Undergraduate Committee for approval.
2 Other oral communication courses (e.g., E 10, Ay 30, Ma 10) may be substituted for Ph 70.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 12</td>
<td>Waves, Quantum Physics, and Statistical Mechanics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Humanities</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Physics Laboratory</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>12</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Core Science Elective if not taken earlier</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 10</td>
<td>Oral Presentation (2-0-1)</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td>Classical Analysis (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma/CS 6 ac</td>
<td>Introduction to Discrete Math (3-0-6)</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 109 abc</td>
<td>Introduction to Geometry and Topology (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

1 Includes menu course (second year, if not taken in freshman year). Also must include courses to meet items 4, 5 under option requirements.
Option Requirements

1. Two advanced SES courses in the history of science, chosen from SES/H 156, SES/H 158, SES/H 160 ab, SES/H 162, SES/H 165, SES/H 166, SES/H 169.
2. Two advanced history courses.
3. Two advanced philosophy courses.
4. Two advanced courses in philosophy of science or ethics, chosen from SES/Pl 122, SES/Pl 125, SES/Pl 126, SES/Pl 127, SES/Pl 131, SES/Pl 185.
5. 45 units of courses in science, mathematics, and engineering. This requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by a course with a number less than 10.
6. Passing grades must be earned in a total of 486 units, including all courses used to satisfy the above requirements.

Explanatory Notes

It is desirable that students enter the option in their sophomore year. However, students may also enter the option in their junior year if they can complete the option’s requirements in time for graduation. Students electing the SES option would normally take SES 10 ab by the end of the sophomore year. This is a two-quarter introductory course, one quarter of which emphasizes historical issues, the other quarter of which focuses on philosophical ones.

Students in the option will normally take SES 103 each quarter, beginning in the sophomore year. This is a lecture series featuring outside speakers roughly four times per quarter that introduces students to a broad variety of SES-related topics past and present. It is graded on attendance.

SES 102 abc is a three-quarter course devoted to the writing of a senior research paper. The first two quarters are taught primarily as a tutorial, with students developing their paper topics under the guidance of a faculty adviser; the third quarter will be taught as a
It is recommended that students choose their advanced social science electives from among courses that will enlarge their perspective on topics related to SES (for example, Ec 118, Ec/SS 128, Ec/SS 129, Ec/SS 130, Ps 120, Ps 121, Ps 122, An 22, An 123).

SES Minor Requirements
Undergraduates taking the SES minor will pursue a two-part program of study using the 108-unit humanities and social sciences (HSS) requirement in a way that is tailored, with the help of a program adviser, to their particular interests. The first part is introductory, comprising SES 10 ab as well as general but related courses in humanities and social sciences selected so as to develop a coherent and solid foundation for work in an area of SES concentration. The second part consists of advanced courses clustered in an area of concentration such as those described in the option requirements. To this end, SES minor students are required to complete at least one advanced course in the history of science and one in the philosophy of science or ethics. Qualifying history courses are SES/H 156, SES/H 158, SES/H 160 ab, SES/H 162, SES/H 165, SES/H 166, SES/H 169. Qualifying philosophy courses are SES/Pl 122, SES/Pl 125, SES/Pl 126, SES/Pl 127, SES/Pl 131, SES/Pl 169, SES/Pl 185.

In addition to completing the 108-unit HSS requirement, SES undergraduates must participate in their junior and senior years in SES 103 and complete SES 102 bc. The research paper expected of SES minor students will be shorter than that expected of students in the option; hence, only the second two quarters of SES 102 are required. The remaining choice of courses in both humanities and social sciences will be determined by a student's expected SES concentration. It is recommended that SES-minor students use their social science requirement to develop a strong grounding in economics and politics and that they take at least one course in literature (Lit 138 and/or Lit 127 are recommended).
All SES courses required for the SES minor must be taken for grades, with the exception of SES 103.

Course of Minor Study

During four years, the normal SES minor course of study will resemble the following:

1st Year
1. Freshman history and/or philosophy (2 quarters; 18 units). May also be taken in the first year.
2. Introductory economics or political science (1 quarter; 9 units).

2nd Year
1. SES 10 ab, Introduction to the History of Science; Introduction to the Philosophy of Science (2 quarters; 18 units).
2. Social science (1 quarter; 9 units).
3. SES 103 lecture series (3 quarters; 3 units) (recommended but optional).

3rd Year
1. History or philosophy of science (1 quarter; 9 units).
2. Advanced humanities (1 quarter; 9 units).
3. Advanced social science (1 quarter; 9 units).
4. SES 102 bc research tutorial and seminar (2 quarters; 18 units).
5. SES 103 lecture series (3 quarters; 3 units).

4th Year
1. History or philosophy of science (1 quarter; 9 units).
2. Advanced humanities (1 quarter; 9 units).
3. Advanced social science (1 quarter; 9 units).
4. SES 102 bc research tutorial and seminar (2 quarters; 18 units).
5. SES 103 lecture series (3 quarters; 3 units).

Social Science Option

The social science program is designed to provide undergraduates with multidisciplinary training in social science. The program focuses on the processes of social, political, and economic change and the analytical methods used by social scientists to describe and predict them. The program is designed to be sufficiently flexible to provide an excellent preparation for students intending to attend graduate school in any social science discipline, or in law or business.

Option Requirements

1. Ec 11, PS 12, Ec 121 a, Ma 112 a, Ec 122, PS/Ec 172, Ec/SS 20.
2. One of the following: An 22, An 101, or Psy 15.
3. 45 additional units of science, mathematics, and engineering courses. The requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by any course with a number less than 10.

4. 54 additional units of social science courses, which include any course listed under the following headings: anthropology, economics, law, political science, psychology, and social science. (Courses that are used to fulfill the Institute upperclass social science requirement [courses numbered 100 and above] will also count toward the 54 additional units required under the economics and social science options.)

5. Passing grades must be earned in a total of 486 units, including all courses used to satisfy the above requirements.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ec 11</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS 12</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 112 a</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ec/SS 20</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Ec 121 a</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ec 122</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>PS/Ec 172</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>An 101 or</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>An 22</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Psy 15</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>36</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

1 Students may concentrate on research by taking 54 units of supervised research in their senior year.
The Institute offers graduate work leading to the degrees of Master of Science and Doctor of Philosophy. In addition, it offers the following intermediate degrees: Aeronautical Engineer, Civil Engineer, Electrical Engineer, and Mechanical Engineer.

The academic work of the Institute is organized into six divisions: Biology; Chemistry and Chemical Engineering; Engineering and Applied Science; Geological and Planetary Sciences; the Humanities and Social Sciences; and Physics, Mathematics and Astronomy.

Graduate work at the Institute is further organized into graduate options, which are supervised by those professors whose interests and research are closely related to the area of the option, within the administrative jurisdiction of one or more of the divisions. The graduate student working for an advanced degree in one of the graduate options is associated with an informal group of those professors who govern the option, other faculty including research associates and fellows, and other graduate students working for similar degrees.

A faculty member serves as the representative for an option. The option representative provides consultation on academic programs, degree requirements, financial aid, etc., and provides general supervision to graduate students in the option. The Committee on Graduate Studies, which includes the option representatives, elected members of the faculty at large, and graduate students appointed by the Graduate Student Council, exercises supervision over the scholastic requirements established by the faculty for all advanced degrees, provides policy guidance to the dean of graduate studies, and certifies all candidates for graduate degrees to the faculty for their approval. The Option Representatives for 2001–02 are as follows:

Aeronautics
Prof. J. Shepherd

Applied and Computational Mathematics
Prof. Y. Hou

Applied Mechanics
Prof. T. Colonius and T. Heaton

Applied Physics
Prof. S. Quake

Astronomy
Prof. G. Djorgovski

Biochemistry and Molecular Biophysics
Prof. J. L. Campbell

Bioengineering
Prof. J. Burdick

Biology
Prof. P. Sternberg

Chemical Engineering
Prof. G. Gavalas

Chemistry
Prof. J. Barton

Civil Engineering
Prof. T. Colonius and T. Heaton

Computation and Neural Systems
Prof. S. Shimojo

Computer Science
Prof. L. Schulman

Control and Dynamical Systems
Prof. J. Marsden

Electrical Engineering
Prof. P. P. Vaidyanathan

Environmental Science and Engineering
Prof. J. Hering
the power of clear and forceful self-expression in both oral and written English.

Required Tests
The verbal, quantitative, and analytical components of the Graduate Record Examination are required by all graduate options, and scores are required by most options as part of the application for graduate admission.

Applicants whose first or native language is not English are required to take a test of English proficiency as part of the application procedure. These tests are given at centers throughout the world, on several dates each year. Caltech recognizes scores from the Educational Testing Service (ETS) and from the Cambridge Examinations and the International English Language Testing System (IELTS). Nearly all successful applicants have a computer-based Test of English as a Foreign Language (TOEFL) score better than 250, or a paper-based score better than 600. The overall IELTS band score should be at least 7. In addition, applicants who are taking the TOEFL exam are highly encouraged to take the Test of Written English (TWE) and the Test of Spoken English (TSE) and submit these scores as part of their application. Applicants should arrange for the results of these tests to be sent to the Office of the Dean of Graduate Studies prior to the application deadline.

The testing schedules for and information on the TOEFL, TWE, and TSE may be obtained by writing to TOEFL, Educational Testing Service, Princeton, NJ 08540. They are also available online at http://www.toefl.org/.

The testing schedules for and information on the IELTS exam may be obtained by writing to The British Council, Bridgewater House, 58 Whitworth Street, Manchester M1 6BB, United Kingdom. They are also available online at http://www.ielts.org/.

It is strongly recommended that students who do not achieve a high score on these tests, or who have little opportunity to communicate in English, make arrangements for intensive work during the summer preceding their registration. All international students are tested upon arrival at Caltech and, if found to be seriously deficient in their ability to communicate in English, must take special noncredit courses in English as a Second Language (ESL).

Special Students
Students may be admitted in exceptional cases, for a period of up to six months, as special graduate students to carry out full-time studies at the Institute without being candidates for a degree from Caltech. This status is ordinarily restricted to students who are registered in, or are on sabbatical from, an advanced degree program at another institution and who need to make use of resources available at Caltech. Admission to such status requires sponsorship of the student by a member of the Institute faculty.
by a Caltech faculty member. Application should be made directly to the dean of graduate studies, following the same procedures as for regular graduate students.

Graduate Residence

One term of residence shall consist of one term's work of not fewer than 36 units of advanced work in which a passing grade is recorded. Advanced work is defined as study or research in courses whose designated course number is 100 or above. If fewer than 36 units are successfully carried, the residence will be regarded as short by the same ratio; but the completion of a greater number of units in any one term will not be regarded as increasing the residence. In general, the residency requirements are as follows: for Master of Science, a minimum of three terms (one academic year) of graduate work; for Aeronautical Engineer, Civil Engineer, Electrical Engineer, and Mechanical Engineer, a minimum of six terms (two academic years) of graduate work; and for Doctor of Philosophy, a minimum of nine terms (three academic years) of graduate work.

Registration

Graduate students are required to register and file a program card in the registrar's office for each term of residence, whether they are attending a regular course of study, carrying on research, doing independent reading, writing a thesis, or utilizing any other academic service or campus facility.

A graduate student must be registered for 36 or more units to be classified as a full-time student, but course loads greater than 45 units are more common. International students on student visas must be registered for at least 36 units per term during their entire tenure at Caltech. A graduate student who registers for less than 36 units, or who undertakes activities related to the Institute aggregating more than 62 hours per week (in class, research, and teaching assistantship units) must receive approval from the dean of graduate studies. Petition forms for this purpose may be obtained from the graduate office and must carry the recommendation of the option representative of the student's major option before submission to the dean of graduate studies.

Graduate students register by mail during a two-week period each quarter. A late registration fee of $50 is assessed for failure to register on time. Before registering, students should consult with members of the option in which they are taking their major work to determine the studies that they can pursue to the best advantage. This registration program card must be signed by the student's adviser. An adviser is assigned to each entering graduate student by the option representative. In most options a new adviser is assigned when the student begins research. Only members of the professorial faculty may serve as advisers. With the approval of the dean of graduate studies, any graduate student whose work is not satisfactory may be refused registration at the beginning of any term by the division in which the student is doing his or her major work.

In registering for research, students should indicate on their program card the name of the instructor in charge, and should consult with him or her to determine the number of units to which the proposed work corresponds. At the end of the term, the instructor in charge may decrease the number of units for which credit is given if he or she feels that the progress of the research does not justify the full number originally registered for.

Students will not receive credit for courses unless they are properly registered. The students themselves are charged with the responsibility of making certain that all grades to which they are entitled have been recorded.

All changes in registration must be reported, on drop or add cards, to the registrar's office by the student. Such changes are governed by the last dates for adding or dropping courses as shown on the academic calendar on pages 4 and 5. A student may not withdraw from or add a course after the last date for dropping or adding courses without his or her option's consent and the approval of the dean of graduate studies.

Academic Year and Summer Registration

Most courses are taught during the three 12-week quarters that make up the academic year. However, predoctoral students are strongly encouraged to continue their research throughout the summer quarter. They are entitled to at least two weeks' annual vacation (in addition to Institute holidays), but they should arrange their vacation schedules with their research advisers early in each academic year (see page 234).

All students in residence must be registered. A registration card for summer research must be filed with the registrar's office in May. There is no tuition charge for summer research units. To maintain full-time student status, 36 units must be taken in the summer quarter.

Sabbatical

Graduate students are required to maintain their admission status until all requirements for a degree are fulfilled, whether by continuity of registration or on the basis of an approved sabbatical. A sabbatical for medical or other reasons may be approved for up to one year at a time. A sabbatical will be approved to meet military obligations, and tuition adjustments will be made if the sabbatical must be initiated within a term (see page 134). An approved sabbatical indicates that the student can return to the option at the end of the sabbatical. Financial aid awarded by the Institute will not be deferred from the term for which it was originally offered and must be requested again for the term of reenrollment.

In general, international students cannot take a sabbatical with-
out jeopardizing their visa status. Students who hold nonimmigrant visas must meet with the director of international student programs to determine visa status during the sabbatical. If a student plans to change a visa status during the sabbatical, he or she must submit copies of the Change of Status, or other evidence of a new status, to the International Student Programs Office. These requirements will also need to be met prior to the last term for which a student is registered at Caltech.

Detached duty status continues registration for a student doing research at another location, such as a national facility, for an extended period. Reduced duty status continues registration for a student who cannot carry a full load due to medical disability, including pregnancy.

Petition forms for an approved sabbatical, or detached or reduced duty status, may be obtained from the graduate office and must, before submission to the dean of graduate studies, carry the recommendations of the student’s option representative and, where appropriate, the thesis adviser. In case of a lapse in admission status, readmission must be sought before academic work may be resumed or requirements for the degree completed. Registration is required for the quarter in which the thesis defense is undertaken, with the exception of the first week of each quarter.

The dean of graduate studies may place a graduate student on involuntary sabbatical if persuaded by the evidence that such an action is necessary for the protection of the Institute community or for the personal safety or welfare of the student involved. Such a decision by the dean is subject to automatic review within seven days by the vice president for student affairs.

Guidelines for the Graduate Student-Faculty Adviser Relationship

The relationship between a faculty adviser and graduate student should be founded on mutual respect and open communication. Advisers and students should discuss the nature of their working relationship early and continue this discussion throughout their period of collaboration to ensure mutually understood and compatible expectations. These discussions should be frequent and open, and should include not only work, research goals, and performance reviews, but also change of status, time for personal and family responsibilities, time off (see page 219), and concerns about academic or work situations. Both the student and adviser have the obligation to initiate meetings as necessary to ensure the success of the relationship.

The graduate student–faculty adviser relationship should be guided by norms of fairness and professionalism. Both faculty and graduate students should avoid relationships that conflict with their respective roles and duties at Caltech. Both are bound by the prevailing policies prohibiting discrimination and harassment (pages 45–60). Concerns relating to academic or work situations should be raised promptly between the persons directly involved, and handled informally if possible. Both students and advisers have the responsibility to raise and address concerns and conflicts promptly, honestly, and in a manner that conforms with academic integrity and professionalism. Caltech policy requires that students’ concerns be addressed fairly and promptly, and prohibits retaliation or discrimination against students for appropriately voicing or raising a concern.

If a problem remains unresolved or if direct discussion is not possible, a student can seek assistance from division officers (e.g., option representatives), the dean of graduate studies, the ombuds-person, the assistant vice president for student affairs, or the office of International Student Programs. At any time a student may request that discussions remain confidential. For more details about sources of assistance, consult the graduate option regulations (pages 240–312) and the Student Grievance Procedure (page 60).

Part-Time Programs

Part-time graduate study programs at the Institute are for graduate students who cannot devote full time to their studies and are allowed to register only under special arrangements with a sponsoring organization, and such students are subject to the following rules:

Degree Programs

■ Applicants for the part-time program must submit a regular application form accompanied by a detailed plan for meeting the course requirements for the degree.
■ Any research work done for academic credit shall be supervised by a Caltech faculty member.
■ In general, students admitted to the part-time program are required to take at least 27 units of graduate course work or research work each term during the first academic year.
■ Any option at the Institute retains the right to not participate in the program or to accept it under more stringent conditions.

Nondegree Programs

Caltech employees, both campus and JPL, are eligible to apply to take one or more graduate courses for credit. Participants in this program will not be considered to be working toward a Caltech degree, in contrast to the part-time program for graduate degrees described above, and courses taken under this program cannot be used to fulfill the requirements for a Caltech degree.

At least one month prior to the start of the term, the employee should have an initial discussion with the option representative of the option in which the course is to be taken. Application should
Working at Special Laboratories

- Students who desire to take advantage of the unique opportunities available at one of the special laboratories (e.g., JPL), for Ph.D. thesis work, may be allowed to do so, provided that they maintain good contact with academic life on campus, and the laboratory involved commits support for the duration of the thesis research, and provided that all Caltech graduate thesis research carried out at a special laboratory is under the supervision of Caltech faculty members.

- A student's request to carry out thesis work at a special laboratory should be formally endorsed by the appropriate committee of his or her option and by the special laboratory, on a petition submitted through the option representative to the dean of graduate studies. The special laboratory should recognize its commitment of special equipment or any other resources required for the thesis work. Approval by the special laboratory should also indicate that the thesis topic is a sensible one, and that it is not likely to be preempted by the laboratory.

- A student may take similar advantage of unique opportunities at a corporate or governmental research and development facility under the same conditions, providing that there exists a formal written agreement between the R&D facility and the student's thesis adviser, and that advance written approval is obtained from the dean of graduate studies. Such curricular practical training may in some cases involve full-time employment at the laboratory for a limited period of time for the purpose of engaging in the essential data collection that is integral to a student's doctoral dissertation. Typically, such students who are not in a local laboratory are placed on detached duty status.

- Employment by a special laboratory of a graduate student for work not connected with his or her thesis should be regarded as equivalent to other outside employment.

Exchange Program with Scripps Institution of Oceanography

An exchange program has been established with the Scripps Institution of Oceanography (SIO), University of California, San Diego, permitting Caltech graduate students to enroll in and receive credit for graduate courses offered by SIO. Arrangements should be made through the student's major option and the Office of the Dean of Graduate Studies. The student must obtain the advance approval of the instructors of courses to be taken at SIO. In some cases, when it is in the best interests of the student, arrangements may be made for the student to be temporarily in full-time residence at SIO.

Thesis research done partly at SIO may be arranged directly by the student's option and the staff of appropriate research laboratories at SIO, without the necessity of enrolling for SIO courses designated for research; in this case the student will continue to be under the supervision of his or her Caltech thesis adviser and will enroll for Caltech research units.

GENERAL REQUIREMENTS FOR GRADUATE DEGREES

Degree of Master of Science

The Master of Science degree is a professional degree designed to prepare a student for teaching, for further graduate studies, or for more advanced work in industry. Detailed requirements are based primarily on professional studies, and the program should be planned in consultation with the faculty in the appropriate discipline. Under normal circumstances, the requirements for the M.S. degree can be completed in one academic year.

A student who enters the Institute holding a master's degree from another institution will not normally be awarded a master's degree in the same field from the Institute unless the initial admission to Caltech graduate studies indicated that the student was to be a master's candidate. A student may not normally be awarded two master's degrees from the Institute.

Special regulations for the master's degree are listed under each graduate option. Several options do not offer an M.S. degree except in special circumstances.

Residence and Units of Graduate Work Required. At least one academic year of residence at the Institute and 135 units of graduate
work at the Institute subsequent to the baccalaureate degree are required for the master’s degree. Included in these units are at least 27 units of free electives or of required studies in the humanities. Courses used to fulfill requirements for the bachelor’s degree may not be counted as graduate residence.

To qualify for a master’s degree, a student must complete the work indicated in the section on special regulations for his or her option with a grade-point average for the approved M.S. candidacy courses of at least 1.9.

In special cases, with the approval of the instructor and the dean of graduate studies, courses taken elsewhere before enrollment at the Institute may be offered in place of specifically required courses. An examination may be required to determine the acceptability of such courses. Course credit, if granted, shall not count toward the 135-unit and residency requirements.

Joint B.S./M.S. Degree. In exceptional cases, undergraduate students may pursue a joint B.S./M.S. program of study in some options. Several options do not allow a joint B.S./M.S. degree. Students should consult the graduate option representative to find out if the joint B.S./M.S. degree is possible in a particular option. Such students must follow the normal procedures for admission to the M.S. program in the option of their choice. Students attending courses or carrying out research toward an M.S. degree before completion of their B.S. degree requirements will be considered as undergraduate students and will not be eligible for graduate financial aid, graduate housing, or other graduate student privileges.

Admission to M.S. Candidacy. Before the midpoint of the first term of the academic year in which the student expects to receive the degree, he or she must file in the Office of the Dean of Graduate Studies an application for admission to candidacy for the degree desired. On the M.S. candidacy form, the student must submit a proposed plan of study, which must have the approval of his or her option representative and, if a thesis is required, of his or her research adviser. Some options require a thesis or research report in addition to course requirements. The thesis or research report must be signed off on the M.S. candidacy form by the research adviser no later than two weeks before the degree is to be conferred. This approved plan of study will constitute the requirements for the degree. Any modifications must be approved by the option representative, and the initialed plan of study resubmitted to the graduate office at least two weeks before Commencement.

Engineer’s Degree

Engineer’s degrees are awarded in aeronautical engineering, civil engineering, electrical engineering, and mechanical engineering. The work for an engineer’s degree must consist of advanced studies and research in the field appropriate to the degree desired. It must conform to the special requirements established for that degree and should be planned in consultation with the members of the faculty concerned. Students who have received the master’s degree and wish to pursue further studies leading toward either the engineer’s or the doctor’s degree must file a new petition to continue graduate work toward the desired degree. Students who have received an engineer’s degree will not in general be admitted for the doctor’s degree.

Residence. At least six terms of graduate residence subsequent to a baccalaureate degree equivalent to that given by the Institute are required for an engineer’s degree. Of these, at least the last three terms must be at Caltech. It must be understood that these are minimum requirements, and students must often count on spending a somewhat longer time on graduate work.

To qualify for an engineer’s degree, a student must complete the work prescribed by his or her supervising committee with a grade-point average of at least 1.9. Research work and the preparation of a thesis must constitute no fewer than 55 units. More than 55 units may be required by certain options, and the student should determine the particular requirements of his or her option when establishing a program.

Admission to Candidacy. Before the midpoint of the first term of the academic year in which the student expects to receive the degree, he or she must file in the Office of the Dean of Graduate Studies an application for admission to candidacy for the degree desired. Upon receipt of this application, the dean of graduate studies, in consultation with the chair of the appropriate division, will appoint a committee of three members of the faculty to supervise the student’s work and to certify its satisfactory completion. One of the members of the committee must be in a field outside the student’s major field of study. The student should then consult with this committee in planning the details of his or her work. The schedule of work as approved by the committee shall be entered on the application form and shall then constitute a requirement for the degree. Changes in the schedule will not be recognized unless initiated by the proper authority. No course that appears on the approved schedule and for which the applicant is registered may be removed after the last date for dropping courses, as listed in the catalog.

The student will be admitted to candidacy for the degree when the supervising committee certifies (a) that all the special requirements for the desired degree have been met, with the exception that certain courses of not more than two terms in length may be taken after admission to candidacy; (b) that the thesis research has been satisfactorily started and can be finished at the expected date; (c) that the candidate demonstrates competence in oral and written English.

Competency in English can be demonstrated in several ways. The student from a non-English-speaking country can meet the
they choose their major work toward the doctor’s degree. In some cases, applicants for the doctor’s degree may be required to register for the master’s or engineer’s degree first; however, these degrees are not general prerequisites for the doctor's degree. Students who have received the master's degree and wish to pursue further studies leading toward either the engineer’s or the doctor's degree must file a request to continue graduate work toward the desired degree. Students who have received an engineer's degree will not, in general, be admitted for the doctor's degree.

A student who holds a Ph.D. degree from another institution will not normally be admitted to graduate standing at Caltech to pursue a second Ph.D. degree. A student will not normally be awarded two Ph.D. degrees from the Institute.

Minor Programs of Study. The Institute does not require a minor for the Ph.D. degree, but the individual options may have minor requirements as part of their requirements for the major.

A student may undertake a minor program of study in most options as specified in this catalog under the section “Special Regulations of Graduate Options.” Completion of a minor program of study is recognized on the Ph.D. diploma by the statement, “...and by additional studies constituting a minor in [minor option].”

A minor program of study should be at a level of study in the minor substantially beyond that typically acquired by students as part of their major requirements. Most options require 45 units or more, including at least one 200-level course and a coherent program of the supporting 100-level courses. The faculty of the minor option may approve a proposed minor program on the basis of overall class performance and/or by an oral examination. Detailed requirements for minor options are listed under the individual options.

Residence. At least nine terms (three academic years) of residence subsequent to a baccalaureate degree equivalent to that given by the Institute are required for the doctor's degree. Of this at least one year must be in residence at the Institute. It should be understood that these are minimum requirements, and students must usually count on spending a somewhat longer time in residence. A student whose undergraduate work has been insufficient in amount or too narrowly specialized, or whose preparation in his or her special field is inadequate, must count upon spending increased time in work for the degree.

However, no student will be allowed to continue work toward the doctor's degree for more than five academic years of graduate residence, without a petition approved by the dean of graduate studies. This petition must include a plan and schedule for completion, agreed upon and signed by the student, the research adviser, and the option representative.

Registration. Continuity of registration must be maintained until
Although there is no Institute-wide foreign-language requirement for the degree of Doctor of Philosophy, graduate students should check for possible specific requirements set by their division or option.

Final Examination. Each doctoral candidate shall undergo broad oral examination on the major subject, the scope of the thesis, and its significance in relation to the major subject. The examination, subject to the approval of the dean of graduate studies, may be taken after admission to candidacy whenever the candidate is prepared; however, it must take place at least three weeks before the degree is to be conferred.

The examination may be written in part, and may be subdivided into parts or given all at one time at the discretion of the options concerned. The date of the examination and the composition of the examining committee will not be approved by the dean of graduate studies unless the thesis is submitted ready for review by the dean, the members of the examining committee, and the graduate office proofreader. (See Thesis, below.)

Thesis. The candidate is to provide a copy of his or her completed thesis to the members of the examining committee at least two weeks before the final oral examination. The date of the final oral examination must be arrranged in advance and reported to the examining committee. The thesis is to be defended within the following month, and the candidate must obtain permission to register for further work from the chair of his or her division.

A student not admitted to candidacy before the beginning of the fourth academic year of graduate work at the Institute must petition through his or her division to the dean of graduate studies for permission to register for further work. Candidacy (and permission to register) may be withdrawn by formal action of the option from a student whose research is not satisfactory, or for other compelling reasons. However, the option must petition through its division chair to the dean of graduate studies for permission to register for further work.

Foreign Languages. The Institute believes in the importance of the knowledge of foreign languages and encourages their study as early as possible, preferably before admission to graduate standing.
With the approval of the option concerned, a portion of the thesis may consist of one or more articles published jointly by the candidate and members of the Institute staff or other coauthors. In any case, however, a substantial portion of the thesis must be the candidate’s own exposition of his or her own work.

The use of “classified” research as thesis material for any degree is not permitted. Exceptions to this rule can be made only under special circumstances, and then only when approval is given by the dean of graduate studies before the research is undertaken.

Regulations and directions for the preparation of theses may be obtained from the office of the dean of graduate studies, and should be followed carefully by the candidate.

GRADUATE EXPENSES

The tuition charge for all students registering for graduate work is currently $20,904 per academic year, payable in three installments at the beginning of each term. Graduate students who cannot devote full time to their studies are allowed to register only under special circumstances. Students desiring permission to register for fewer than 36 units must therefore petition on the form available from the graduate office. If reduced registration is permitted, the tuition for each term is at the rate of $194 a unit for fewer than 36 units, with a minimum of $582 a term. This tuition credit will only be made for reduced units as of the published Add Day of each term.

The payment of tuition by graduate students is required (a) without reference to the character of the work by the student, which may consist of research, independent reading, or writing a thesis or other dissertation, as well as attendance at regular classes; (b) without reference to the number of terms in which the student has already been in residence; and (c) without reference to the status of the student as an appointee of the Institute, except that members of the academic staff of rank of instructor or higher are not required to pay tuition.

Each graduate student is required to make a general deposit of $100 to cover loss of, or damage to, Institute property used in connection with work in regular courses of study. Upon completion of graduate work, or upon withdrawal from the Institute, any remaining balance of the deposit will be refunded.

Unpaid Bills. All bills owed the Institute must be paid when due. Any student whose bills are past due may be refused registration for the term following that in which the past due charges were incurred. Transcripts are not released until all bills due have been paid or satisfactory arrangements for payment have been made with the Bursar’s Office.

Information regarding fellowships, scholarships, and assistantships is discussed in the following pages. Students of high scholastic attainment may be offered special tuition awards covering all or part of the tuition fee. Loans also may be arranged by applying at the graduate office.

Expense Summary 2001-02

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Deposit</td>
<td>100.00</td>
</tr>
<tr>
<td>Tuition</td>
<td>20,904.00</td>
</tr>
<tr>
<td>Graduate Student Council Dues</td>
<td>24.00</td>
</tr>
<tr>
<td></td>
<td>$21,028.00</td>
</tr>
</tbody>
</table>

Other:

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Books and Supplies (approx.)</td>
<td>$1,097.00</td>
</tr>
<tr>
<td>Room</td>
<td></td>
</tr>
<tr>
<td>On-campus graduate room (rates are subject to change)</td>
<td>$378.00 per month</td>
</tr>
<tr>
<td>For single room</td>
<td>$378.00 per month</td>
</tr>
<tr>
<td>For suite room</td>
<td>$383.00 per month</td>
</tr>
<tr>
<td>Avery House</td>
<td></td>
</tr>
<tr>
<td>Avery House single room</td>
<td>$484.00 per month</td>
</tr>
<tr>
<td>Avery House suite room</td>
<td>$508.00 per month</td>
</tr>
<tr>
<td>Plus Avery meal plan (M–F)</td>
<td>$685.00 per term</td>
</tr>
<tr>
<td>Catalina apartments</td>
<td></td>
</tr>
<tr>
<td>For single or married students</td>
<td></td>
</tr>
<tr>
<td>4 bedroom apt.</td>
<td>$384.00 per person per month</td>
</tr>
<tr>
<td>2 bedroom apt.</td>
<td>$455.00 per person per month</td>
</tr>
<tr>
<td>1 bedroom apt.</td>
<td>$789.00 per apt. per month (plus utilities)</td>
</tr>
<tr>
<td>Meals: Available at Chandler Dining Hall, Avery House, or the Athenaeum (members only)</td>
<td></td>
</tr>
</tbody>
</table>

On the following page is a list of graduate fees at the California Institute of Technology for academic year 2001–02, together with the dates on which these charges are due. Fees are subject to change at the discretion of the Institute.

1 Graduate students registered during the summer term are required to pay an additional $8.00 in Graduate Student Council dues.
Rates for housing vary, depending upon the accommodations and services provided. A contract is required to live in these houses for the academic year. A $100 deposit must accompany each housing application, and is refunded after check-in. Complete information and reservations can be obtained by writing to the Graduate Housing Office, Mail Code 105-20, California Institute of Technology, Pasadena, CA 91125 or at http://www.caltech.edu/housing.

The Institute also owns a limited number of apartments and single-family houses that are available for rental, on a lease basis, to married graduate students. Because of limited availability, there is a waiting list for these properties; priorities are assigned to various categories of students and dependents. For additional information and sign-up forms, contact the Graduate Housing Office, Mail Code 105-20, California Institute of Technology, Pasadena, CA 91125.

The Institute has one dormitory on campus providing single rooms for 29 graduate students. In September 1984, the Institute completed construction of an apartment complex, Catalina Central, that provides approximately 152 single rooms in four-bedroom furnished units. Catalina North, completed in September 1986, has 156 single rooms in two-bedroom furnished units. Catalina South, completed in September 1988, has 54 single rooms in two-bedroom furnished units, and 29 one-bedroom furnished units. These apartments are also available to married students with families. In addition, there are about 25 spaces for graduate students in Avery House, an innovative residential community of faculty, undergraduates, and graduate students completed in 1996 (see catalog section titled Student Life).

FINANCIAL ASSISTANCE

Caltech offers in each of its options a number of fellowships, tuition scholarships, and graduate assistantships. In general, tuition scholarships may be for full or partial tuition charges; assistantships provide stipends; and fellowships often provide both tuition scholarship awards and stipends. Graduate assistants are eligible to be considered for special tuition awards.

A request for financial assistance is included on the application for admission to graduate standing. These applications should
Graduate Scholarships, Fellowships, and Research Funds

The Institute offers a number of endowed fellowships and scholarships for tuition and/or stipends to graduate students of exceptional ability who wish to pursue advanced study and research.

In addition to the National Science Foundation, the Department of Health and Human Services, the Department of Energy, NASA, and the California State Graduate Fellowship program, gifts are received from other donors to support graduate study. A number of governmental units, industrial organizations, educational foundations, and private individuals have contributed funds for the support of fundamental research related to their interests and activities. These funds offer financial assistance to selected graduate students in the form of graduate research assistantships.

Loans

Several types of loans are available to graduate students. To qualify for any of these, a student must demonstrate financial need and must maintain satisfactory academic progress in the course of study for which he or she is enrolled. Application forms and further information are available in the graduate office. Loans are not available to first-year international students due to visa restrictions.

Graduate students receiving any form of financial aid from the Institute are required to report to the dean of graduate studies any financial aid from other sources. Students may be allowed to accept outside employment if the time commitment does not interfere with their graduate studies. However, the number of hours per week spent on outside employment must be reported to the dean of graduate studies.

Graduate Assistantships

Graduate assistants help with teaching, laboratory work, or research that affords them useful experience. Teaching assistantships are for up to 15 hours per week during the academic year and are devoted to preparation, grading, or consulting with students. Students may not, without advance permission from the dean of graduate studies, be a teaching assistant for a course in which they receive credit. Research assistantships are limited to less than 20 hours per week during the academic year and may be greater during the summer. Combined teaching and research assistantships are common. Stipends are based on four 12-week quarters and are normally paid monthly. Assistantships normally permit carrying a full graduate residence schedule also. Only teaching assistants with good oral English are allowed to teach sections.

Teaching assistants must familiarize themselves with Caltech’s policy on harassment (see page 52). Classes should foster academic achievement in a “hassle-free” environment. Teaching assistants should not attempt to date a student in their class, and should disqualify themselves from teaching a section in which a spouse or current partner is enrolled. Any questions should be referred to the dean of graduate studies.

Teaching and research obligations of graduate assistants shall not exceed 50 weeks per year, but may be less depending on departmental policy and the arrangements made by the adviser and the student. Graduate assistantship appointments include regular Institute holidays occurring during specified appointment periods. In addition, when necessary, graduate assistants may arrange for short-term medical disability leave (including maternity leave). Assistants should schedule their vacation and planned disability leaves with their adviser or option representative. Any questions should be referred to the dean of graduate studies.

Satisfactory Academic Progress

In order to continue receiving financial aid at Caltech, graduate students must maintain satisfactory academic progress toward completion of their degree. Continuity of registration must be maintained until all requirements for the degree being sought have been completed, with the exception of summer terms and authorized sabbaticals.

The Master of Science degree requires at least one academic year of residence at the Institute and 135 units of graduate work with a grade-point average of at least 1.9. Under normal circumstances a master’s degree requires a minimum of three academic terms (one year) and cannot take more than two years, without a petition approved by the dean of graduate studies.

The engineer’s degree must consist of advanced studies and research in the field appropriate to the degree desired. At least six terms (two years) of graduate residence are required with a minimum 1.9 overall grade-point average. The engineer’s degree cannot take more than three years to complete, without a petition approved by the dean of graduate studies.
Refund and Repayment Policy

Caltech has established an equitable refund policy for students who find it necessary to withdraw or take a sabbatical from the Institute.

Students who officially withdraw or take a sabbatical from the Institute during an academic term may receive a tuition refund (see pages 134–136). Students living in Caltech housing may also be eligible for a partial refund from the Housing Office.

When granting refunds to financial aid recipients or graduate assistants, it is Caltech’s policy to return the refund, in most cases, to the original account.

An overpayment or overaward occurs when a student receives more aid than he or she is eligible to receive. Therefore, the graduate office will compare actual costs to aid disbursed in accordance with federal guidelines. If aid disbursed exceeds costs, the student may be responsible for the overpayment. Any overpayment will be charged to the student on his or her student account. Additional information is available in the graduate office.

Students receiving financial aid from any source are expected to register for 36 units each term unless special arrangements have been made with the dean of graduate studies.

PRIZES

Charles D. Babcock Award

The Charles D. Babcock Award recognizes a student whose achievements in teaching (or other ways of assisting students) have made a significant contribution to the aeronautics department. The criteria for the award selection are as follows: The award can be made as unscheduled support for a graduate student associated with aeronautics, e.g., for travel to a technical meeting for professional advancement. All aeronautics-associated students are eligible, with preference given to those in the structures and solid mechanics group. The award may be made yearly, as merited. The timing of the award will be as special recognition warrants.

The Charles D. Babcock Award was established in 1992 in memory of Charles D. Babcock, who was professor of aeronautics and applied mechanics until 1987; he served aeronautics as option representative and the Institute as vice provost.

William F. Ballhaus Prize

A prize of $1,000 will be awarded for an outstanding doctoral dissertation in aeronautics, to be selected by the aeronautics faculty. This award is made possible by a gift from Dr. William F. Ballhaus, a California Institute of Technology alumnus, who received his Ph.D. degree in aeronautics in 1947.
Lawrence L. and Audrey W. Ferguson Prize
Awarded to the graduating Ph.D. candidate in biology who has produced the outstanding Ph.D. thesis for the past year.

Henry Ford II Scholar Awards
The Henry Ford II Scholar Awards are funded under an endowment provided by the Ford Motor Company Fund. Each award, up to $5,000, will be made annually either to the engineering student with the best academic record at the end of the third year of undergraduate study, or to the engineering student with the best first-year record in the graduate program. The chair of the Division of Engineering and Applied Science names the student to receive the award.

Graduate Dean's Award for Outstanding Community Service
This award is made annually to a Ph.D. candidate who, throughout his or her graduate years at the Institute, has made extraordinary contributions to the Institute and the community. The awardee should have demonstrated qualities of leadership and responsibility have been outstanding. The award consists of a cash award and a certificate.

Scott Russell Johnson Prize for Excellence in Graduate Study in Mathematics
Four prizes of $5000 will be given to continuing graduate students for excellence in one or more of the following: research, teaching, service, or leadership. The awardees are selected by the graduate faculty in consultation with the graduate dean. The award is made possible by a gift from Steve and Rosemary Johnson in memory of Scott Johnson, BS '83.

Scott Russell Johnson Graduate Dissertation Prize in Mathematics
A prize of $2000 is awarded for the best graduate dissertation in mathematics. The prize may be split between two students. The awardee should have demonstrated a high level of originality and excellence in their research. The award is made possible by a gift from Steve and Rosemary Johnson in memory of Scott Johnson, BS '83.

The Herbert Newby McCoy Award
A cash award is made annually to a graduate student in chemistry to acknowledge an “outstanding contribution to the science of chemistry.” The awardee is chosen by a faculty committee, based on solicited nominating packages, and the award-winning research is presented in a formal divisional seminar given by the awardee.

The McCoy award was established in 1965 as a result of a bequest of Mrs. Ethel Terry McCoy to honor her husband, who did pioneering work in the chemistry of rare earths and was associated with Caltech through collaboration with chemists Linus Pauling and Howard Lucas.
In working for a degree in aeronautics, a student may pursue major study in, for example, one of the following areas: physics of fluids, computational fluid mechanics, technical fluid mechanics, mechanics of materials, mechanics of fracture, computational solid mechanics, aeronautical engineering, and propulsion.

While research and course work in aeronautics at the Institute cover a very broad range of subjects, a choice of one of the above fields allows students to focus their activities while taking advantage of the flexibility offered by the breadth of interests of the aeronautics group. A student with an interest in energy-related subjects will find many suitable courses and research projects of particular use. Subjects of major importance in the efficient use of energy, such as turbulent mixing, drag reduction, and lightweight structures, have historically been the focus of research activity in the aeronautics option.

In consultation with his or her adviser, a student may design a program of study in one of the above fields, consisting of the fundamental courses prescribed in the regulations for the degree of Master of Science. Students are required to pass a qualifying examination in the second term of the year following completion of their M.S. studies, or, for students

Eleanor Searle Prize in Law, Politics, and Institutions
The Eleanor Searle Prize was established in 1999 by friends and colleagues to honor Eleanor Searle. The prize is awarded annually to an undergraduate or graduate student whose work in history or the social sciences exemplifies Eleanor Searle’s interests in the use of power, government, and law.

Ernest E. Sechler Memorial Award in Aeronautics
An award of $1,000 is made annually to an aeronautics student who has made the most significant contribution to the teaching and research efforts of the Graduate Aeronautical Laboratories of the California Institute of Technology (GALCIT), with preference given to students working in structural mechanics.

The Ernest E. Sechler Memorial Award in Aeronautics was established in 1980 in memory of Ernest E. Sechler, who was one of the first graduates of GALCIT and who then served as a GALCIT faculty member for 46 years. Throughout his career Sechler was the faculty adviser for aeronautics students. In addition, he made many contributions to structural mechanics in areas ranging from aeronautics to the utilization of energy resources.

John Stager Stemple Memorial Prize in Physics
A prize of $500 is awarded annually to a graduate student in physics for outstanding progress in research as demonstrated by an excellent performance on the oral Ph.D. candidacy exam. John S. Stemple was a Caltech physics graduate student when he died; a memorial fund was established from contributions made by the community of Falls Church, Virginia, John’s hometown.

Charles Wilts Prize
Awarded for outstanding independent research in electrical engineering leading to a Ph.D.

SPECIAL REGULATIONS OF GRADUATE OPTIONS

Aeronautics
Aims and Scope of Graduate Study in Aeronautics
The Institute offers graduate programs in aeronautics leading to the degrees of Master of Science, Aeronautical Engineer, and Doctor of Philosophy. The programs are designed to provide intense education in the foundations of the aeronautical sciences, with emphasis on research and the experimental method. Entering graduate students should have a thorough background in undergraduate mathematics, physics, and engineering science. Applicants for graduate study are asked to submit Graduate Record Examinations scores with their applications.

In order to pursue studies beyond the master’s degree and toward the degree of Aeronautical Engineer, a student has to select and be accepted by a research adviser. The research adviser may be the former course adviser or a different faculty member.

The research adviser and the student select a three-person committee. It is the responsibility of the student to initiate this selection process before the beginning of the post-master’s studies. It is also the student’s responsibility to have this committee meet three times during the last year of his or her residency before receiving the engineer’s degree.

Students wishing to pursue studies leading to the Ph.D. are required to pass a qualifying examination in the second term of the year following completion of their M.S. studies, or, for students...
Admission to More Advanced Degrees

Students wishing to pursue the more advanced degrees of Aeronautical Engineer or Ph.D. must file a petition to continue work toward the desired degree. Students registering for the engineer's degree may transfer to study for the Ph.D. upon satisfactory completion of the same qualifying examination required of those working for the Ph.D. However, once admitted to work for the Ph.D. degree, students are not normally permitted to register for work leading to the engineer's degree. All students working for the engineer's degree or the Ph.D. degree are expected to register for and attend one of the advanced seminars (Ae 208 abc or Ae/AM 209 abc).

Degree of Aeronautical Engineer

The degree of Aeronautical Engineer is considered to be a terminal degree for the student who desires advanced training more specialized than the master's degree permits, and with less emphasis on research than is appropriate for the Ph.D. degree.

Admission.

Students with a Master of Science degree equivalent to that given by the Institute may seek admission to work for the engineer's degree.

Program Requirements.

The degree of Aeronautical Engineer is awarded after satisfactory completion of at least 138 units of graduate work equivalent to the Master of Science program described above, plus at least 135 additional units of advanced graduate work. This latter program of study and research must consist of:

- not less than 60 units of research in aeronautics or jet propulsion (Ae 200 or JP 280);
- three units of an advanced seminar such as Ae 208 or Ae/AM 209; and
- satisfactory completion (with a grade of C or better, or Pass) of at least 27 units of aeronautics courses numbered Ae 200 or higher, or CE/Ae/AM 108, Ae/ME 120, and Ae/Ge/ME 160, excluding research and seminars.

A proposed program conforming to the above regulations must be approved by the student's adviser prior to registration for the first term of work toward the degree.

A thesis is required based on the research program and may consist of the results of a theoretical and/or experimental investigation or may be a comprehensive literature survey combined with a critical analysis of the state of the art in a particular field.

No student will be allowed to continue to work toward the degree of Aeronautical Engineer for more than six terms of graduate residence beyond the baccalaureate degree (not counting summer registrations) except by permission after petition to the aeronautics faculty.
A proposed program conforming to the above regulations must be approved by the student’s academic adviser prior to the first term of work toward the degree.

A thesis is required based on the research program and may consist of the results of a theoretical and/or experimental investigation or may be a comprehensive literature survey combined with a critical analysis of the state-of-the-art in a particular field. The student will have an advisory committee consisting of three academic faculty or, if appropriate, two academic faculty and one staff member from JPL or industry.

No student will be allowed to continue to work toward the degree of Aeronautical Engineer with Specialization in Spacecraft and Mission Design for more than six terms of graduate study beyond the baccalaureate degree (not counting summer registrations) except by permission after petition to the aeronautics faculty.

Degree of Doctor of Philosophy in Aeronautics

Admission. Students with a Master of Science degree equivalent to that given by the Institute may seek admission to work for the Ph.D. degree. In special cases students may be admitted to Ph.D. work without first obtaining the master's degree.

Qualifying Examination. Because of the broad spectrum in the backgrounds of graduate students entering the Ph.D. program in aeronautics, the student must first pass a qualifying examination to determine whether he or she is qualified to pursue problems typical of Ph.D. work. Emphasis in the qualifying examination is directed at determining if the student is properly prepared and qualified to undertake graduate research. The exams will cover the following subjects:

a. Fluid Mechanics
b. Solid Mechanics
c. Mathematics

The material covered in these examinations is at the same general level and breadth as covered in the corresponding M.S.-level courses. The examinations are offered during one week in the first half of the winter term, in the second year of graduate residence at the Institute.

A student is examined orally on all three of these topics. In the event of an unsatisfactory performance, the examining faculty members may permit a repeat examination in the appropriate topics. The repeat examination must be scheduled prior to finals week of the third term and must be completed before the end of June of the same year.

Candidacy. To be recommended for candidacy for the Ph.D. in aeronautics, the applicant must have satisfactorily completed at least 138 units of graduate work equivalent to the above Master of Science program and must pass one of the following, or its equivalent, with a grade of C or better:

• not less than 60 units of research in aeronautics or jet propulsion (Ae 200 or JP 280);
• three units of an advanced seminar such as Ae 208 or Ae/AM 209, or any other by permission of the aeronautics faculty responsible for this program;
• satisfactory completion of the course Ae 125 abc “Spacecraft Systems Engineering”;
• at least 27 units chosen from the following list:
 - JP 121 abc: Jet Propulsion Systems and Trajectories
 - EE 165: Introduction to Spacecraft Telecommunications
 - EE/Ge 157 ab: Introduction to the Physics of Remote Sensing
 - EE/Ge 158 abc: Application of Remote Sensing in the Field
 - Ge 167: Planetary Physics
 - Ge/Ay 103: Introduction to the Solar System
 - Ph 224 abc: Space Physics and Astronomy
 - CS/EE 181 abc: VLSI Design Laboratory
 - CDS 111: Applications of Control Technology
 - CDS 140: Introduction to Dynamics
 - CDS 212: Introduction to Modern Control

Students in this program will find access to JPL resources and guidance. Theses will be supervised by Caltech faculty and may be cosupervised by JPL staff.

Admission. Students with a Master of Science degree equivalent to that given by the Institute may seek admission to work for the degree of Aeronautical Engineer with Specialization in Spacecraft and Mission Design.

Program Requirements. The degree of Aeronautical Engineer with Specialization in Spacecraft and Mission Design is awarded after satisfactory completion of at least 138 units of graduate work equivalent to the Master of Science program described above, plus at least 135 additional units of advanced graduate work. This latter program of study and research must consist of:

1. not less than 60 units of research in aeronautics or jet propulsion (Ae 200 or JP 280);
2. three units of an advanced seminar such as Ae 208 or Ae/AM 209, or any other by permission of the aeronautics faculty responsible for this program;
3. satisfactory completion of the course Ae 125 abc “Spacecraft Systems Engineering”;
4. at least 27 units chosen from the following list:
 - JP 121 abc: Jet Propulsion Systems and Trajectories
 - EE 165: Introduction to Spacecraft Telecommunications
 - EE/Ge 157 ab: Introduction to the Physics of Remote Sensing
 - EE/Ge 158 abc: Application of Remote Sensing in the Field
 - Ge 167: Planetary Physics
 - Ge/Ay 103: Introduction to the Solar System
 - Ph 224 abc: Space Physics and Astronomy
 - CS/EE 181 abc: VLSI Design Laboratory
 - CDS 111: Applications of Control Technology
 - CDS 140: Introduction to Dynamics
 - CDS 212: Introduction to Modern Control

The general requirements for this degree are similar to those for the degree of Aeronautical Engineer. However, in this program, the student is choosing a broad area of specialization and must complete one additional required course (Ae 125). The total number of required courses is unchanged. This degree program is closely coordinated with the local spacecraft industry and the Jet Propulsion Laboratory. Many of the courses are taught by lecturers from JPL. Although the primary emphasis is on the design of spacecraft and missions for unmanned exploration of the solar system, the subjects covered apply to spacecraft quite generally. A primary intention of this program is that students will become firmly grounded in the fundamentals of integrating spacecraft design, propulsion systems, scientific instruments, communications, and mission design.
The research areas and interests of the applied and computational mathematics faculty cover a broad spectrum, including asymptotic and perturbation theory, computational fluid mechanics, computational electromagnetics, computational materials science, computational molecular biology, diffusion and transport processes, free surface flows, multiscale problems, and multiresolution analysis and image processing. As reflected by the faculty research activities, there is a strong emphasis on computational methods for solving challenging problems arising from engineering and scientific applications.

Reflecting the interdisciplinary nature of the program, several different groups, in addition to the applied and computational mathematics faculty, contribute to the teaching and supervision of research. Students in applied and computational mathematics are expected to combine their basic mathematical studies with deep involvement in some field of application. Basic general courses are listed specifically under applied and computational mathematics and these are to be supplemented, according to the student’s interest, from the whole range of Institute courses in specific areas of physics, biology, engineering, etc.

A regular colloquium provides the opportunity for visitors, faculty, and students to discuss current research.

Admission
Each new graduate student admitted to work for the Ph.D. in applied mathematics is given an informal interview on Thursday of the week preceding the beginning of instruction in the fall term. The purpose of this interview is to ascertain the preparation of the student and assist him or her in mapping out a course of study. The work of the student during the first year will usually include some independent reading and/or research.

Course Requirements
All ACM students are required to take a total of 18 quarter courses (or equivalent of 162 units) during their graduate study at Caltech. Among these 18 courses, the following core courses are required for all students during their graduate study at Caltech. These courses are ACM 101 abc, ACM 104, ACM 105, ACM 110, ACM 111, ACM 112, ACM 116, ACM 201 ab, ACM 210 ab, and an application elective course. The application elective course is selected, with the recommendation of the student’s adviser, from among a wide range of courses offered by an outside option within the Institute. Typically, students are expected to take ACM 101 abc, ACM 104, ACM 105, ACM 110, ACM 111, ACM 112, ACM 116, and an application elective course in their first year. In the second and third years, students are expected to take ACM 201 ab, ACM 210 ab, and a selection from ACM 113, ACM/Cs 114 ab, ACM 126 ab, ACM 151 ab, and CS 138 ab.
Students who have already taken some of the required courses may use them to satisfy the course requirements, even though the units may not be used to satisfy the total unit requirement for the Ph.D. degree. In addition, the student is required to enroll in ACM 290 (Applied and Computational Mathematics Colloquium) for each quarter that he or she is in residence.

Master's Degree in Applied and Computational Mathematics
Entering graduate students are normally admitted for the Ph.D. program. The master's degree may be awarded in exceptional cases. Of the 135 units of graduate work required by Institute regulations, at least 81 units of advanced graduate work should be in applied mathematics.

Degree of Doctor of Philosophy in Applied and Computational Mathematics

The Oral Candidacy Examination. In order to be recommended for candidacy the student must, in addition to satisfying the general Institute requirements, pass an oral candidacy examination administered by a faculty committee. This examination is given at the end of the first graduate year. It is based on the first-year work in the required courses described above. For a student who has already taken the required courses before coming to Caltech, the examination can also be based on the substituted courses taken by the student in the first year. The examination will also cover any independent study carried out by the student during his or her first graduate year.

Advising and Thesis Supervision. Upon passing the oral candidacy examination (usually by the end of the second year), the student is required to choose a thesis supervisor who assumes the major responsibility in supervising the Ph.D. thesis. At the same time, an advising committee consisting of three faculty members is formed to help oversee the advising process. The student's supervisor is part of this committee, but does not chair the committee. The student is encouraged to meet with the committee members informally for advice or suggestions. Joint supervision between two faculty members is also possible as is seeking a thesis adviser outside the core applied and computational mathematics option, although in this case it is mandatory that an applied mathematics faculty member be nominated as a co-adviser.

Should a disagreement of any kind occur between the student and his or her supervisor as regards the timely completion of the thesis, the student is encouraged to direct his or her concerns to the committee chair. If this is not workable, the student should feel free to consult with the option representative, the executive officer, or an applied and computational mathematics faculty member of the student's choice. If the student's concerns cannot be resolved through consultation with these individuals, the student is encour-aged to pursue resolution of his or her concerns through other channels as outlined in the General Information section “Student Grievance Procedure” in this catalog.

Submission of Thesis. On or before the first Monday in April of the year in which the degree is to be conferred, a candidate for the degree of Ph.D. in applied and computational mathematics must deliver a typewritten or printed copy of the completed thesis to his or her research supervisor.

Final Examination. The final oral examination is held within four weeks after the submission of the thesis. The examination covers the thesis and related areas.

Subject Minor in Applied and Computational Mathematics
The group of courses must differ markedly from the major subject of study and must include 54 units of advanced courses in applied mathematics. These advanced courses do not include the basic courses listed under ACM, from ACM 100 to ACM 112.

Subject Minor in Applied Computation
The subject minor in applied computation is administered jointly by the applied mathematics and computer science options, and is open to graduate students in all options. This minor emphasizes the mathematical, numerical, algorithmic, and programming methods underlying the application of computation—particularly parallel and concurrent computation—to research in science and engineering.

To pursue the applied computation minor, applied mathematics students should seek a minor adviser in computer science; computer science students should seek a minor adviser in applied mathematics; and students in other options should seek a minor adviser in either applied mathematics or computer science. The minor adviser and the student formulate a program of courses individually tailored to the student's background and needs, with the objective that the student achieve a level of competence in specific subjects relevant to applied computation that is comparable to that of candidacy-level graduate students in applied mathematics and computer science in these same subjects. These subjects include at minimum mathematical and numerical methods, algorithms, and advanced programming, and may also include other areas of particular relevance to a student's research area, such as specialized mathematical methods, computer graphics, simulation, or computer-aided design.

Each proposed program must be approved by a faculty committee composed of the option representatives of applied mathematics and computer science, and one faculty member appointed by the chair of each division from which students are enrolled in the program. The number of course units is variable, with a minimum of 45 units of graduate-level courses. The satisfaction of the intended level of competence is assured by the student's passing an oral examination.
Applied Mechanics

Master’s Degree in Applied Mechanics
Study for the degree of Master of Science in applied mechanics ordinarily will consist of three terms of courses numbered 100 or above totaling at least 138 units. The program must include E 150 abc and one course from among the following: ACM 100 abc, AM 125 abc, or a substitute, acceptable to the faculty in applied mechanics. Note that ACM 100 may not be used to fulfill the advanced mathematics requirement for the Ph.D. in applied mechanics. A minimum of 34 units of graduate-level courses must be selected from courses in AM, ACM, Ae, JP, CE, and ME. The program must be approved by the student’s adviser and the option representative for applied mechanics.

Students admitted for study toward a master’s degree but interested in pursuing subsequent study toward a Ph.D. degree should also read the section below concerning this degree.

Degree of Doctor of Philosophy in Applied Mechanics
Study and research programs for the Ph.D. degree are individually planned to fit the interests and background of the student. A comprehensive research project leading to a thesis is required.

Advising and Thesis Supervision. A counseling committee of three faculty members is appointed for each student upon his or her admission to work toward a Ph.D. degree in applied mechanics, in order to advise the student on a suitable course program. The committee member closest to the student’s current interests acts as committee chair and interim adviser until this responsibility is assumed by the dissertation supervisor. This committee must meet during the first and third terms of each year of Ph.D. study.

The major professor and thesis advisory committee provide the majority of mentoring to the student. In addition, the option representative and other members of the faculty are always available to provide advice and mentoring on any aspect of research, progress toward the Ph.D., future careers, and other aspects of life in graduate school and as a professional scientist.

Admission to or Continuation in Ph.D. Status. All new students admitted for study toward the Ph.D. degree in applied mechanics, and all other graduate students wishing to become eligible for study toward this degree, are required to take a short oral examination early in the third term of their first year of graduate study at the Institute. This examination, which is conducted by the special joint faculty committee, is confined to elementary topics.

Admission to Candidacy. To be recommended for candidacy for the Ph.D. degree in applied mechanics, the student must, in addition to the general Institute requirements, meet the following:

- Complete 27 units of research.
- Complete at least 108 units of advanced courses arranged by the student in conference with his or her adviser and approved by the faculty in applied mechanics. If the student chooses to take a subject minor, the units so taken may be included in the total of 108, subject to the approval of the faculty in applied mechanics.
- Pass with a grade of at least C an additional 27 units of course work in advanced mathematics, such as AM 125 abc, Ph 129 abc, ACM 101 abc, ACM 103, ACM 104, or a substitute, acceptable to the faculty in applied mechanics. The requirement in mathematics shall be in addition to the second requirement above and shall not be counted toward a minor.
- Pass the oral candidacy examination. If the student has a minor, an examination on the subject of that program may be included at the request of the discipline offering the minor. The student must take the oral candidacy examination before the end of the second academic year of graduate residence at the Institute.

Thesis and Final Examination. A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate’s knowledge in his or her specialized field of research.

Subject Minor in Applied Mechanics
A student majoring in another branch of engineering, or another division of the Institute, may elect applied mechanics as a subject minor, with the approval of the faculty in applied mechanics and the faculty in his or her major field. The group of courses shall differ markedly from the major subject of study or research, and shall consist of at least 54 units of courses approved by the faculty in applied mechanics. The student must pass an oral examination that is separate from the examination in the student’s major.

Applied Physics

Aims and Scope of the Graduate Program in Applied Physics
The graduate program in applied physics is regarded by its faculty to be a doctoral program. Students whose goal is the master’s degree are admitted rarely, and only in special situations. A professional in the field should be able to cope with any physics problem that confronts him or her in a technological context. Graduate study in applied physics should therefore cover considerable ground with the least possible loss of depth. Independent and original research is essential, but not for the purpose of acquiring advanced knowledge in a narrow specialty. In today’s rapidly changing technology, an applied physicist should not expect to remain precisely within the field of thesis research; the training received should enable him or her to contribute easily to related fields of physics.
Competence in research must be demonstrated as follows:

- The student must have a doctoral thesis adviser and must have completed 18 units of research with this adviser no later than the beginning of the student's third year of residence.

The Minor: By its nature, applied physics spans a variety of disciplines, and the major requirements reflect this. A minor is not required of students majoring in applied physics. Students are, however, encouraged to take advanced courses appropriate to their particular interests.

Thesis and Final Examination. The candidate is required to take a final oral examination covering his or her doctoral thesis and its significance and relation to his or her major field. This final examination will be given not less than two weeks after the doctoral thesis has been presented in final form, and prior to its approval. This examination must be taken at least four weeks before the commencement at which the degree is to be granted.

Subject Minor in Applied Physics

Graduate students electing a subject minor in applied physics must complete 54 units of graduate courses in applied physics. The courses may be selected from any of the applied physics courses with numbers greater than 100, excluding APh 110 and APh 200.

The student's proposed program must be approved by the Applied Physics Graduate Studies Committee. The committee will examine the course program to determine which of the following areas of interest in applied physics it includes:

Group A: Ae/APh/CE/ME 101, APh 105, APh 114, APh/EE 130, APh/EE 132, APh 156, APh/EE 183, APh 190, APh 200, APh 125, Ph 129, ACM 101, ACM 104, ACM 105, AM 176, ChE 103, ChE 165, Ch 120, Ch 125, Ge 101, Ge 102, Ge/Ay 103, Ge 104, and Ge 260. As a result of consultation with his or her adviser, a student may be required to take ACM 100, depending on his or her previous experience.

Astronomy

Aims and Scope of the Graduate Program in Astronomy

The primary aim of the graduate astronomy program at Caltech is to prepare students for creative and productive careers in astrophysical research. The astronomy program emphasizes independent research by graduate students, who are free to pursue study in virtually any area of astrophysics. The opportunity exists to take advantage of the many observational facilities owned and operated by Caltech.
Admission
Incoming students should have a strong background in physics, and although a good preparation in astronomy is helpful, this is not required for admission to the graduate program. All applicants, including those from foreign countries, are requested to submit Graduate Record Examination scores for verbal and quantitative aptitude tests and the advanced test in physics.

Placement Examination
Each student admitted to work for an advanced degree in astronomy is required to take the placement examination in physics (see Placement Examinations, page 302) covering material equivalent to Ph 106, Ph 125, and Ph 129. This examination will test whether the student's background is sufficiently strong to permit advanced study in astronomy. If it is not, students will be required to pass the appropriate courses.

Master's Degree in Astronomy
The choice of astronomy and other science elective courses must be approved by the department. At least 36 units of the 135 units must be selected from Ay 121, Ay 122, Ay 123, Ay 124, Ay 125, Ay 126, and Ay 127. The courses Ph 106, Ph 125, and Ph 129 may be required of those students whose previous training in some of these subjects proves to be insufficient. At least 27 units of advanced courses in fields other than astronomy are required.

Degree of Doctor of Philosophy in Astronomy
Astronomy Program. The student's proposed overall program of study must be approved by the department during the first year. The following are required of all students for candidacy: Ay 121, Ay 122, Ay 123, Ay 124, Ay 125, Ay 126, and Ay 127. The student should take these courses in the first year. Also required are research and reading projects, starting in the second term of the first academic year. Credit for this work will be given under courses Ay 142 and Ay 143.

Physics Program. The student's program during the first two years of graduate study should include at least 36 units of physics courses, exclusive of Ph 106, Ph 125, and Ph 129. Cross-listed courses (e.g., Ph/Ay) in general do not count towards the physics units requirement, unless specifically allowed by prior consultation between the student, the instructor, and the student's option representative. This requirement may be reduced on written approval of the department for students who take substantial numbers of units in Ph 106, Ph 125 or APh 125, and Ph 129. Students in radio astronomy may substitute an advanced course in electrical engineering or applied mechanics for up to nine units of the required 36 units of physics. Theoretical astrophysics students should include at least 54 units of physics courses in their programs.

Students in planetary physics may substitute appropriate advanced courses in geophysics and geochemistry. All the above courses must be passed with a grade of C or better, or a P upon prior written permission from the option representative to take the course pass/fail.

Other Requirements. An ability to explain concepts and to verbally present one's work is vital to a successful career in research and/or teaching. To this end, all graduate students in astronomy are required to serve as teaching assistants during their second year, and to make oral presentations as part of the course Ay 141, required of all students in their second year and all subsequent years.

The Minor. It is recommended that students take a subject minor in physics. Other fields in which subject minors are taken include geology or engineering, depending on the student's field of specialization.

Language Requirement. Although the department believes that knowledge of foreign languages is generally useful, there is no formal foreign-language requirement. However, graduate students for whom English is a second language will be required to demonstrate fluency in oral and written English at the time of their candidacy exam. The examining committee will administer a test when this is deemed necessary.

Admission to Candidacy. To be recommended for candidacy for the Ph.D. degree in astronomy, a student must, in addition to meeting the general Institute requirements,
- complete satisfactorily 36 units of research (Ay 142) or reading (Ay 143);
- pass with a grade of C or better, or by special examination, Ay 121, Ay 122, Ay 123, Ay 124, Ay 125, Ay 126, and Ay 127;
- pass a written examination (see below);
- pass an oral examination (see below);
- complete the physics course requirement (see above);
- satisfy a teaching requirement (at least one term as a GTA—see below);
- fulfill the language requirement (see above); and
- be accepted for thesis research by a member of the faculty, or, by special arrangement, a staff member of the Observatories of the Carnegie Institution of Washington.

The written (preliminary) examination will be given in October of the second year. It will cover material from the required astronomy courses, and will consist of two three-hour papers. The results of the examination will be discussed and decided by the faculty. At the discretion of the faculty, a student who has failed the written exam may be offered a second opportunity, which may involve requirements on retaking courses or a second examination. To continue to candidacy, these requirements must be successfully met by
Typical timeline:
 Year 1: Ay 121–127; begin physics course requirements. Begin research.
 Year 2: October—written exam on Ay 121–127. Research projects; select thesis and adviser. Fulfill teaching requirement. Complete 36 units of physics (54 for theorists); optional advanced astronomy courses. Ay 141.
 Year 3: Take oral candidacy exam on thesis before end of first term. Annual report from student and adviser. Ay 141.
 Year 4: Annual report from student and adviser. Ay 141.

Subject Minor in Astronomy
The program for a subject minor in astronomy must be approved by the department before admission to candidacy. In addition to general Institute requirements, the student must complete satisfactorily, with a grade of C or better, 45 units in advanced courses in astronomy.

Biochemistry and Molecular Biophysics
Aims and Scope of Graduate Study in Biochemistry and Molecular Biophysics
An integrated approach to graduate study in biochemistry and molecular biophysics has been organized primarily by the Division of Biology and the Division of Chemistry and Chemical Engineering. The curriculum is designed to provide a broad background in protein biochemistry, structural biology, and molecular genetics, in addition to an appropriate depth of knowledge in the field selected for the Ph.D. thesis research.

Admission
The option in biochemistry and molecular biophysics is open to students with undergraduate degrees in biochemistry, biology, chemistry, biophysics, and related areas. All applicants for admission, including those from foreign countries, are required to submit the verbal, quantitative, and analytical scores for the Graduate Record Examination and are also strongly urged to submit the results of an advanced test in a scientific field. Applicants whose native language is not English are required to submit results of the TOEFL exam, and, after admission, are required to satisfy the English language requirements of the Institute.
Aims and Scope of Graduate Study in Bioengineering

The bioengineering option at Caltech is designed for students interested in subjects that form the core of the new interdisciplinary science of bioengineering. These branches of science provide the basis for the growth of modern technology. Students may choose biology, chemistry, physics, and applied mathematics as their minor subjects and choose a thesis adviser within the Divisions of Engineering and Applied Science, Biology, or Chemistry and Chemical Engineering.

Master's Degree in Bioengineering

Students are not normally admitted to work towards the M.S. degree. In special circumstances, the M.S. degree may be awarded, provided Institute requirements are met. In general, the degree is not conferred until the end of the second year of residence.

Degree of Doctor of Philosophy in Bioengineering

Admission to Candidacy.

To be recommended for candidacy for the Ph.D. degree in bioengineering, the student must, in addition to meeting the general Institute requirements, do the following:

- Complete, with a grade of at least C, a one-year advanced course sequence in mathematics, chosen from the following options:
 - ACM 100 abc
 - ACM 101 abc
 - AM 125 abc

- Complete a one-year core bioengineering course sequence: BE 200 abc (36 units).

- Complete a one-year course sequence in biochemistry and molecular genetics, chosen from the following options:
 - Bi/Ch 110, Bi/Ch 111, and Bi/Ch 113;
 - BMB/Bi/Ch 170, BMB 176, and BMB 178.

- Complete a one-year course sequence in mechanics, chosen from the following options:
 - Ph 106 abc or Ph 127 abc;
 - Aph 105 abc;
 - Ae/APh/CE/ME 101 abc;
 - ChE 103 abc;
 - ChE 151 ab and Ae/APh/CE/ME 101c, or ChE 103 c;
 - AM 151 abc.

- Complete an additional 24 units of advanced courses in science and engineering as arranged with an adviser. Recommended courses include ChE/Ch 164, Ph/Bi 103b, CNS/Ph 175, Ph/EE 118, Ay/Pb 145.

- Pass an oral qualifying examination on the major subject at the beginning of the second year of residency in the program. This examination will be on the aforementioned mandatory subject requirements. If the student has a subject
Advising and Thesis Supervision
An advisory committee will be constituted for each student, to provide consultation and advice throughout the period of study until admission to candidacy. Each advisory committee will consist of four faculty members, including a student's current research supervisor. The chair is a faculty member other than the research supervisor. The composition of the committee will be adjusted as necessary if the student changes research supervisors or areas of interest. Each student meets with his or her advisory committee at the time of beginning work in the division, to formulate a plan of study; and at other times when problems arise or advice is needed.

The major professor and thesis advisory committee provide the majority of mentoring to the student. In addition, the option representative and other members of the faculty are always available to provide advice and mentoring on any aspect of research, progress toward the Ph.D., future careers, and other aspects of life in graduate school and as a professional scientist.

Teaching Requirements for Graduate Students
All students must acquire teaching experience.
Laboratory Rotations
Prior to choosing a laboratory or laboratories in which to pursue doctoral research, students rotate in two or more laboratories. These rotations serve to expose students to different research problems, strategies, and styles, as well as the facilities available in other laboratories.

BioLunch
Students present their research every other year at BioLunch, a weekly seminar for biological science researchers at Caltech. This seminar—along with the almost daily research seminars by visiting scientists, and at laboratory group meetings, during seminar courses, and presentations at national and international scientific meetings—provides students an opportunity to develop a sophisticated understanding of biological research and to hone communication skills.

Master’s Degree in Biology
The biology division does not admit students for work toward the M.S. degree. In special circumstances the M.S. degree may be awarded, provided Institute requirements are met. In general the degree is not conferred until the end of the second year of residence. The degree does not designate any of the disciplines of the division, but is an M.S. in biology. The 135 units required by the Institute must include Bi 250 abc.

Degree of Doctor of Philosophy in Biology

Major Subjects of Specialization. A student may pursue major work leading to the doctoral degree in any of the following subjects:

- Biotechnology
- Cellular Biology and Biophysics
- Cellular and Molecular Neurobiology
- Developmental Biology
- Genetics
- Immunology
- Integrative Neurobiology
- Molecular Biology and Biochemistry

At graduation, a student may choose whether the degree is to be awarded in biology or in the selected major subject. As part of their Ph.D. program, students may complete a minor in another graduate option, in accordance with the regulations of that option. Students should consult with their advisory committee in planning such a program.

Coursework. A one-year course (Bi 250 abc) covering the breadth of fields represented in biology at Caltech is required of all biology graduate students.

Dual Major in Biotechnology. Students who wish their Ph.D. education to emphasize the development of new techniques and instruments for studying fundamental problems of biology may elect a dual major, combining biotechnology with one of the major subjects of specialization listed in the preceding paragraph. A significant component of the thesis research will be the development of an innovative technique, method of analysis, or instrument. It will also include application of the new technology to a significant biological problem. In preparation for this research, studies in biotechnology may involve significant work outside of biology, in fields such as computer science, chemistry, engineering, and applied mathematics.

Admission to Candidacy. To be recommended by the Division of Biology for admission to candidacy for the doctor's degree, the student must have demonstrated the ability to carry out original research and have passed, with a grade of B or better, the candidacy examination in the major subject and one or two minor subjects from the list of major subjects of specialization. Students with a dual major in biotechnology must pass the candidacy examination in the major subject (omitting the normal minor subject or subjects), and a second examination covering knowledge fundamental to the particular work in biotechnology that is proposed by the student. In addition, all students will be expected to make an oral defense to their thesis advisory committee of a written research proposal, on the topic of their anticipated thesis project. This defense will occur 6 to 9 months following passage of the candidacy examination.

Thesis Committee. Before admission to candidacy, a thesis advisory committee is appointed for each student by the chair of the division upon consultation with the student and the major professor. This committee will consist of the student’s major professor as chair and four other appropriate members of the faculty. The thesis committee will meet with the student before admission to candidacy to certify that the student has demonstrated the ability to carry out independent research, and at regular intervals thereafter to review the progress of the thesis program. This committee will, with the approval of the dean of graduate studies, also serve as the thesis examination committee (see below).

Thesis and Final Examination. Two weeks after copies of the thesis are provided to the examination committee, the candidate collects the copies and comments for correction. At this time, the date for the final examination is set at the discretion of the major professor and the division chair, to allow as much time as necessary for such matters as public announcement of the examination in the Institute calendar, thesis correction, preparation of publications, and checking out and ordering of the student’s laboratory space. The final oral examination covers principally the work of the thesis, and according to Institute regulations must be held at least two weeks before the degree is conferred. Two copies of the thesis are required of the student for the Institute library. A third copy is required for the division library.
Additional Interdisciplinary Opportunities. A number of emerging fields stem from highly interdisciplinary areas of research, and students interested in biotechnology, geobiology, and computational molecular and cell biology will find additional graduate opportunities within graduate options including biochemistry and molecular biophysics, chemistry, chemical engineering, environmental science and engineering, computer science, computation and neural systems, and geological and planetary sciences.

Caltech-UCLA Medical Scientist Training Program (MSTP)
A joint program between Caltech and the UCLA Medical School has been established for the granting of the the M.D./Ph.D. degree. Students do their preclinical and clinical work at UCLA, and their Ph.D. work with any member of the Caltech faculty, including the biology, chemistry, and engineering and applied science divisions.

Admission to this joint program is made through the usual UCLA MSTP process, checking a box indicating interest in the Caltech option. A maximum of two students per year will be accepted into the joint program. The M.D. degree would be from UCLA and the Ph.D. would be awarded by Caltech. Ph.D. studies involving collaborations between laboratories at both institutions could lead to a joint degree with both schools being cited.

The current director of the UCLA MSTP is Professor Stanley Korenman, and Caltech Professor Paul H. Patterson is the associate director. For more information, see http://www.medsch.ucla.edu/mstp/.

Caltech-USC M.D./Ph.D. Program
A joint program between Caltech and the USC (Keck) Medical School has been established for the granting of the M.D./Ph.D. degree. Students do their preclinical and clinical work at USC, and their Ph.D. work with any member of the Caltech faculty.

Admission to this joint program is made through the usual USC process, checking a box indicating interest in the Caltech option. A maximum of two students per year will be accepted into the joint program. The M.D. degree would be from USC and the Ph.D. would be awarded by Caltech.

The current Director of the USC M.D./Ph.D. program is Dr. Stephen Ryan, and Caltech Professor Paul H. Patterson is the Associate Director. For more information, see http://www.usc.edu/schools/medicine/education/MDPhD_Program/.

Minor in Biology
A student majoring in another division of the Institute may, with the approval of the biology division, elect a subject minor in any of the subjects listed above under major subjects of specialization. Requirements for such a minor are determined by the faculty committee designated for each subject. A minor program in biology is also available to students of other divisions. Such a program shall consist of 45 units of upper division course work in the biology division, with each course passed with a grade of C or better. Approval of each program must be obtained from the biology graduate option representative. A student majoring in another division who elects a subject minor in biology may, if desired, arrange to have the minor designated as biology, rather than with the name of the specific minor subject.

Chemical Engineering

Aims and Scope of Graduate Study in Chemical Engineering
The general objective of the graduate work in chemical engineering is to produce individuals who are exceptionally well trained to apply mathematics; the physical, chemical, and biological sciences; and engineering to the understanding of systems involving chemical reactions and transport phenomena and to the development of new processes and materials. The program also strives to develop in each student self-reliance, creativity, professional ethics, and an appreciation of the societal impact of chemical engineering and the importance of continuing intellectual growth.

Admission
It is expected that each applicant for graduate study in chemical engineering will have studied mathematics, physics, chemistry, and chemical engineering to the extent that these subjects are covered in the required undergraduate courses at Caltech. In case the applicant's training is not equivalent, admission may be granted but the option may prescribe additional work in these subjects before recommending him or her as a candidate for a degree.

Master’s Degree in Chemical Engineering

Course Requirements. At least 135 units of course work must be completed in order to satisfy the Institute requirements. These units must include ChE 151 ab, ChE 152, ChE 165, 18 additional units of advanced courses in chemical engineering, 27 units of science or engineering electives, and 18 units of general electives. Finally, the M.S. requirements include at least 27 units of research, ChE 280, which represent two terms of research under the supervision of a chemical engineering faculty member or a two-term industrial research or development project performed with a member of the faculty in cooperation with professional staff at a local industrial laboratory. At least three weeks before the end of the final term of residence, a research report on the work performed under ChE 280 must be submitted to a designated member of the faculty, who will ask that it be read and approved by two additional members of the faculty. In addition, the fulfillment of the research report requirement must be signed off by a designated faculty member on the M.S. candidacy form and a final copy of the
Degree of Doctor of Philosophy in Chemical Engineering
The work leading to the Ph.D. degree prepares students for careers in universities and in the research laboratories of industry and government. Usually the first year of graduate work is principally devoted to course work in chemical engineering and related subjects. Time is also devoted during this period to the choice and initiation of a research project. During the second year the student is expected to spend at least half time on research, and to complete the course work and candidacy requirements.

Admission. Upon arrival at Caltech, each prospective Ph.D. student will meet in consultation with members of the faculty so that they may evaluate the level of the student’s preparation with respect to that expected at the Ph.D. level in the areas of kinetics, thermodynamics, and transport phenomena. These consultations are held to help the student set up a course program for the first year of study. A written copy of the recommendations will be entered into each student’s permanent file.

Research Adviser. During the first term, the faculty meets with the first-year grad students to propose topics for Ph.D. research. Following these meetings, the students are expected to meet individually with the various faculty members to discuss proposed research and generally obtain information for choosing a research adviser. At the end of the first term, each student is required to submit three faculty names, listed in order of preference. Every possible effort will be made to accommodate the student’s first choice, subject to an opening in the desired research group, availability of necessary funding, etc. The final decision will be made by the chemical engineering faculty in consultation with the students.

Oral Qualifying Exam. Each student is required to take a subject oral qualifying examination at the beginning of the second quarter in residence, the purpose of which is to examine expertise in kinetics, thermodynamics, and transport phenomena. The intended level of the exam is approximately that of the corresponding undergraduate courses at Caltech. Students who fail one or more of the three subjects may be permitted, by approval of the chemical engineering faculty, to repeat the examination on the failed subject immediately after the spring term. The format and topics of the examination are distributed to the first-year students at the beginning of the fall quarter.

Course Requirements. Students are required to take ChE 151 ab, ChE 152, ChE/Ch 164, ChE 165, and an additional course from a designated list. Each student is required to complete either a subject minor, or a general program of courses outside chemical engineering consisting of at least 54 units. The choice of the 54 units is subject to certain guidelines and restrictions included in the graduate studies brochure of the option. The general program of courses must be approved in advance by the option representative. It is intended that the courses chosen should constitute some integrated program of study rather than a randomly chosen collection of courses outside chemical engineering. Within these guidelines, the only course specifically excluded is research in another option. A grade of C or better is required in any course. The requirements for a subject minor in any option are listed in this catalog.

Candidacy Report/Examination. Before the end of the spring quarter of the second year of residence, each student must submit a written progress report on his or her research for approval by a specially constituted candidacy committee consisting of faculty members familiar with his or her general area of research. An oral examination is subsequently held by this committee to evaluate the student’s ability to carry out research at the Ph.D. level. A student who fails to satisfy the candidacy requirements by the end of the second year in graduate residence will not be allowed to register in a subsequent term except by special permission of the option and the dean of graduate studies.

Admission to Candidacy. To be admitted to candidacy, the student must have passed the qualifying and candidacy examinations, must have had the candidacy report approved, and must have submitted an approved list of courses already taken or to be taken.

Thesis Review Committee. After a student passes the second-year candidacy exam, a faculty committee known as the thesis review committee will be appointed to review periodically the student’s progress. Usually, the thesis review committee will include members of the candidacy committee, and will be appointed by the option representative based upon the student’s recommendations. This committee will meet with the student before fall registration each year, either as a group or individually, to review progress, suggest improvements in research, etc. In order to expedite the review, the student should submit a two or three page concise outline of progress and of proposed future research to each member of his or her committee before the annual review meeting.

Thesis and Final Examination. See page 229 for regulations concerning theses and final examinations. A copy of the corrected thesis is to be submitted to the chemical engineering graduate secretary for the chemical engineering library.

The final examination will include the candidate’s oral presentation and defense of his or her Ph.D. thesis.
Soon after a new graduate student arrives in the laboratories, he or she attends a series of orientation seminars that introduce students to the active research interests of the staff. The seminars cover fields such as biology, physics, geology, chemical engineering, and environmental science and engineering science are open and encouraged.

An extensive program of seminars will enable students to hear of and discuss notable work in chemical physics, organic chemistry, inorganic chemistry and electrochemistry, materials science, and biochemistry and molecular biophysics. Graduate students are also encouraged to attend seminars in other divisions.

Course Program

A student is required to complete at least 36 units of course work in science or engineering. These courses may be either required or chosen from a list provided by the faculty and approved by the Graduate Studies Committee. Alternatively, a student may complete a subject minor in another option, the course requirements being set by that option.

Master’s Degree in Chemistry

Students are not ordinarily admitted to graduate work leading to an M.S. degree. Under special circumstances, and with prior approval of the Graduate Study Committee, a master’s degree can be obtained. All master’s programs for the degree in chemistry must include at least 40 units of chemical research and at least 30 units of advanced courses in science. The remaining electives may be satisfied by advanced work in any area of mathematics, science, engineering, or the humanities, or by chemical research. Two copies of a satisfactory thesis describing this research, including a one-page digest or summary of the main results obtained, must be submitted to the divisional graduate secretaries at least 10 days before the degree is to be conferred. In addition, the fulfillment of the thesis requirement must be signed off by a designated faculty member.

Subject Minor in Chemical Engineering

Graduate students electing a subject minor in chemical engineering must complete 54 units of graduate courses in chemical engineering that are approved by the chemical engineering faculty. The 54 units will consist of no more than 18 units from ChE 101, 103 abc, 105, and 110 ab, and at least 36 units from ChE 151 ab, ChE 152, ChE/Ch 164, and ChE 165, and a list of chemical engineering courses provided by the option representative. A 3.0 GPA is required for the courses taken.

Graduate Studies Adviser, Option Representative, and Chemical Engineering Graduate Studies Committee. During graduate studies the students will interact with several members of the chemical engineering faculty. The most intensive interaction will be with the research adviser, who will advise on all aspects of Ph.D. research and coursework and will approve various formal requirements. They will also interact with the members of the thesis review committee, as discussed earlier. In addition, they will interact with the option representative and the graduate studies adviser. During the first year, the graduate studies adviser will advise the students about choice of research adviser, choice of courses, and Ph.D. qualifying exams. The option representative is responsible for GRA (graduate research assistantship) or GTA (graduate teaching assistantship) assignments, beyond the first year, and for approval of the Candidacy and Thesis Review Committees and other formal requirements for the M.S. and Ph.D. degrees. Students may contact either of these two faculty members regarding any questions or problems. In a case where the relationship between a student and his or her research adviser becomes strained and the student desires advice or help from other faculty, he or she should consult with the Chemical Engineering Grad Studies Committee, consisting of the option representative, the graduate studies adviser, and the option executive officer.

Additional Information. Additional information about graduate study requirements and procedures is provided in the bulletin “Graduate Programs in Chemical Engineering,” distributed annually to first-year chemical engineering graduate students.

Chemistry

Aims and Scope of Graduate Study in Chemistry

The graduate program in chemistry emphasizes research. This emphasis reflects the Institute’s traditional leadership in chemical research and the conviction that has permeated the Division of Chemistry and Chemical Engineering from its founding, that participation in original research is the best way to awaken, develop, and give direction to creativity.
member on the M.S. candidacy form and a final copy of the thesis submitted to the Office of the Dean of Graduate Studies no later than two weeks before the degree is to be conferred. The copies of the thesis should be prepared according to the directions formulated by the dean of graduate studies and should be accompanied by a statement approving the thesis, signed by the staff member directing the research and by the chair of the Chemistry Graduate Study Committee.

Degree of Doctor of Philosophy in Chemistry

Candidacy. To be recommended for candidacy for the doctor's degree in chemistry, in addition to demonstrating an understanding and knowledge of the fundamentals of chemistry, a student must give satisfactory evidence of proficiency at a high level in the primary field of interest, as approved by the division. This is accomplished by an oral candidacy examination, which must be held during or before the fifth term of graduate residence (excluding summer terms). The candidacy committee shall consist of three members of the chemistry faculty. The committee should be considered as a resource for the student for the remainder of his or her studies. At the candidacy examination a student is asked to demonstrate scientific and professional competence and promise by discussing a research report and propositions as described below.

The research report should describe progress and accomplishments to date and plans for future research. Two original research propositions, or brief scientific theses, must accompany the report, and at least one must be well removed from the student's field of research. These propositions should reflect his or her breadth of familiarity with the literature, originality, and ability to pose and analyze suitable scientific research problems. The research report and propositions must be in the hands of the examining committee one week before the examination.

The result of the candidacy examination may be either (a) pass, (b) fail, or (c) conditional. Conditional status is granted when the committee decides that deficiencies in a student's research report, propositions, or overall progress can be remedied in a specific and relatively brief period of time. In order to change conditional to pass status, the student must correct the indicated deficiencies or in some cases schedule a new examination the following term. He or she must be admitted to candidacy at least three terms before the final oral examination. A student cannot continue in graduate work in chemistry (nor can financial assistance be continued) past the end of the sixth term of residence without being admitted to candidacy, except by petitioning the division for special permission. This permission, to be requested by a petition submitted to the Graduate Study Committee stating a proposed timetable for correction of deficiencies, must be submitted before registration for each subsequent term (including the summer following the sixth term of residence) until admission to candidacy is achieved.

Language Requirement. There is no formal foreign language requirement for the Ph.D. in chemistry. However, the division believes strongly in the professional importance to chemists of a knowledge of foreign languages and encourages their study prior to graduate work or while in graduate school.

Thesis Research Progress. Before the thirteenth term of graduate residence (excluding summer terms), the student will be expected to demonstrate satisfactory progress in the course of thesis research. To this end an informal meeting with the Ph.D. thesis committee will be held, at which time the student will present an oral summary of research completed to date as well as an outline of future research plans. The thesis committee will generally consist of the original candidacy committee plus an additional member of the faculty. Following the presentation, an appropriate timetable for completion of the degree requirements will be discussed and agreed upon. If the student has not progressed sufficiently, completion of the Ph.D. may be considered inappropriate.

Length of Graduate Residence. Any graduate student who anticipates a need to register for a 16th academic term must request a meeting of his or her thesis committee and present a petition for permission to register that includes a plan of action for the period of the requested registration and a specific date for the completion of the degree requirements. This petition must be approved by the chair of the Chemistry Graduate Study Committee, and, in cases where financial support is an issue, also by the executive officer or division chair, before it is forwarded to the dean of graduate studies. Financial support of graduate students who are required to petition to register will not normally be provided through teaching assistantships. Failure to complete the degree requirements by the date specified in the petition would require the entire approval process to be repeated.

Thesis and Final Examination. The final examination will consist in part of the oral presentation and defense of a brief résumé of the student's research and in part of the defense of a set of propositions he or she prepares. Three original research propositions are required. No more than one of these may be a carryover from the candidacy examination, and at least one must be well removed from the field of research. Each proposition shall be stated explicitly and the argument presented in writing with adequate documentation. The propositions should display originality, breadth of interest, and soundness of training; a student will be judged on the selection and formulation of the propositions as well as on the defense of them. Formulating a set of propositions should begin early in the course of graduate study.

To emphasize the importance of these propositions, there will be a separate examination on the three propositions by the Ph.D. thesis committee. This examination on the propositions is normal-
ly taken after the thesis research progress meeting, but must be held before the end of the fifth year of residence, and not less than 10 weeks in advance of the final doctoral examination. A copy of the propositions, along with suitable abstracts, must be submitted to the examining committee and to the division graduate secretary not less than two weeks before the propositions examination. These propositions must be acceptable to the committee before the final doctoral examination can be scheduled.

A copy of the thesis must be submitted to each member of the thesis committee not less than two weeks before the final doctoral examination. A copy of the thesis should also be submitted to the Institute graduate office for proofreading three weeks prior to the final doctoral examination. One reproduced copy of the thesis, corrected after proofreading, is to be submitted to the division graduate secretary for the divisional library. Two final copies (one on @Permalife paper) are to be submitted to the Institute graduate office.

Subject Minor in Chemistry
Graduate students in other options taking chemistry as a subject minor will be assigned a faculty adviser in chemistry by the Chemistry Graduate Study Committee. In consultation with this adviser, the student will work out an integrated program of courses, including at least 45 units of formal course work at the 100 level or above. This program must be approved by the Chemistry Graduate Study Committee, and a grade of C or better in each course in the approved program will be required.

Civil Engineering
Aims and Scope of Graduate Study in Civil Engineering
Students who have not specialized in civil engineering as undergraduates, as well as those who have, may be admitted for graduate study. As preparation for advanced study and research, a good four-year undergraduate program in mathematics and the sciences may be substituted for a four-year undergraduate engineering course, with the approval of the faculty. The qualifications of each applicant will be considered individually, and, after being enrolled, the student will arrange his or her program in consultation with a member of the faculty. In some cases the student may be required to make up undergraduate deficiencies in engineering science courses. However, in every case the student will be urged to take some courses that will broaden his or her understanding of the overall field of civil engineering, as well as courses in his or her specialty. Most graduate students are also required to take further work in engineering mathematics.

Master’s Degree in Civil Engineering
Although the first year of graduate study involves specialized engineering subjects, the student working for the Master of Science degree is encouraged not to overspecialize in one particular field of civil engineering. For the M.S. degree a minimum of 138 units of academic credit for courses numbered 100 or above is required. The program must include three units of CE 130 abc and 108 units (minimum) of graduate-level courses from at least three of the five general subject areas of structures and solid mechanics, engineering seismology and soil mechanics, hydraulics and water resources, environmental science and engineering, and mathematics. Students who have not had ACM 100 abc or its equivalent will be required to include ACM 100 in their program. The program must be approved by the student’s adviser and the option representative for civil engineering.

Students admitted for study toward a master’s degree but interested in pursuing subsequent study toward a Ph.D. degree should also read the section below concerning this degree.

Degree of Civil Engineer
Greater specialization is provided by work for the engineer’s degree than for the master’s. The candidate for this degree is allowed wide latitude in selecting his or her program of study, and is encouraged to elect related course work of advanced nature in the basic sciences. The degree of Civil Engineer is considered to be a terminal degree for the student who desires advanced training more highly specialized and with less emphasis on research than is appropriate to the degree of Doctor of Philosophy. However, research leading to a thesis is required for both degrees. The student should refer to Institute requirements for the engineer’s degree.

Degree of Doctor of Philosophy in Civil Engineering
Study and research programs for the Ph.D. degree are individually planned to fit the interests and background of the student. A comprehensive research project leading to a thesis is required. Examples of areas of research are described in Section Two.

Advising and Thesis Supervision. A counseling committee of three faculty members is appointed for each student upon his or her admission to work toward a Ph.D. degree in civil engineering, in order to advise the student on a suitable course program. The committee member closest to the student’s current interests acts as committee chair and interim adviser until this responsibility is assumed by the dissertation supervisor. This committee must meet during the first and third terms of each year of Ph.D. study.

The major professor and thesis advisory committee provide the majority of mentoring to the student. In addition, the option representative and other members of the faculty are always available to provide advice and mentoring on any aspect of research, progress
toward the Ph.D., future careers, and other aspects of life in graduate school and as a professional scientist.

Admission to or Continuation in Ph.D. Status. All new students admitted for study toward the Ph.D. degree in civil engineering, and other graduate students wishing to become eligible for study toward this degree, are required to take a short oral examination early in the third term of their first year of graduate study at the Institute. This examination, which is conducted by the special joint faculty committee, is confined to elementary topics.

Admission to Candidacy. To be recommended for candidacy for the Ph.D. degree in civil engineering, the student must, in addition to meeting the general Institute requirements, do the following:
- Complete 27 units of research.
- Complete at least 108 units of advanced courses, arranged in conference with his or her adviser and approved by the faculty in civil engineering. Students are expected to take not less than 45 units of work in technical subjects, other than the required mathematics, not closely related to their thesis research. If a student chooses to take a subject minor, the units so taken may be included in the total of 108, subject to the approval of the faculty in civil engineering.
- Pass an additional 27 units of course work in advanced mathematics, such as AM 125abc, ACM 101 abc, ACM 103, ACM 104, or a substitute, acceptable to the faculty in civil engineering.
- Pass the oral candidacy examination. If the student has a subject minor, examination on the minor subject may be included at the request of the discipline offering the minor. The student must take the oral candidacy examination before the end of the second academic year of graduate residence at the Institute.

Thesis and Final Examination. A final oral examination will be given after the thesis has been formally completed. Copies of the completed thesis must be provided to the examining committee two weeks prior to the examination. This thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in his or her specialized field of research.

Subject Minor in Civil Engineering
A student majoring in another branch of engineering, or in another division of the Institute, may elect civil engineering as a subject minor, with the approval of the faculty in civil engineering and the faculty in the student's major field. The group of courses shall differ markedly from the major subject of study or research, and shall consist of at least 54 units of courses approved by the faculty in civil engineering. The student must pass an oral examination that is separate from the examination in the student's major.

Computation and Neural Systems
Aims and Scope of Graduate Study in Computation and Neural Systems
An integrated approach to graduate study combining computation and neural systems is organized jointly by the Division of Biology, the Division of Engineering and Applied Science, and the Division of Physics, Mathematics and Astronomy. This curriculum is designed to promote a broad knowledge of relevant and related aspects of experimental and theoretical molecular, cellular, neural, and systems biology; computational devices; information theory; emergent or collective systems; modeling; and complex systems; in conjunction with an appropriate depth of knowledge in the particular field of the thesis research. For more details, see http://www.cns.caltech.edu/.

Admission
Applicants for admission to the option should have an undergraduate major in electrical engineering, biology, physics, or computer science and a strong interest that will permit enrolling in courses in all the relevant disciplines. All applicants for admission, including those from foreign countries, are strongly urged to submit Graduate Record Examination test scores for verbal and quantitative aptitude tests and for an advanced test in physics, biology, engineering, or mathematics.

Advisory Committees
An advisory committee of three CNS faculty members is constituted for each student by the CNS admissions committee upon admission to the program. The faculty in whose lab the student is staying first chairs this committee. The advisory committee meets with the student when he or she arrives, guides and approves first-year course choices, and answers questions and offers advice about the program and the way of life in CNS. Further meetings with this committee should be arranged as needed by the student or by an adviser. The CNS faculty are available to students during the year for formal and/or informal discussions.

Master's Program
Only students who expect to pursue the Ph.D. degree will be admitted to the option. The master's degree may be awarded in exceptional cases. The awarding of this degree requires fulfilling the Institute requirements for a master's degree, satisfying the option breadth requirements (see following section), the completion of a master's thesis, and receiving from a candidacy examination oral committee a recommendation for awarding the degree.

Laboratory Rotations
Mandatory rotations through research groups (labs) provide a unique opportunity for the student to experience the CNS culture.
To broaden the student's knowledge and to provide familiarity with different techniques and ways of thinking or doing research, each student spends three 12-week laboratory rotations (one per term) during the first year, and is encouraged to engage in research. During each rotation, the student is expected to take part in the life and routine of the lab by attending lab meetings; participating in research projects and discussions with members of the lab; and meeting monthly with the faculty of that lab to discuss science.

First-Year Course Requirements
Six nine-unit courses are required during the first year: CNS/Bi/Ph/CS 187, either Bi 9 or Bi/CNS 150, a neurobiology or modeling course, a math course, and two other CNS, Bi, EE, ACM, or Ph courses (for example, a schedule of CNS/Bi/EE 186, CNS 187, Bi/CNS 150, Bi/CNS 161, and CS/CNS/EE 156 satisfies this requirement). Students are free to take additional classes, and a research adviser may require that a student take a specific, complementary course as a requirement for joining his or her lab.

Candidacy
The three faculty in whose labs rotations have been done are on the student's candidacy exam committee. At the end of the first year, the student is expected to decide on a research group and begin work there. The first summer is thus expected to be spent entirely on research in that lab. Advancing to candidacy requires passing two tests: the general knowledge exam, and the research and candidacy exam. These exams are supervised by the CNS option representative.

The general knowledge exam satisfies the breadth requirement. A list of about 100 questions, grouped by category, are available on the Web at http://www.cns.caltech.edu/, providing a clear idea of the scope of knowledge that each student is expected to know well. Students are encouraged to organize working and discussion groups to prepare for this exam; the format and implementation of such a system, however, is left to the students.

This is an oral exam, with five faculty (including the heads of the student's three rotation labs and two others chosen for "breadth," of whom one can be from outside Caltech). It should be scheduled by the student (who contacts the committee members) to take place during the last six weeks of the third term of year one. For the exam, the student must answer questions (from more than one category) taken from the list, which is modified each year. (The exam can be retaken after six months.)

The research and candidacy exam satisfies the depth requirement. During year two, the student is expected to produce a piece of work of a quality sufficient to be presented at a professional meeting during the first term of year three. (The objective of this description is to offer a way to calibrate the level of expected research achievement and involvement. Professional acceptance of the abstract or paper is not a requirement for passing candidacy.)

This work is presented, in an oral exam in spring term of year two, before the same exam committee (if possible) that conducted part one of the exam. The exam focuses exclusively on research (accomplished and/or planned). During year two, the student may take other courses, as needed, but is expected to present a high standard (quality, originality) of research at the time of this second part of the candidacy exam.

Computer Science
Graduate study in computer science is oriented principally toward Ph.D. research. The course work and thesis requirements for the M.S. degree are a required part of the Ph.D. program. There is no admission to the M.S. program as the degree objective.

Students entering the graduate program with an M.S. degree from another school may transfer credit for course work as appropriate. A student may petition the option representative to have a prior M.S. thesis or equivalent accepted in lieu of a Caltech M.S. thesis; no Caltech M.S. will be granted in this case.

The Ph.D. program requires a minimum of three academic years of residence. The M.S. should be completed within the first two years.

Students must maintain high academic standards during their graduate residence. A student's Ph.D. research must exhibit originality in the formulation, analysis, and solution of a problem that is significant to the field of study.

Master's Degree in Computer Science
There are five requirements to fulfill for the M.S. in computer science:

- **Total units.** Completion of a minimum of 135 units of courses numbered 100 or greater, including M.S. thesis research (CS 180). The student will consult with the adviser to ensure balance in the course work.
- **Advanced courses in computer science.** Completion of a minimum of 54 units of CS courses numbered 100 or greater in addition to units earned for reading, research, projects, and the M.S. thesis.
- **Units outside computer science.** Completion of a minimum of 27 units outside computer science. Courses jointly listed with computer science cannot be used to fulfill this requirement.
- **B.S. equivalent preparation and breadth.** In the second quarter of the first year, all incoming students take a breadth exam administered by the faculty. Its purpose is to ensure that students have a solid foundation in computer science and to recommend necessary courses or reading.
- **M.S. thesis.** Completion of a minimum of 45 units of CS 180, an M.S. thesis approved by a computer science faculty...
programming methods underlying the application of computation—particularly parallel and concurrent computation—to research in science and engineering.

The requirements are listed under Applied and Computational Mathematics.

Control and Dynamical Systems

Aims and Scope of Graduate Study in Control and Dynamical Systems

The option in control and dynamical systems (CDS) is open to students with an undergraduate degree in engineering, mathematics, or science. The qualifications of each applicant will be considered individually, and, after being enrolled, the student will arrange his or her program in consultation with a member of the faculty. In some cases the student may be required to make up undergraduate deficiencies in engineering science courses.

The CDS option emphasizes the interdisciplinary nature of modern theory of dynamical systems and control. The curriculum is designed to promote a broad knowledge of mathematical and experimental techniques in dynamical systems theory and control. In addition to taking courses in the CDS option, students must select a focus area (see below).

Master's Degree in Control and Dynamical Systems

Students will be admitted to the option who expect to pursue the Ph.D. degree. The master's degree may be awarded in recognition of the student's preparation for research and depth of understanding. The examinations should be taken within the first three years.

Advising and Thesis Supervision. In order to facilitate close supervision and a highly research-oriented environment, each student is admitted directly to an adviser and research group. A course of study is determined in consultation with the adviser. Occasionally students will be admitted into more than one group. Changes in affiliation may occur with common consent of the student and the new adviser.

Students meet regularly with their adviser throughout their time at Caltech, and are encouraged to do the same with other members of the faculty.

Thesis and Final Examination. A final oral examination will be scheduled and given after the Ph.D. thesis has been submitted for review to the student's adviser and thesis committee; the latter consists of at least four faculty, is approved by the option representative, and is chaired by the adviser. The thesis examination is a defense of the thesis research and a test of the candidate's knowledge in his or her specialized fields.

The option representative and executive officer are available to discuss concerns regarding academic progress.

Subject Minor in Computer Science

A subject minor is not required for the Ph.D. degree in computer science. However, students majoring in other fields may take a subject minor in computer science, provided the program is supervised by a computer science faculty adviser, is approved by the computer science option representative, and consists of 45 units sufficiently removed from the student's major program of study.

Subject Minor in Applied Computation

The subject minor in applied computation is administered jointly by the applied and computational mathematics and computer science options, and is open to graduate students in all options. This minor emphasizes the mathematical, numerical, algorithmic, and
power electronics, micromachines, economics, and neurobiology. The program of study must be approved by the student's counseling committee and the option representative.

- Complete an additional 45 units in CDS or other advanced courses in dynamical systems and/or mathematics.
- Prepare a Research Progress Report.
- Pass an oral examination on the major subjects. The oral examination is normally taken before the end of the second year of graduate academic residence at the Institute.

Advising and Thesis Supervision. Upon admission each student is assigned an adviser in the option and a committee of three members, chaired by the adviser, which will approve the initial course of study by the student. A qualifying exam given during the first year of study will be used to evaluate the student's preparation for continued study.

The adviser will be replaced by a research adviser, and the initial committee replaced by a (possibly identical) candidacy committee when the direction of specialization is determined, not later than the beginning of the second year. The candidacy exam is normally taken toward the end of the second year. The candidacy committee will be the judge of the completion of the engineering focus requirement, necessary before advancement to candidacy. The student's candidacy committee may be reconstituted as the thesis committee after the candidacy exam has been successfully completed.

At the early stages of thesis preparation, the student's thesis committee will meet as needed, but at least yearly, to advise the student of his or her progress and to deal with any problems that might have arisen.

A final oral examination will be given after the thesis has been formally completed. The thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in the specialized field of research. Normally this defense will consist of a one-hour public lecture followed by an examination of the thesis by the thesis committee.

Subject Minor in Control and Dynamical Systems
A student majoring in another option at the Institute may elect a subject minor in control and dynamical systems. He or she must obtain approval from the CDS faculty of a course of study containing at least 54 units of advanced courses with a CDS listing.

Electrical Engineering

Aims and Scope of Graduate Study in Electrical Engineering
Award of the Bachelor of Science degree may be followed by graduate study leading to the Master of Science degree in electrical engineering, and the more advanced degrees of Electrical Engineer or Doctor of Philosophy. Because admission to graduate studies in electrical engineering at Caltech is extremely competitive, the Admissions Committee attempts to select those applicants it judges both best qualified and best suited for the graduate program. Applicants should submit Graduate Record Examination scores.

Master's Degree in Electrical Engineering
Normally, the master's degree in electrical engineering is completed in one academic year. The principal criteria for evaluating applicants for the MSEE are the excellence of their preparation for the math- and physics-oriented nature of Caltech's graduate courses, and the judgment of the Admissions Committee on their ability to successfully pursue and benefit from the course program. The Institute does not normally admit an applicant to the master's degree in a field in which the applicant already has a master's degree from another U.S. institution. Financial aid is seldom offered to those who intend to complete their graduate work with a master's degree. A joint B.S./M.S. degree is not available in electrical engineering.

135 units are required as approved by the electrical engineering graduate student adviser. Units toward this are not transferable from other schools. At least 54 units of EE courses (courses listed or cross-listed as EE) labeled 100 or above and not counting EE 191 or EE 291 are required. Engineering Seminar, E 150 abc, is required. Students are urged to consider including a humanities course in the remaining free electives.

Degree of Electrical Engineer
To be recommended for the degree of Electrical Engineer the applicant must pass the same subject requirements as listed for the doctor's degree.

Degree of Doctor of Philosophy in Electrical Engineering
As a rule, applicants who wish to undertake research work leading to a degree of Doctor of Philosophy in electrical engineering are admitted initially only for the MSEE. They are, however, evaluated according to additional criteria, the most important of which is the applicant's interest in and potential for research in one of the areas described below. The statement of purpose required as part of the application should clearly address this match. Considerable weight is also given to the opinions expressed in the applicant's letters of recommendation.
During the Ph.D. applicant's master's degree year, evaluation continues. It is based in part on performance in courses and in part on a one-hour oral presentation scheduled early in the second quarter. As the year progresses, the electrical engineering faculty get to know the student, and the student makes contact with the professor in his or her area of research interest. Upon acceptance into a research group, the student begins research work and defers receiving the master's degree until formal admission into the Ph.D. program. Before the end of his or her second academic year of graduate study, the student normally takes the Ph.D. qualifying oral examination. This must, however, be done no later than the end of the third academic year.

Ph.D. applicants who already hold a master's degree in electrical engineering from another U.S. institution may be admitted directly to the Ph.D. program, but must provide sufficient information to obtain advance acceptance into a research group.

Financial aid available to a Ph.D. applicant includes teaching assistantships and fellowships. TA duties consist of grading papers or lab instruction but not classroom lecturing. A fellowship may be supplemented by a teaching assistantship, and either or both include a full tuition scholarship. Tuition scholarships alone are not available. If financial aid is not requested, or if the box on the application form labeled “willing to come without aid” is checked, information on the source of funds for each year of intended graduate study must be included.

Candiatey. To be recommended for candidacy for the doctor's degree, the applicant must satisfy the following requirements (and pass the Ph.D. qualifying oral examination) no later than the end of the third academic year:

- Complete 18 units of research in his or her field of interest.
- Obtain approval of a course of study consisting of at least 135 units of advanced courses in electrical engineering or the related subjects listed under the master's degree. Only up to 27 units in research (e.g., EE 291) may be counted in this total. No more than 27 units of Pass/Fail grade may be counted toward this requirement. The courses taken to satisfy the math requirement below and courses taken to fulfill the Master of Science degree requirement may be included to satisfy this requirement. Units toward this requirement are not transferable from other schools.
- Pass 27 units of mathematics courses, as approved by the student's research adviser, with letter grade no lower than C.
- Pass a qualifying oral examination covering broadly the major field. Students are strongly encouraged to do this before the end of the second year of residency.

Ph.D. Committee. The Ph.D. qualifying oral exam and the final defense exam are conducted by committees that are set up by the student and approved by the option representative. Members of these Ph.D. committees also serve as second or backup mentors in cases where such additional advising and problem solving are appropriate.

Thesis and Final Examination. The candidate is required to take a final oral examination covering the doctoral thesis and its significance in and its relation to his or her major field. This final examination will be given not less than two weeks after the doctoral thesis has been presented in final form, and before its approval. This examination must be taken at least four weeks before the commencement at which the degree is to be granted.

Advising and Thesis Supervision. Periodic meetings between the advising faculty and the graduate student are an integral part of the Ph.D. program. These meetings should be at sufficiently frequent intervals, as determined by the student and adviser. Students are also encouraged to meet with other members of the Ph.D. committee, the option representative, the executive officer, or Caltech's ombudsperson to discuss problems relating to satisfactory progress.

Subject Minor in Electrical Engineering
A student majoring in another option at the Institute may elect a subject minor in electrical engineering. He or she must provide sufficient information to obtain advance acceptance into a research group.

Environmental Science and Engineering

Aims and Scope of Graduate Study in Environmental Science and Engineering
The interdisciplinary problems posed by natural and human-induced changes in the earth's environment are among the most interesting, difficult, and important facing today's scientists and engineers. The environmental science and engineering option is an interdivisional program of study by biologists, chemists, earth scientists, engineers, and physicists to investigate the functioning of and interactions among the atmosphere, hydrosphere, biosphere, and lithosphere. The ESE option is administered by the Divisions of Chemistry and Chemical Engineering, Engineering and Applied Science, and Geological and Planetary Sciences and promotes both broad knowledge of natural and engineered environmental systems and a detailed understanding of the application of basic science to environmental issues.

Admission
Applicants for admission to the option should have undergraduate preparation in science, engineering, or mathematics. Admission is limited to students intending to pursue the Ph.D. degree.
Applicants are required to submit Graduate Record Examination (GRE) scores for the aptitude tests. Applicants from non-English-speaking nations are required to submit Test of English As a Foreign Language (TOEFL) scores.

Master's Degree in Environmental Science and Engineering
Students enrolled in the Ph.D. program may be awarded a master's degree if they have satisfied the basic Institute requirement of 135 units of work in courses numbered 100 or higher. These courses must include those specifically required in the ESE Ph.D. program and satisfy the ESE core requirement.

Advising
An academic adviser is appointed for each incoming student to assist in design of his or her academic program. The research adviser will be chosen by mutual agreement of the student and adviser before the end of the student's third term of graduate study. The thesis advisory committee (TAC), consisting of four faculty including the research adviser, will be constituted and will meet with the student soon after the student successfully completes the Ph.D. qualifying examination, and should thereafter meet with the student at least yearly. Committee membership may change with the student's research interests. TAC members will generally serve to approve the student’s advancement to candidacy and as the examining committee for the final thesis defense.

Degree of Doctor of Philosophy in Environmental Science and Engineering
For the Ph.D. degree the student must (1) satisfy the course requirements, (2) pass the qualifying examination, (3) advance to candidacy, and (4) complete a thesis and successfully defend it in a final oral examination.

Course Requirements. The program of courses for the Ph.D. degree should be designed to educate students in the application of the basic sciences to environmental problems and to prepare them for their research. During their first year, students, in consultation with their academic advisers, must design a program of graduate study that includes a minimum of 135 units of graduate work. The Ph.D. program must include three units of ESE 150 abc and six units of ESE 101. A course in applied mathematics (at least 27 units), such as ACM 100 abc, is required for students lacking this preparation. Note that advanced courses in biology with a strong quantitative component may be substituted in appropriate cases upon petition by the student. Students are further required to take 18 units in each of the three core areas—Environmental Chemistry, Biology, and Physics—for a total of 54 units in the core courses. Courses satisfying the core requirements are:

- Environmental Biology: ESE/Ge 148 c, ESE/Bi 166, ESE/Bi 168
- Environmental Physics: ESE/Ge 148 ab

In cases of unusual preparation, students may petition to substitute an advanced elective course for a core course, but the substituted courses must be in the same area as the courses replaced. The remaining units required are to be fulfilled by taking additional core courses (not used to satisfy the core requirement) or elective courses in ESE or related disciplines. In recognition that solutions to environmental problems are limited not only by technical but also by social, political, and economic issues, students are encouraged to include relevant courses in the social sciences in their program of study. For recommended elective courses, see http://www.ese.caltech.edu/GP/electives.html. Not more than 42 units may be in reading (ESE 100, 200, etc.) or research (ESE 300) courses (these units are in addition to the required nine units of ESE 101 and ESE 150 abc). Courses may be taken at the Scripps Institute of Oceanography under the exchange arrangement described on page 223.

Ph.D. Qualifying Examination. The Ph.D. qualifying examination must be taken during the first term of the student's second year of residency. This examination consists principally of oral and written defense of two research propositions, supplemented by a written description of one of them. Written abstracts must be submitted for both propositions. Fundamental questions derived from the ESE core courses may also be included in the qualifying examination. Students are encouraged to consult with others concerning their ideas on propositions, but the material submitted must be the work of the student. There must be a different faculty member associated with each of the two propositions. It is expected that the student's research adviser will supervise the proposition for which the student prepares the written description. This written description will generally be in the form of a proposal but the student may petition to submit a research paper instead. In preparation for the qualifying examination, students are encouraged to register for nine units of research (ESE 100) in their second and third terms of residence.

Advancement to Candidacy. For advancement to candidacy, the student must have completed the courses in his or her program of graduate study and must submit a written thesis proposal for approval by the student's thesis advisory committee; an oral exam may be required at the discretion of the committee. Students are expected to advance to candidacy before the end of the third term of their second year of residency.

Thesis and Final Examination. Copies of the completed thesis must be provided to the examining committee two weeks before the examination. The final oral examination focuses on the work of the thesis and, according to the Institute regulations, must be held...
at least two weeks before the degree is conferred. In addition to the two copies of the final thesis required by the Institute, a third copy must be submitted to the option office.

Subject Minor in Environmental Science and Engineering
A student majoring in another option at the Institute may elect a subject minor in environmental science and engineering. He or she must obtain approval from the ESE option representative for a course of study containing at least 45 units of advanced ESE courses.

Geological and Planetary Sciences
Aims and Scope of Graduate Study
Graduate students in the Division of Geological and Planetary Sciences enter with very diverse undergraduate preparation—majors in astronomy, biology, chemistry, mathematics, and physics, as well as in geochemistry, geology, and geophysics. Graduate study and research within the division are equally diverse, and the graduate program aims to provide for students a depth of competence and experience in their major field, sufficient strength in the basic sciences to allow them to continue self-education after their formal training has been completed, and the motivation and training to keep them in the forefront of their field through a long and productive career. Students are encouraged to explore work in interdisciplinary areas both within and outside the division, and to gain experience in teaching. Although financial support is not guaranteed, all students making normal progress have in the past been supported by a combination of fellowships, research assistantships, and teaching assistantships.

Admissions and Entrance Procedures
Only students who intend to work full time toward the doctor of philosophy (Ph.D.) degree are admitted. The admission process follows Institute regulations. Applicants are required to submit Graduate Record Examination (GRE) scores for the aptitude tests. The advanced test in their field of undergraduate specialty is optional. Applicants from non-English-speaking nations are required to submit Test of English as a Foreign Language (TOEFL) scores.

Based on their applications and interests, students enter one of the major subject options of the division and are given an academic adviser who is a professorial faculty member associated with the option. The four options are geochemistry, geology, geophysics, and planetary science. Students may later change options, but must first obtain approval by the new option. Each student must plan to satisfy the requirements for the Ph.D. degree in one option.

Entering students in the week preceding the beginning of instruction for the first term meet with their option representatives and discuss their preparation in the basic sciences. Afterward, the student meets with his or her adviser prior to registration and selects courses based in part on the results of the discussions.

First-year graduate students are encouraged to register for at least nine units of research (Ge 297) in each term of residence. The primary objective is to communicate to the students the excitement of discovery based on original investigations and to provide a broad scope of research aims. An important by-product can be the formulation of propositions for the Ph.D. qualifying oral examination or orientation toward Ph.D. research.

Advising and Thesis Supervision
The academic adviser appointed for each incoming student continues as mentor with broad responsibility for a student's academic welfare throughout the graduate program. During the second year, after passing the qualifying examination, each student should identify a professor as thesis adviser, who will normally provide a graduate research assistantship and the opportunity for continuing research. In consultation with the two faculty advisers, each student then forms a thesis advisory committee composed of at least four Caltech professors (chaired by the academic adviser). External scientists closely involved in the student's research may also be appointed. Members of the committee serve as advisers, counselors, and resources. Committee membership may be changed if a student's research interests change.

The thesis advisory committee meets with the student at least once each year for a progress review, and informally whenever the student needs or requests assistance or guidance. In addition, the faculty members in each option have their own systems for annual evaluations of student progress. A few months before completion of the thesis dissertation, the thesis advisory committee evolves into the thesis examining committee.

All students are urged to consult with division faculty in the following sequence if they have any problems: thesis and academic advisers, thesis advisory committee, academic officer, and division chair. If these division personnel cannot resolve a problem, then the student should turn to Institute offices.

Master's Degree
Students enrolled in the Ph.D. program may be awarded a master's degree when they have satisfied the basic Institute requirement of 135 units. These courses must be numbered 100 or higher, and must be part of those used to satisfy the Ph.D. requirement in one of the options of the division. Specifically required are Ge 101, 102, 103, 108, and 109.
Doctoral Degree: Division Requirements

For a Ph.D. degree the student must 1) pass the qualifying oral examination, 2) satisfy course requirements of the division and of an option, and 3) complete a thesis and successfully defend it in a final oral examination. Admission to candidacy occurs after the student has satisfied the first two requirements and has been accepted for thesis research by a division faculty member, who then becomes the student’s thesis adviser.

The qualifying examination consists of oral and written defense of two research propositions, supplemented by a written description of one of them. Students are encouraged to consult with various staff members concerning their ideas on propositions, but the material submitted must represent the work of the student. There must be a different faculty member associated with each of the two propositions. The exam is administered by the qualifying examination committee, which has members from the four options of the division, and is normally taken early in the first term of the second year of residence. A more detailed outline of the qualifying examination is available in the division Academic Affairs office.

Before the end of the second year, the thesis advisory committee will be selected, as outlined above.

The basic divisional course requirement includes 47 units within the division but outside the area of the student’s option. The required 47 units of courses outside the major field may be used to satisfy a subject minor in another option of the division. Every graduate student in the division is responsible for the basic general information covered in the four courses Ge 101, 102, 103, and 108, and the courses should be completed during the first year. Students are required to take the two courses in Ge 101, 102, and 103 that are outside their option. Academic advisers may recommend that students with insufficient training in their major field take the appropriate course in addition. Students may petition instructors to drop one of the two courses if they already have substantial academic training in that field; approval of their academic adviser or option representative is required. Students may be excused from Ge 108 by petition to their academic adviser if they can demonstrate that they already have equivalent training and understanding of the mathematics and physics covered in Ge 108. Oral presentation, Ge 109, is required of all degree candidates and counts for three of the units listed above. Throughout their graduate careers, students are expected to attend departmental seminars and seminar courses led by visiting scientists. Students may submit a petition to their option to substitute appropriate graduate courses taken at other institutions, corresponding to no more than 27 units.

The division encourages students to engage in research early in their graduate careers. A student making normal progress will have submitted a paper, of which the student is senior author, by the end of the third academic year. The paper will be submitted to a refereed scientific journal and must have the approval of a faculty member of the division. Doctoral candidates must complete a thesis and submit it in final form by May 10 of the year in which the degree is to be conferred. The final oral examination for the doctorate by the thesis examining committee will be scheduled no sooner than two weeks following submission of the thesis (approved by the thesis adviser) and, in conformity with Institute regulations, it must be scheduled at least two weeks before the degree is to be conferred.

Candidates are expected to publish the major results of their thesis work. A manuscript should be reviewed by the member of the faculty supervising the major research and should be ready for submission to a refereed scientific journal at the time of the final exam. The student should be principal author. The published paper should have a California Institute of Technology address and a Division of Geological and Planetary Sciences contribution number, and at least five reprints should be sent to the division. Published papers may be included in the thesis.

By the end of the first academic year (third term): submission by the student of (1) tentative titles of propositions for review by the qualifying examination committee and (2), a list of courses planned to satisfy the Ph.D. requirement, for review by the option.

By the end of the second academic year: (1) passage of oral exam; (2) approval by the option of courses planned to satisfy candidacy requirements; (3) submission of a tentative thesis topic and adviser, and Thesis Advisory Committee.

By the end of the third academic year: (1) satisfactory completion of course requirements; (2) satisfactory completion of other requirements including selection of thesis topic and adviser, and Thesis Advisory Committee; (3) admission to candidacy.

End of the fourth academic year: satisfactory progress toward completion of thesis.

After completing the fifth academic year, the student must formally petition to register for each subsequent year. Financial aid will normally not be extended beyond the sixth year.

The student’s program and progress will be reviewed annually by his or her option and by the thesis advisory committee. In cases where, in the opinion of the faculty in the option, the student is clearly not showing adequate progress, they may recommend to the division chair that the student be denied permission to continue in the Ph.D. program based upon their overall assessment of the student’s performance.

Requirements of the Major Subject Options

Geology and Geobiology. In addition to the general Institute and basic division requirements, which include taking at least 47 units within the division in subjects other than their own major subject, candidates for the Ph.D. in geology or geobiology must successfully complete a minimum of 90 units of 100- to 200-level courses,
including the advanced courses most pertinent to their major field. Courses that cannot be used to satisfy these requirements include languages, research and reading courses, and certain courses constituting basic preparation in their field, as follows: Ge 106, Ge 114, and Ge 115. At least 36 of the 90 units must be taken outside the Division of Geological and Planetary Sciences (with a grade of C or better). It is possible for these to be used to satisfy part of the requirements of a minor. Also, Ch 21 abc may be included as part of these units. Knowledge of field geology equivalent to Ge 121 ab is required of all majors. For good work in most modern earth science fields, a proficiency in mathematics is essential.

Geochemistry. In addition to general Institute and basic division requirements, the candidate for a Ph.D. degree in geochemistry is required to complete 90 additional units of course work at the 100 level or greater. These courses must include 45 units outside the division and include the advanced courses most relevant to the student's thesis research. This option requires all students to have a basic knowledge of chemistry at the level of Ch 21. The 45 units of courses submitted for fulfillment of the basic division requirement must include one quarter of field geology. Reading and research courses may not be used, although students are expected to take such courses and to devote each summer to research.

Students completing the geochemistry academic program are required to submit a tentative proposal for their research no later than May 1 of the third year in residence. This proposal should document the scientific importance of the project relative to previous work, feasibility of completion within an allowable graduate-student tenure, and, if any, preliminary results. The proposals will be reviewed by the geochemistry faculty.

Geophysics. In addition to general Institute and basic division requirements, the Ph.D. candidate in geophysics must successfully complete a minimum of 90 units of 100- to 200-level courses chosen from the two categories below. At least 36 units must be completed from each group. Courses with less than five units per term in these groups will not be accepted.

Group A. Courses in mathematics, applied mathematics, physics, applied physics, and chemical physics. A minimum proficiency in basic mathematical methods at the level of ACM 101 and in basic physics at the level of Physics 106 is required.

Group B. Courses in geophysics.

Students with an exceptionally strong background in one or more of the areas represented by these groups may, upon petition to the option representative, be excused from up to 18 units of the overall 90-unit requirement. Research and reading courses cannot be used to satisfy these requirements but are highly recommended as preparation for the oral qualifying examination.

Planetary Science. In addition to general Institute and basic division requirements, the candidate for a Ph.D. degree in planetary science shall acquire at least a minimum graduate background in each of three categories of course work: (1) the earth sciences, (2) physics, mathematics, chemistry, and astronomy, and (3) planetary science, which shall include at least one quarter in Planetary Atmospheres (ESE/Ge 152 a, or b, or c) and one quarter in Planetary Surfaces (Ge 151). These requirements may be met by successful completion (normally B average or higher) of at least 45 units of suitable course work at the 100 level or higher in each category. The requirements in the first category coincide with the basic division requirement. Reading and research courses may not be used, although students are expected to take such courses and to devote each summer to research in planetary science. Planetary Science Seminar (Ge 225 abc) is required each year for all planetary science students.

Students shall demonstrate professional competence in a second scientific field distinct from their specialization within planetary science. This may be accomplished by satisfactory completion of a subject minor. Courses used to satisfy this secondary requirement may also be used to satisfy the requirements in one of the 45-unit categories.

Minor in Geological and Planetary Sciences
A student from another division of the Institute may, with the approval of the Division of Geological and Planetary Sciences, elect a minor in any one of the major subjects listed above. Such a subject minor will include at least 45 units in courses at the 100 level or higher. Normally, a member of the division faculty will participate in the student's oral thesis defense.

History
The program for a subject minor in history must be approved by the executive officer for the humanities before the admission to candidacy. In addition to meeting general Institute requirements, the student must complete satisfactorily, with a grade of C or better, 45 units in advanced courses in history.

Materials Science
Aims and Scope of Graduate Study in Materials Science
The graduate program is designed to give students an understanding of general phenomena in synthesis–structure–property relationships in all materials, plus a detailed understanding of phenomena for at least one particular class of materials. Students may enter the graduate program in materials science with undergraduate preparation in physics, chemistry, engineering, or materials science. Students interested in terminating their graduate study at the master's level are not normally admitted. Students in the Ph.D. program are required to complete a set of core courses, pass an oral candidacy examination, complete a thesis describing original
research in materials science or a related field, and publicly defend their thesis work.

Master's Degree in Materials Science

Each student is assigned to a member of the faculty, who will serve as the student's adviser. The adviser and option representative for materials science will approve his or her course of study.

Study for the degree of Master of Science in Materials Science will ordinarily require three terms of courses. The courses shall be chosen from the list of core courses below, although 27 units of research (MS 200 or equivalent) may be substituted for 27 units of lecture or laboratory courses. Completion of 138 units of these courses within two years with no grade less than a C constitutes the academic requirements for the M.S. degree.

Core Courses

1. MS 131, MS 132, MS 133: Structure and Bonding in Materials, Diffraction and Structure of Materials, Kinetic Processes in Materials.
2. APh 105 a or ChE 165, APh 105 b or ChE/Ch 164, MS 105: Thermodynamics, Statistical Mechanics, Phase Transformations.
3. Two quarters of courses focused on specific materials, such as APh 114 ab: Solid State Physics; Ch/ChE 147, Ch/ECh 148: Polymer Chemistry and Physics; Ge 114, Ge 214, Ge 260: Mineralogy, Spectroscopy of Minerals, Physics of Earth Materials.
4. Two quarters of courses focused on internal interactions in materials, such as Ph 125 ab, Ch 125 ab: Quantum Mechanics; Ae/AM/CE 102 abc or Ae/Ge/ME 160 abc: Continuum Mechanics of Fluids and Solids; Ch 120 a: Nature of the Chemical Bond; Ch 121 ab: Atomic Level Simulations of Materials and Molecules.
5. 18 units of courses comprising either the third terms of the sequences taken in 3 and 4 above, or other courses appropriate for the student's research interests, such as MS 124, MS 125, and APh/MS 141.
6. Mathematics at the level expected of research in the student’s field. This may be satisfied by the courses ACM 100, or AM 125 abc, or ACM 101 abc, or Ph 129 abc, or may be waived at the discretion of the student’s adviser and option representative.
7. MS 110 abc (3 units) or APh 110 (2 units) or E 150 abc (3 units), seminar.

Degree of Doctor of Philosophy in Materials Science

Residency. Work toward the degree of Doctor of Philosophy in materials science requires a minimum of three years following the completion of the bachelor's degree or equivalent.

Language Requirement. There is no language requirement for the Ph.D. degree.

Minor. No minor is required for the Ph.D. degree. Students are, however, encouraged to take advanced courses appropriate to their particular interests.

Advising and Thesis Supervision. In the first year, each student shall choose a research adviser who will have primary responsibility for supervising the student's course program and research. The important adviser–advisee relationship requires effort from both parties, and some general expectations are outlined earlier in this section of the catalog. In addition, each student who has passed the candidacy examination shall select a faculty mentor, who will review the student's progress at least annually.

Admission to or Continuation in Ph.D. Status. To be advanced to candidacy for the doctor's degree the student must satisfy three requirements:

 a. Courses. To continue in the graduate program, the student must maintain a B- average for each term. Advancement to candidacy requires the successful completion of the program listed under “Core Courses” above. Alternatively, if the student has taken equivalent courses elsewhere, he or she must prove competency in these areas through an oral examination in each subject.

 b. Oral Candidacy Examination. The student will prepare a brief presentation on a topic in his or her proposed area of research. The core of the examination is based on the student’s course work and how it is related to the topic of the presentation. This examination should be taken no later than the end of the student's second year of residence.

 c. Research Competence. The student must have a doctoral research adviser, and must have completed at least 18 units of MS 200.

Thesis and Final Examination. The candidate is required to take a final oral examination covering the doctoral thesis and its significance in and relation to his or her major field. It will consist of a public thesis seminar and an associated oral examination on the thesis and related fields. This examination will be held at least two weeks after the doctoral thesis has been presented in its final form, and prior to its approval. This examination must be taken at least four weeks before the commencement at which the degree is to be granted.

Subject Minor in Materials Science

A student majoring in another option at the Institute may elect a subject minor in materials science. He or she must obtain approval from the materials science faculty of a course of study containing at
least 45 units of advanced courses. Normally a member of the materials science faculty will participate in the candidacy examination in the student's major department.

Mathematics

Aims and Scope of Graduate Study in Mathematics
The principal aim of the graduate program is to equip the student to do original research in mathematics. Independent and critical thinking is encouraged by participation in seminars and by direct contact with faculty members; an indication of the current research interests of the faculty is found on page 105. In order to enable each student to acquire a broad background in mathematics, individual programs of study and courses are mapped out in consultation with faculty advisers. The normal course of study leads to the Ph.D. degree.

Admission
Each new graduate student admitted to work for an advanced degree in mathematics will be given an interview on Thursday or Friday of the week preceding the beginning of instruction in the fall term. The purpose of this interview is to ascertain the preparation of the student and assist him or her in mapping out a course of study. First-year students are also expected to consult regularly with their faculty mentor (see the section on advising). The work of the student during the first year will include independent reading and/or research.

Course Program
The graduate courses offered, listed in Section Five, are divided into three categories. The courses numbered between 100 and 199 are basic graduate courses open to all graduate students. The three core courses at the graduate level—110 in Analysis, 120 in Algebra, and 151 in Geometry and Topology—are required of all graduate students unless waived by the Graduate Committee. Normally students are expected to complete these core courses in the first year and to take additional advanced courses while doing their thesis research. In addition to the core courses, students are required to complete nine quarters of other advanced mathematics courses, of which at least two quarters must be in the area of discrete mathematics: combinatorics, logic, complexity, and computability. Under special circumstances (e.g., finishing the degree in three years), exceptions to these requirements may be granted by the graduate option representative.

The courses in the second category are numbered between 200 and 290. They are taken normally by second-year and more advanced graduate students. They are usually given in alternate years. The 300 series includes the more specialized courses, the research courses, and the seminars. They are given on an irregular basis depending on demand and interest.

Each student must participate actively in seminars for a total of at least three terms. Students are strongly encouraged to do this within the first two years of graduate studies, but must complete this before advancement to candidacy. The department will help to make seminars accessible to students. Guidelines will be distributed to the students at the beginning of each academic year.

Beginning with the second year at the latest, the student will be expected to begin independent research work and will be strongly encouraged to participate in seminars.

Bohnenblust Travel Grants in Mathematics
Special grants may be awarded to outstanding graduate students in mathematics to enable them to travel in the United States or abroad to further their mathematical education. The mathematics faculty established these awards in 1978 to honor H. F. Bohnenblust, who served Caltech as professor of mathematics, executive officer for mathematics, and dean of graduate studies. Application forms and further details are available in the Mathematics Office, 253 Sloan.

Master's Degree in Mathematics
Entering graduate students are normally admitted directly to the Ph.D. program, since the Institute does not offer a regular program in mathematics leading to the master's degree. This degree may be awarded in exceptional circumstances either as a terminal degree or as a degree preliminary to the Ph.D. degree. Sufficiently advanced undergraduates may be admitted to graduate standing to pursue a master's degree simultaneously with the bachelor's program.

The recipient of a master's degree will be expected to have acquired, in the course of studies as an undergraduate or graduate student, a comprehensive knowledge of the main fields of mathematics comparable to 180 units of work in mathematics at the Institute with course numbers greater than 90.

The general Institute requirements specify that the recipient of a master's degree must have taken at least 135 units of graduate work as a graduate student at the Institute, including at least 81 units of advanced graduate work in mathematics. This advanced work is interpreted as work with a course number greater than 109 and may include a master's thesis.

Degree of Doctor of Philosophy in Mathematics

Advising and Thesis Supervision. Each entering student is assigned a faculty mentor who will advise the student on course selection in the first year and will play a continuing role complementary to that of the thesis adviser throughout the student's graduate career. In particular, the mentor will guide the student's development of teaching and communication skills, which the
The faculty regard as critical components of a mathematician’s education. Normally by the beginning of the second year (and in any case before the candidacy examination), students are expected to have a thesis adviser, a member of the faculty who has agreed to supervise their research.

Students receive help and advice not only from their thesis adviser and faculty mentor, but also whenever needed from the graduate option representative, the executive officer, and the faculty ombudsman in mathematics. (See also the section Guidelines for the Graduate Student–Faculty Adviser Relationship on page 220.)

Candidacy Examination. Before being admitted to candidacy for the Ph.D. in mathematics, the student is expected to have acquired an understanding of the main fields of modern mathematics and to have demonstrated an ability to do competent research in a particular field.

The first graduate year is usually spent in acquiring basic background knowledge. In order to determine as early as possible the candidate’s progress toward this objective, qualifying examinations will be given toward the end of the first year of graduate study. Students must take two of three examinations: one covering the field of algebra, one covering real and complex analysis, and one covering geometry and topology. These emphasize the ability to apply basic mathematical ideas and theorems to specific cases. The three core courses should be adequate preparation for these examinations. Before being admitted to candidacy, students must pass two of these three examinations and, in the one not taken, must take and pass the corresponding core course with a grade of B or better.

Sometime before the end of the third year the student must give an oral presentation to a committee of faculty members, which will describe the general subject matter of the proposed area of thesis research and describe the tentative thesis problem. These descriptions must also be presented to the committee in written form (typically 3–10 pages) at least one week before the oral examination. The committee will consist of three members, including the student’s adviser. It is the student’s responsibility to arrange the formation of this committee in consultation with the adviser. A satisfactory performance on this oral presentation is required for admission to candidacy.

During the summer following the first year of graduate work, each graduate student in mathematics is expected to plan a program of independent study and research work under the guidance of some member of the mathematics staff. This summer program should provide the student with an opportunity to acquire new mathematical knowledge and to generate new mathematical ideas. Shortly after the beginning of the fall term, the faculty will make an overall evaluation of the progress and research potential of these graduate students. The results of this evaluation will be reported to each student and will be used in consultation with the student to plan a subsequent academic program. At this time each student is expected to arrange for a member of the faculty to act as a research adviser.

Thesis and Final Examination. On or before the first Monday in May of the year in which the degree is to be conferred, candidates for the degree of Doctor of Philosophy must deliver typewritten or reproduced copies of their thesis to their supervisors. These copies must be complete and in the exact form in which they will be presented to the members of the examining committee. Candidates are also responsible for supplying the members of their examining committee, at the same time or shortly thereafter, with reproduced copies of their thesis. The final oral examination on the thesis will be held within three weeks from the date the thesis is handed in.

Subject Minor in Mathematics

Students majoring in other fields may take a subject minor in mathematics. Minor programs must include 54 units of advanced work approved by a representative of the mathematics department, who will ensure that the work represents a concentrated study in one or more of the main fields of mathematics. A special oral examination in the subject minor will be given soon after completion of the minor program.

Mechanical Engineering

Aims and Scope of Graduate Study in Mechanical Engineering

The aim of the graduate program in mechanical engineering at Caltech is to prepare students for research and professional practice in an era of rapidly advancing interdisciplinary technology. The program combines individual depth of experience and competence in a particular chosen major specialty, and a strong background in the basic and engineering sciences, with laboratory and design experience. It strives to develop professional independence, creativity, leadership, and the capacity for continuing professional and intellectual growth.

Original research in mechanical engineering is an essential component of the graduate program. Independent and critical thinking is encouraged by participation in seminars and by discussions with faculty members. Research groups in mechanical engineering are small, creating an environment where students work closely and collaboratively with the faculty.

The degrees of Master of Science, Mechanical Engineer, and Doctor of Philosophy are offered.

Research areas in mechanical engineering at Caltech include
mechanics (including active materials, fracture mechanics, and mechanics of materials), mechanical systems (including control and analysis of dynamic systems, engineering design of electromechanical systems, design theory and methodology, kinematics, optimization, robotics, and structural design), and fluid and thermal systems (including acoustics, cavitation, chemical vapor deposition, combustion, fluid flow, heat and mass transport, multiphase and multicomponent flows, propulsion, and turbulence). Research in these areas is applied to a wide variety of problems including control of aircraft engines, design of vehicle structures, granular flows, hypervelocity robots, jet noise reduction, locomotion and grasping, medical applications of robotics, navigation algorithms, structured design of micro-electro-mechanical systems (MEMS), thin film deposition, transportation systems, propulsion systems, pollution control, and rapid assessment of early designs.

Admission
As preparation for advanced study and research, entering graduate students must have a thorough background in undergraduate mathematics, physics, and engineering. An outstanding four-year undergraduate program in mathematics and sciences may be substituted for an undergraduate engineering course, with the approval of the faculty. The qualifications of each applicant will be considered individually, and, after being enrolled, the student will arrange his or her program in consultation with a member of the faculty. In some cases the student may be required to make up undergraduate deficiencies in engineering science courses. However, in every case the student will be urged to take some courses that will broaden his or her understanding of the overall field, as well as courses in the specialty. Most graduate students are also required to take further work in applied mathematics.

Master's Degree in Mechanical Engineering
The degree of Master of Science in mechanical engineering provides the student with advanced training beyond the undergraduate fundamentals, and may include an introduction to research. A minimum of 138 units of courses numbered 100 or above, that meet the distribution requirements listed below, must be passed with a grade of at least C for completion of the master's degree in mechanical engineering. All units must be taken for grades, except for courses offered only on a pass/fail basis. Each student's program must be approved by the option representative in mechanical engineering.

Program Required for Mechanical Engineering
- Graduate Mechanical Engineering core—54 units
 These units should provide a solid base for the student's engineering interest. The courses may be selected from the following list: Ae/AM/CE/ME 101 abc, ME 119 abc, Ae/AM/CE 102 abc, AM 151 abc or CDS 140 ab; CDS 110 ab, and CDS 111.
- Mathematics, Engineering, and Research electives—54 units
 Students who have not taken the equivalent of ACM 100 abc are required to take ACM 100 abc for 36 units. Mechanical engineering students are urged to consider taking 27 units of courses in aerosols and air pollution (ESE 116, ChE/ESE158); automation and robotics (ME 115 ab, ME 131, ME 132); combustion (ChE/ESE 157, JP 213 abc); engineering design (ME 171); multiphase flows (ME 202 abc); propulsion (JP 121 abc); experimental methods (Ae/Am 104 abc); or any additional courses listed in the Graduate Mechanical Engineering courses. Other courses may also be taken in Ae, AM, ACM, ME, JP, MS, EE, ESE, APh, CDS, CS, ChE, CNS. Students who are considering study beyond the master's degree are encouraged to take research units, ME 300, up to a maximum of 27.
- Free Electives—27 units
 These units may be selected from any course with a number of 100 or greater, except that research units may not be included.
- Engineering Seminar, E 150—3 units
 Students admitted for study toward a master's degree but interested in pursuing subsequent study toward a Ph.D. degree should also read the section below relating to this degree.

Degree of Mechanical Engineer
Greater specialization is provided by work for the engineer's degree than by work for the master's. The degree of Mechanical Engineer is considered to be a terminal degree for the student who desires more highly specialized advanced training with less emphasis on research than is appropriate to the degree of Doctor of Philosophy. However, research leading to a thesis is required for both degrees. The student should refer to Institute requirements for the engineer's degree.

Not less than 55 units of work shall be for research and thesis; the exact number shall be determined by a supervising committee, appointed by the dean of graduate studies. Courses should be closely related to mechanical engineering. The specific courses (to be taken and passed with a grade of C or better by the candidate) will be finally determined by the supervising committee. The courses must include an advanced course in mathematics or applied mathematics, such as AM 125 abc or ACM 101 abc, that is acceptable to the faculty in mechanical engineering. A suitable course program may usually be organized from the more advanced courses listed under Ae, AM, ACM, CDS, JP, ME, and MS.
Degree of Doctor of Philosophy in Mechanical Engineering

The Ph.D. degree in mechanical engineering is focused on research, and prepares students to develop new understanding and advanced technology to address contemporary problems. Study and research programs for the Ph.D. degree are individually planned to fit the interests and background of the student. A comprehensive research project resulting in an original contribution to the field documented by a dissertation is required. Institute requirements for the Ph.D. degree are described in the section on degree requirements. Approximately two years of course work are required, and two or more additional years are usually needed for preparation of the dissertation.

Advising and Thesis Supervision. An initial counseling committee of three faculty members is appointed for each student upon admission to work toward a Ph.D. degree in mechanical engineering. The committee member closest to the student's current interests acts as committee chair and interim adviser.

The major professor and thesis advisory committee provide the majority of mentoring to the student. In addition, the option representative and other members of the faculty are always available to provide advice and mentoring on any aspect of research, progress toward the Ph.D., future careers, and other aspects of life in graduate school and as a professional scientist.

Ph.D. Dissertation Supervision Committee. It is the responsibility of the student to find a research adviser. In consultation with the adviser, the student must form a Ph.D. dissertation supervision committee, which will meet during the first and third terms of each year of Ph.D. study. This committee shall consist of at least three members of the Caltech professorial faculty, with at least two members from the faculty in mechanical engineering. The student's adviser shall serve as chair of this committee.

Admission to or Continuation in Ph.D. Status. All new students admitted for study toward the Ph.D. degree in mechanical engineering, and all other graduate students wishing to become eligible for study toward this degree, are required to take the preliminary oral examination early in the third term of their first and third years of graduate study at the Institute.

Admission to Candidacy for the Ph.D. in Mechanical Engineering. To be recommended for candidacy for the Ph.D. degree in mechanical engineering, the student must, in addition to meeting the general Institute requirements, do the following:

- Obtain the agreement of a professorial faculty member to serve as his or her academic and research adviser.
- Successfully complete at least 54 units of research and demonstrate satisfactory research progress.
- Pass with a grade of at least C a minimum of 27 units of course work in each of the core areas of mechanical engineering listed below. Examples of suitable courses are given in parentheses.
 Fluid Mechanics (Ae/Ph/CE/ME 101 abc)
 Thermo/Heat Transfer (ME 119 abc)
 Mechanics of Structures and Solids (Ae/AM/CE 102 abc)
 Dynamical Systems (AM 151 abc or CDS 140 ab)
 Mechanical Systems and Design (ME 115 ab, ME 171, ME 175)
 Controls (CDS 110 ab, CDS 111, CDS 212)

The student may petition the mechanical engineering faculty to replace one of the areas with an area not listed above. These 81 units may also be used in the student's program for the master's degree.

- Pass with a grade of at least C an additional 27 units in engineering or science (with a course number above 100) which pertain to the student's specialty.
- Pass with a grade of at least C an advanced course in mathematics or applied mathematics (for example, AM 125 abc or ACM 101 abc) that is acceptable to the student's committee and the faculty in mechanical engineering. The requirement in mathematics is in addition to the requirements above and cannot be counted toward a minor.
- Pass the oral candidacy examination. If the student has chosen a subject minor, an examination on the subject of that program may be included at the request of the discipline offering the subject minor. The oral candidacy examination must be taken before the end of the second year of graduate academic residence at the Institute.

If the student elects to take a subject minor, these units cannot be used to satisfy any of the Ph.D. degree requirements in mechanical engineering.

The faculty will evaluate the student's research progress, class performance, adviser's input, and oral candidacy exam results to determine whether a student will be admitted to candidacy for the Ph.D. degree.

Thesis and Final Examination. The thesis examination will be given after the thesis has been formally completed. This examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in the specialized field of research. The format of the examination will be a public seminar presented by the candidate, with an open question period, followed by a private examination by the examining committee. The examining committee shall consist of at least four Caltech professorial faculty, at least three of whom shall be from the Division of Engineering and Applied Science, and at least two of whom shall be mechanical engineering faculty members. One member of the committee shall be from outside the student's area of Ph.D. research. The student's adviser shall act as chair of the committee.
Subject Minor in Mechanical Engineering
A student majoring in another branch of engineering or another division of the Institute may, with the approval of the faculty in mechanical engineering and the faculty in his or her major field, elect mechanical engineering as a subject minor. The program of courses must differ markedly from the major subject of study or research, and must consist of at least 54 units of advanced work. The student must also pass an oral examination that is separate from the examination in the student's major.

Physics

Aims and Scope of Graduate Study in Physics
The physics option offers a program leading to the degree of Doctor of Philosophy. This program prepares students for careers in scientific research or research combined with teaching, and so its most important part is independent research. Courses are offered that give a broad treatment of both fundamental physics and specialized physics research topics. These are intended both to help a beginning graduate student prepare for research and to broaden an advanced student's knowledge of physics. Caltech research opportunities include elementary particle physics, nuclear physics, cosmic-ray, gamma-ray, and X-ray astronomy, submillimeter astronomy, condensed-matter physics, atomic/molecular/optical physics, quantum optics, applied physics, gravitational physics, cosmology, astrophysics, mathematical physics, biophysics, and theoretical physics.

A Master of Science degree may be awarded upon completion of a program of courses. Students are not normally admitted to work toward the M.S. in physics unless they are also working toward a Ph.D.

Admission
Application forms for admission to graduate standing and for financial assistance can be obtained from the Office of the Dean of Graduate Studies, California Institute of Technology, Pasadena, CA 91125, or can be downloaded from http://www.gradoffice.caltech.edu/. Completed applications should reach the graduate office by January 15. Applicants are strongly advised to take the Graduate Record Examination (GRE) and the Advanced Physics Test. Information can be obtained from the Educational Testing Service, 20 Nassau Street, Princeton, NJ 08540 (http://www.gre.org/).

Placement Examinations
Students admitted to work for an advanced degree in physics are required to take placement examinations, typically given the Monday of general orientation week before the student's first term of graduate study. These informal exams are used as a guide in selecting the proper course of study. The exams cover material in classical mechanics, electromagnetism, quantum mechanics, statistical mechanics, and mathematical physics. In general, they will be designed to test whether the student possesses an understanding of general principles and the ability to apply these to concrete problems, rather than detailed informational knowledge. The results of the placement exams are not formally recorded as a part of the student's record. In cases in which there is a clear basis for ascertaining the status of the entering graduate student, the placement exams may be waived.

Master's Degree in Physics
A Master of Science degree in physics will be awarded upon satisfactory completion of a program approved by the option representative that fulfills the following requirements:

- **Ph 125 abc** 27 units
 (If this course, or its equivalent, was taken as part of an undergraduate program, it may be replaced by 27 units of any quantum-mechanics-based course.)
- **Physics electives** 81 units
 These must be selected from Ph 103, Ph 105, Ph 118, Ph 127, Ph 129, Ph 130, Ph 135, Ph 136, Ph 161, or physics courses numbered 200 or above.
- **Other electives** 27 units
 These must be graduate courses from physics or any other option, including the humanities.

Substitutions of other graduate courses in place of the above requirements must be approved by the option representative.

Doctor of Philosophy in Physics
In addition to the general Institute requirements for a Ph.D., the particular requirements for a doctorate in physics include admission to candidacy as described below, writing a thesis that describes the results of independent research, and passing a final oral examination based on this thesis and research.

Admission to Candidacy. To be admitted as a candidate for a Ph.D., a student must pass two terms of Physics Seminar (Ph 242), pass written candidacy examinations covering basic physics, satisfy the Advanced Physics requirements described below, and pass an oral candidacy examination. These requirements are designed to ensure that students have an adequate preparation in the basic tools of physics, as well as a broad general knowledge of advanced physics.
Basic Physics Requirement. To be admitted to candidacy, physics students must demonstrate proficiency in all areas of basic physics, including classical mechanics (including continuum mechanics), electricity and magnetism, quantum mechanics, statistical physics, optics, basic mathematical methods of physics, and the physical origin of everyday phenomena. A solid understanding of these fundamental areas of physics is considered essential, so proficiency will be tested by written candidacy examinations.

No specific course work is required for the basic physics requirement, but some students may benefit from taking several of the basic graduate courses, such as Ph 106, Ph 125, and Ph 127, which may be taken pass/fail. A syllabus describing the exam contents will be available, and students are encouraged to study independently for the exams, rather than taking a heavy load of basic physics courses.

The written exams are offered at frequent intervals, typically once per term, and the separate sections may be taken at different times. This flexible scheduling of the written exams allows students to prepare for the exams while simultaneously learning about research areas, either through advanced courses, reading courses, or participating in a research group.

Advanced Physics Requirement. In addition to demonstrating a proficiency in basic physics, students must also establish a broad understanding of modern physics through study in six of the following eight areas of advanced physics:

1. elementary particle physics
2. nuclear physics
3. atomic/molecular/optical physics
4. condensed matter physics
5. gravitational physics
6. astrophysics
7. mathematical physics
8. interdisciplinary physics (e.g., biophysics, applied physics, chemical physics)

The advanced physics requirement can be fulfilled by passing exams in the separate areas, or by passing courses. Each area is meant to be covered by the equivalent of a one-term course; courses satisfying this requirement can be taken pass/fail. There will be a list of course substitutions for each of the areas, which will include courses outside of physics. Other courses may be substituted with permission from the Physics Graduate Committee.

Oral Candidacy Exam. This exam is primarily a test of the candidate's suitability for research in his or her chosen field. The chair of the examination committee will be the professor the student plans to do research with, and normally the student will have already begun research (Ph 172 or Ph 173) on a definite topic with that professor. The examination will cover the student's research work and its relation to the general field of specialization. Before being allowed to take this exam, a student must have satisfied all the other requirements for admission to candidacy.

Research Requirements. There are no specific research requirements, but in general a substantial effort is required to master the techniques in a given field and carry out a significant piece of original research. Students are strongly advised to start doing part-time research as soon as possible, and to carry it on in parallel with formal course work, taking reading and research units (Ph 171–173) prior to being admitted to candidacy. Typically, students continue graduate study and research for about two years after admission to candidacy. Further information can be found at http://www.pma.caltech.edu/information.html.

Scheduling. Although students are encouraged to begin doing research soon after arriving at Caltech, they should also try to complete the requirements for candidacy as quickly as possible before focusing completely on a particular research area. Thus Ph 242 should be taken by all students in their first year of graduate study. The written candidacy exams should be attempted by the end of a student's first year of study, and be passed by the end of the second year. The Advanced Physics requirements should also be completed by the end of the second year, but may be extended into the third year depending on the availability of specific courses. If these deadlines are not met, a student must petition the Physics Graduate Committee before registration for subsequent terms will be allowed.

Advising and Thesis Supervision. After taking the placement exams described above, physics graduate students meet with the chair of the admissions committee to decide on a first-year course schedule. At this time it is appropriate for students, especially those admitted with GRAs, to consult with the admissions chair, the option representative, the executive officer, and/or individual faculty members to select a tentative research group, if this hasn’t already occurred over the summer. At any time, a student may consult with the option representative concerning such matters as advising and switching research groups. When the student is ready to form his or her candidacy committee, this is done in consultation with the executive officer. This committee, besides examining the student's knowledge of his or her chosen field, will consider the appropriateness and scope of the proposed thesis research. Supervision of the thesis research is the responsibility of the thesis adviser, and the student should maintain close contact with his or her adviser. In some circumstances, such as interdisciplinary work with an adviser from another department, a special committee may be formed to follow the progress of the research as well.

The Minor. A minor is not required, but a student may elect to pursue a minor in another option.

Language Requirements. There are no language requirements for a Ph.D. in physics.
Students who successfully complete the SES minor will be recognized with official credit for the achievement on their transcripts.

SES Graduate Minor Requirements

Graduate students who take an SES minor are expected to complete Hum/H/SES 10 a and Hum/Pl/10 b, SES 102 bc, at least three units of SES 103, and 18 units of additional work in SES. Students need not complete the requirements for the minor within the first two years of graduate study. Students who have completed work in SES subjects equivalent to Hum/H/SES 10 a or Hum/Pl/10 b before coming to Caltech may be given credit toward the completion of the minor requirements.

Social Science

Aims and Scope of Graduate Study in Social Science

Over the past two decades, it has become ever more apparent that many of the most serious problems faced by the nation have both an economic and a political component. Graduate education, however, has remained largely compartmentalized, with most programs producing students who, while well trained in economics or in political science, are not trained in both. The Caltech Ph.D. program in social science is designed to graduate scholars who are well grounded in the theoretical perspectives, the quantitative techniques, and the experimental methods of economics and of political science and who also have been introduced to quantitative history, law, anthropology, and psychology. In addition to providing students with a solid foundation in the underlying disciplines, the program has a substantial policy component that brings institutional design—an analysis that merges work in theory, experimentation, and history—to policy studies in a way that is done at no other institution.

Most graduates of the program work in departments of economics, political science, public policy, and in schools of business at major universities. A smaller number have taken positions as economic analysts, program evaluators, and planners for government or private business. In addition, a special program enables students to obtain joint degrees in social science from Caltech and in law from cooperating professional schools. Graduates of this joint program are well qualified to teach in law schools, practice law, and hold other positions in academia and government.

Admission

The requirements for admission to the graduate program in social science are in the field of mathematics. Entering students are expected to have completed 1) courses in calculus at the levels of Ma 2 ab; 2) a course in linear algebra; and 3) a course in mathematical statistics. Students who have not completed some of these courses may be admitted with the understanding that they will complete these mathematical requirements after entering the program.
Entering students must provide Graduate Record Examination scores and may be asked to take placement examinations in mathematics to determine their level of achievement. The extent of remedial work, if any, will be determined by the option’s director of graduate studies (DGS) in consultation with the student.

Students are also expected to take any additional mathematics courses relevant to their research. For example, research in many areas of social science requires mathematical competence at the level of Ma 108.

Course Program
The Ph.D. program is designed to enable students to complete the requirements in four or five years (depending on their background, interests, and motivation).

During the first year of residence, core requirements consist of four three-quarter courses: SS 201 abc (analytical foundations of social science); SS 202 abc (political theory); SS 205 abc (foundations of economics); and SS 222 abc (econometrics). Successful progress during the first three quarters of residency requires that the student complete a minimum of 36 units of work in each quarter with an average grade of B or better, and with no grade less than C. A student is expected to complete these courses by the end of the first year of study. The DGS will review each student’s progress at the end of every quarter during the first year and bring deficiencies to the attention of the student and the faculty at large. While these core courses are not required for a degree, the student bears the burden of demonstrating competence in each area and must show that omission from his or her program of one or more of these courses will not impede normal progress toward the degree. A decision to omit a course requires written approval by the DGS and should be made in consultation with the DGS and the relevant faculty.

At the end of the third quarter (of the first year), all students are required to take the preliminary examination. This written exam is given in three parts and covers the areas of analytical politics, economics, and econometrics. To pass the examination, each student must pass all three parts. A student who fails the examination on the first attempt may be asked to retake any or all parts as requested by the faculty, but that attempt must be made before the beginning of the second year. A student whose performance on the second attempt is marginal may be given an oral examination by the faculty to determine if he or she should be passed.

During the second year, students must complete a minimum of 36 units each quarter (with an average grade of B or better). Some courses are coordinated three-quarter “workshop” sequences in which later quarters presume understanding of material from the earlier quarters, and which require students to write a paper in each quarter. Workshop sequences are generally taught in experimental economics, applied economics, economic theory, political science, and quantitative history. Students may take an 18-unit SS 300 supervised research course in the spring quarter (but not in other quarters). Courses should be chosen in consultation with the DGS and those faculty members who are working in the area in which the student wishes to do his or her thesis research. Students should bear in mind that an unusual strength of the program is its multidisciplinary nature, so they are encouraged to sample a variety of fields. Independent reading and study courses do not count toward the 36 units per quarter requirement except for 18 units in the spring quarter.

Students must complete one paper (solo-authored, unless exempted by the DGS) and present it in an optionwide research colloquium at the end of the spring quarter. The paper and presentation help students make the transition from acquiring knowledge in courses to producing knowledge through their own research. After the presentation, the faculty will evaluate whether the student should continue in the program.

Organization of Thesis Committee
While the DGS is responsible for each student’s general academic welfare throughout the duration of the program, a student should begin organizing his or her thesis committee. A student should select a (thesis) adviser (that is, a committee chair) at the beginning of the third year. The adviser must be a member of the social science faculty at Caltech. The choice of an adviser is important since the adviser is the primary judge of a student’s progress in research and bears principal responsibility for the quality of that research. The adviser is also charged with the administrative responsibility for organizing the remainder of the committee. Thus a student should select an adviser whose own work is closely related to his or her research interests. It is, however, always possible to change advisers if the student’s research shifts focus. Since general supervision over the direction and progress of the dissertation rests with the adviser, the student should raise with the adviser such matters as the design of the dissertation, the planned content of each portion of the dissertation, or any major changes in the topic. This rule also applies to discussions about the acceptability of completed portions of the dissertation prior to the oral defense. Should other committee members need to be consulted about any of these issues, the adviser is the appropriate party to initiate such a consultation. The student is expected to discuss the substantive content of the dissertation with the remainder of the committee and to keep the committee informed of his or her progress on a regular basis. The student is, of course, free to discuss substantive issues with any member of the faculty.

A second committee member (also a member of the social science faculty) should also be chosen no later than the beginning of the third year. The second member should be able to evaluate the entire dissertation and vouch for its quality. For that reason,
articulately. If this evaluation is favorable, and an option faculty member has agreed to supervise the student's thesis research, the student will be admitted to candidacy for the Ph.D. Candidacy papers should be filed with the dean of graduate studies by the end of the third year for those students in good standing.

Degree of Doctor of Philosophy in Social Science
Satisfactory progress during the fourth and fifth years toward completion of the Ph.D. consists of the following.

Dissertation Prospectus. A student is required to submit a dissertation prospectus that outlines briefly the relevant literature, the student's proposed dissertation work, and a tentative schedule detailing when components of the dissertation are expected to be completed. This prospectus must be approved by the adviser and the second committee member no later than the first two weeks of the fall of the fourth year and must be filed with the DGS.

It is also expected that the student will present an optionwide seminar (job market workshop) during fall term as part of the preparation for describing the research in interviews and seminars in the process of obtaining a job.

Supervision. At the end of each quarter during the fourth and fifth years of residence, the thesis adviser and the DGS will meet to determine whether the student is making sufficient progress toward completing the Ph.D. and on the basis of the quality of the research which has been undertaken and evaluated by the thesis committee.

It is expected that the student will have completed all requirements for the Ph.D. degree by the end of his or her fifth year of residence. Students can easily complete the requirements for the Ph.D. by the end of the third year. Students must take at least 18 units of coursework in each of the fall and winter quarters. Spring quarter consists of 9 units of coursework and a 27-unit SS 300 research workshop. In addition, students must take at least one SS 280 course, designed to expose students to influential writings in social science not typically covered in the SS 200 courses.

A final requirement of the third year, during spring quarter, is the writing and presenting of a third-year paper (similar to the second-year paper but more advanced). The paper must be solo-authored. Note that the faculty will expect the third-year paper to be a substantial improvement in quality over the second-year paper. It may also lead naturally to a dissertation. The third year paper must be presented between May and June 1 (to avoid congestion with the June second-year paper presentations).

During the third quarter of the third year, and under any conditions at least two quarters before completion of the dissertation, a student, in consultation with his or her adviser, should select a third committee member. This choice should be based on the content of the ongoing dissertation research, and might well be made for the purpose of providing specialized help (perhaps in theory, econometrics, institutions, experimental methods, or history). The third member is not generally responsible for the full breadth of research covered by the dissertation; in fact, the third member typically offers an outside perspective which is similar to the perspectives of most of the student's likely future colleagues and readers.

Progress Review Leading to Candidacy
After the completion of the third-year paper presentation, the student's overall performance and research potential of the past three years will be evaluated by the social science faculty. This evaluation takes into account grades from coursework, performance on preliminary examinations, and the quality of the second- and third-year paper and presentations. Students should be technically skilled enough (as evaluated by grades and exams) to do original research, and creative and articulate enough to ask and answer interesting scientific questions and describe those questions and answers.
later than the end of the fifth year (by June). Ideally, the outcome of the proposal seminar is an agreement between the student and committee members on what additional work needs to be done to complete the thesis successfully.

When the student is ready to schedule an oral dissertation proposal seminar or defense, he or she must provide a written copy of the dissertation to the DGS at least two weeks prior to the planned seminar date. The DGS will insure that the thesis meets minimal standards for successful completion of the Ph.D. degree and will also distribute copies to all members of the dissertation committee.

The dissertation is expected to represent publishable, original research with a coherent theme. To that end, the dissertation should have some unifying principle and descriptive title. Moreover, successful completion implies that the faculty has certified that the candidate is a trained, professionally knowledgeable, and potentially productive scholar in his or her chosen area of work. While exact quantification is impossible, a thesis should represent a major part of a publishable book, or two or three articles that are acceptable to first-rate professional journals.

Master’s Degree in Social Science
Entering graduate students are admitted to the Ph.D. program. The M.S. degree is awarded in exceptional cases. Of the 135 units of graduate work required by Institute regulations, at least 81 units should be advanced work in social science. Students petitioning for an M.S. are required to take an examination.

Subject Minor in Social Science
Graduate students taking social science as a subject minor shall complete a program of not less than 45 units in advanced courses in a coherent program of study that has been approved by the DGS.
Courses numbered below 100 are taken primarily by undergraduate students. Those numbered from 100 to 199 are taken by both undergraduates and graduates, and those numbered 200 and above are taken primarily by graduate students.

The school year is divided into three terms. The number of units assigned in any term to any subject represents the number of hours spent in class, in laboratory, and estimated to be spent in preparation per week. In the following schedules, figures in parentheses denote hours in class (first figure), hours in laboratory (second figure), and hours of outside preparation (third figure).

At the end of the seventh week of each term, a list of courses to be offered the following term is published by the registrar's office. On the day of registration (see Academic Calendar), an updated and revised course schedule is published announcing the courses, class hours, and room assignments for the term. Students may not schedule two courses taught at the same time.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae</td>
<td>Aeronautics</td>
</tr>
<tr>
<td>An</td>
<td>Anthropology</td>
</tr>
<tr>
<td>ACM</td>
<td>Applied and Computational Mathematics</td>
</tr>
<tr>
<td>AM</td>
<td>Applied Mechanics</td>
</tr>
<tr>
<td>APh</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>Art</td>
<td>Art History</td>
</tr>
<tr>
<td>Ay</td>
<td>Astronomy</td>
</tr>
<tr>
<td>BMB</td>
<td>Biochemistry and Molecular Biophysics</td>
</tr>
<tr>
<td>BE</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Bi</td>
<td>Biology</td>
</tr>
<tr>
<td>BEM</td>
<td>Business Economics and Management</td>
</tr>
<tr>
<td>ChE</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Ch</td>
<td>Chemistry</td>
</tr>
<tr>
<td>CE</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>CNS</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science</td>
</tr>
<tr>
<td>CDS</td>
<td>Control and Dynamical Systems</td>
</tr>
<tr>
<td>Ec</td>
<td>Economics</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>E</td>
<td>Engineering</td>
</tr>
<tr>
<td>En</td>
<td>English</td>
</tr>
<tr>
<td>ESE</td>
<td>Environmental Science and Engineering</td>
</tr>
<tr>
<td>Ge</td>
<td>Geological and Planetary Sciences</td>
</tr>
<tr>
<td>H</td>
<td>History</td>
</tr>
<tr>
<td>Hum</td>
<td>Humanities</td>
</tr>
<tr>
<td>ISP</td>
<td>Independent Studies</td>
</tr>
<tr>
<td>JP</td>
<td>Jet Propulsion</td>
</tr>
<tr>
<td>L</td>
<td>Languages</td>
</tr>
<tr>
<td>Law</td>
<td>Law</td>
</tr>
<tr>
<td>Lit</td>
<td>Literature</td>
</tr>
<tr>
<td>MS</td>
<td>Materials Science</td>
</tr>
<tr>
<td>Ma</td>
<td>Mathematics</td>
</tr>
<tr>
<td>ME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Mu</td>
<td>Music</td>
</tr>
<tr>
<td>PA</td>
<td>Performance and Activities</td>
</tr>
<tr>
<td>PI</td>
<td>Philosophy</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education</td>
</tr>
<tr>
<td>Ph</td>
<td>Physics</td>
</tr>
<tr>
<td>PS</td>
<td>Political Science</td>
</tr>
<tr>
<td>Psy</td>
<td>Psychology</td>
</tr>
<tr>
<td>SES</td>
<td>Science, Ethics, and Society/History and</td>
</tr>
<tr>
<td>SS</td>
<td>Social Science</td>
</tr>
<tr>
<td>Philosophy of Science</td>
<td></td>
</tr>
</tbody>
</table>
AERONAUTICS

Ae 100. Research in Aeronautics. Units to be arranged in accordance with work accomplished. Open to suitably qualified undergraduates and first-year graduate students under the direction of the staff. Credit is based on the satisfactory completion of a substantive research report, which must be approved by the Ae 100 adviser and by the option representative.

Ae/APh/CE/ME 101 abc. Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Fundamentals of fluid mechanics. Microscopic and macroscopic properties of liquids and gases; the continuum hypothesis; review of thermodynamics; general equations of motion; kinematics; stresses; constitutive relations; vorticity; circulation; Bernoulli’s equation; potential flow; thin-airfoil theory; surface-gravity waves; buoyancy-driven flows; rotating flows; viscous creeping flow; viscous boundary layers; introduction to stability and turbulence; quasi one-dimensional compressible flow; shock waves; unsteady compressible flow; acoustics. Instructor: Dimotakis.

Ae/AM/CE/ME 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 35 abc or equivalent. Static and dynamic stress analysis. Two- and three-dimensional theory of stressed elastic solids. Analysis of structural elements with applications in a variety of fields. Variational theorems and approximate solutions, finite elements. A variety of special topics will be discussed in the third term such as, but not limited to, elastic stability, wave propagation, and introductory fracture mechanics. Instructor: Staff.

Ae/APh 104 abc. Experimental Methods. 9 units (3-0-6 first term; 1-3-5 second, third terms). Prerequisites: ACM 95/100 abc or equivalent (may be taken concurrently); basic knowledge of fluid mechanics; CDS 110 a or equivalent for second term only. Lectures on experiment design and implementation. Measurement methods, transducer fundamentals, instrumentation, optical systems, signal processing, noise theory, analog and digital electronic fundamentals, with data acquisition and processing systems. Experiments (second and third terms) in solid and fluid mechanics with emphasis on current research methods. Instructor: Gharib.

Ae 107 abc. Space Colonization and Industrialization: The 21st-Century High Frontier or Pie in the Sky? 9 units (3-0-6); first, second, third terms. Thirty years ago extensive studies of colonization in space were carried out at Princeton and later as programs in NASA and the Department of Energy. With the help of invited speakers from JPL, NASA, and DOE, the course will review those studies and address the question: What technological and economic factors are necessary to make space colonization possible? The second and third terms will be devoted to design studies. Instructor: Sercel.

CE/Ae/AM 108 abc. Computational Mechanics. 9 units (3-0-6). For course description, see Civil Engineering.

Ae/ME 120 ab. Combustion Fundamentals. 9 units (3-0-6); second, third terms. Prerequisite: ME 119 a or equivalent. The course will cover thermodynamics of pure substances and mixtures, equations of state, chemical equilibrium, chemical kinetics, combustion chemistry, transport phenomena, and the governing equations for multicomponent gas mixtures. Topics will be chosen from non-premixed and premixed flames, the fluid mechanics of laminar flames, flame mechanisms of combustion-generated pollutants, and numerical simulations of multicomponent reacting flows. Not offered 2001–02.

Ae 125 abc. Spacecraft Systems Engineering. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 1 abc, Ma 1 abc, Ph 2 ab, Ma 2 ab, AM 35 ab. This course presents the fundamentals of modern concurrent systems engineering in the context of spacecraft and mission engineering. The basic theory and practical application of the following topics are addressed: concurrent systems engineering principles and methods; spacecraft systems analysis; attitude determination and control; rocket propulsion; space avionics; payload integration; spacecraft mechanical and thermal design; and elementary astrodynamics. Instructor: Culick.

Ae 150 abc. Aeronautical Seminar. 1 unit (1-0-0); first, second, third terms. Speakers from campus and outside research and manufacturing organizations discuss current problems and advances in aeronautics. Graded pass/fail only. Instructor: Shepherd.

Ae/G e/M E 160 abc. Continuum Mechanics of Fluids and Solids. 9 units (3-0-6); first, second, third terms. Elements of Cartesian tensors. Configurations and motions of a body. Kinematics—study of deformations, rotations and stretches, polar decomposition. Lagrangian and Eulerian strain velocity and spin tensor fields. Irrotational motions,

Ae 200. Advanced Research in Aeronautics. Units to be arranged. Ae. E. or Ph. D. thesis level research under the direction of the staff. A written research report must be submitted during finals week each term.

Ae 201 abc. Advanced Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae/APh/CE/ME 101 abc or equivalent; AM 125 abc or ACM 101 abc (may be taken concurrently). Foundations of the mechanics of real fluids. Basic concepts will be emphasized. Subjects covered will include a selection from: physical properties of real gases; the equations of motion of viscous and inviscid fluids; the dynamical significance of vorticity; vortex dynamics; exact solutions; motion at high Reynolds numbers; hydrodynamic stability; boundary layers; flow past bodies; compressible flow; subsonic, transonic, and supersonic flow; shock waves. Instructor: Leonard.

Ae 204 abc. Technical Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ae/APh/CE/ME 101 abc or equivalent. External and internal flow problems, encountered in engineering, for which only empirical methods exist. Turbulent shear flow, separation, transition, three-dimensional and nonsteady effects. Basis of engineering practice in the design of devices such as mixers, ejectors, diffusers, and control valves. Studies of flow-induced oscillations, wind effects on structures, vehicle aerodynamics. Not offered 2001–02.

Ae 208 abc. Fluid Mechanics Seminar. 1 unit (1-0-0); first, second, third terms. A seminar course in fluid mechanics. Weekly lectures on current developments are presented by staff members, graduate students, and visiting scientists and engineers. Graded pass/fail only. Instructor: Hornung.

Ae/AM/ME 209 abc. Seminar in Solid Mechanics. 1 unit (1–0–0); first, second, third terms. A seminar for staff and students of all divisions whose interests lie in the general field of solid mechanics. Reports on current research by staff and students on campus are intermixed with seminars given by invited lecturers from companies and other research institutions. Graded pass/fail only. Instructor: Knauss.

Note: The following courses, with numbers greater than 209, are one-, two-, or three-term courses offered to interested students. Depending on conditions, some of the courses may be taught as tutorials or reading courses, while others may be conducted more formally.

Ae/AM/MS/ME 213 abc. Mechanics and Materials Aspects of Fracture. 9 units (3–0–6); first, second, third terms. Prerequisites: Ae/AM/CE/ME 102 abc (concurrently) or equivalent and instructor’s permission. Analytical and experimental techniques in the study of fracture in metallic and nonmetallic solids. Mechanics of brittle and ductile fracture; connections between the continuum descriptions of fracture and micromechanisms. Discussion of elastic-plastic fracture analysis and fracture criteria. Special topics include fracture by cleavage, void growth, rate sensitivity, crack deflection and toughening mechanisms, as well as fracture of nontraditional materials. Fatigue crack growth and life prediction techniques will also be discussed. In addition, “dynamic” stress wave dominated, failure initiation growth and arrest phenomena will be covered. This will include traditional dynamic fracture considerations as well as discussions of failure by adiabatic shear localization. Not offered 2001–02.

Ae/AM/ME 215. Dynamic Behavior of Materials. 9 units (3-0-6); third term. Prerequisites: ACM 100 abc or AM 125 abc; Ae/AM/CE/ME 102 abc. Fundamentals of theory of wave propagation; plane waves, wave guides, dispersion relations; dynamic plasticity, adiabatic shear banding; dynamic fracture; shock waves, equation of state. Not offered 2001–02.

AM/Ae/ME 220 ab. Elastic Stability of Structures and Solids. 9 units (3-0-6). For course description, see Applied Mechanics.
Ae 221. Theory of Viscoelasticity. 9 units (3-0-6); second term.

Ae/AM/ME 223. Plasticity. 9 units (3-0-6); first term. Prerequisite: Ae/AM/CE/ME 102 abc or instructor’s permission. Theory of dislocations in crystalline media. Characteristics of dislocations and their influence on the mechanical behavior in various crystal structures. Application of dislocation theory to single and polycrystal plasticity. Theory of the inelastic behavior of materials with negligible time effects. Experimental background for metals and fundamental postulates for plastic stress-strain relations. Variational principles for incremental elastic-plastic problems, uniqueness. Upper and lower bound theorems of limit analysis and shakedown. Slip line theory and applications. Additional topics may include soils, creep and rate-sensitive effects in metals, thermodynamics of plastic deformation, and experimental methods in plasticity. Not offered 2001–02.

Ae/AM/ME 225. Special Topics in Solid Mechanics. Units to be arranged. Subject matter will change from term to term depending upon staff and student interest but may include such topics as structural dynamics; aeroelasticity; thermal stress; mechanics of inelastic and composite materials; and nonlinear problems. Not offered 2001–02.

Ae 233. Hydrodynamic Stability. 9 units (3-0-6); second term.

Ae 234. Hypersonic Aerodynamics. 9 units (3-0-6); third term.
Prerequisites: Ae/APh/CE/ME 101 abc or equivalent, AM 125 abc, or instructor’s permission. An advanced course dealing with aerodynamic problems of flight at hypersonic speeds. Topics are selected from: hypersonic small-disturbance theory, blunt-body theory, boundary layers and shock waves in real gases, heat and mass transfer, testing facilities and experiment. Instructor: Hornung.

Ae 236. Separated Flows. 9 units (3-0-6); third term. Topics include a review of boundary layer theory, Kirchhoff model of separation, triple-deck theory, Sychev model, effect of turbulence on separation, location of separation points in various practical applications, classes of three-dimensionality, separation in three-dimensional steady flow, topological structure of steady three-dimensional separation, open separation, local solutions, and shock-wave boundary-layer interaction. Not offered 2001–02.

Ae 237 ab. Nonsteady Gas dynamics. 9 units (3-0-6); third term.
ANTHROPOLOGY

An 22. Introduction to Sociocultural Anthropology. 9 units (3-0-6); second term. Introduction to the concepts, methods, and theoretical principles of sociocultural anthropology. Course explores the diversity of tribal and peasant societies in Africa, Latin America, and Asia. Topics include social change and the influence of economics and politics upon social relations, ethnicity, religion, psychology, and language. Instructor: Ensminger.

An 101. Selected Topics in Anthropology. 9 units (3-0-6). Offered by announcement. Instructor: Ensminger.

An 123. Rich Nations and Poor Nations. 9 units (3-0-6); second term. This course explores many of the theories that attempt to explain why some nations are rich and some nations are poor. The discussion will be dominated by a case-study approach drawn from examples from Africa. Instructor: Ensminger.

APPLIED AND COMPUTATIONAL MATHEMATICS

ACM 95/100 abc. Introductory Methods of Applied Mathematics. 12 units (4-0-8); first, second, third terms. Prerequisites: Ma 1 abc, Ma 2 ab, or equivalents. Introduction to functions of a complex variable; linear ordinary differential equations; special functions; eigenfunction expansions; integral transforms; linear partial differential equations and boundary value problems. Instructors: Pierce, Pullin.

ACM 101 abc. Methods of Applied Mathematics I. 9 units (3-0-6); first, second, third terms. Prerequisite: ACM 95/100 abc or Ma 109 abc. Analytical methods for the formulation and solution of initial and boundary value problems for ordinary and partial differential equations. Techniques include the use of complex variables, generalized eigenfunction expansions, transform methods and applied spectral theory, linear operators, nonlinear methods, asymptotic and approximate methods, Weiner-Hopf, and integral equations. Instructor: Yong.

ACM 103. Complex Variables. 9 units (3-0-6); first term. Prerequisite: ACM 100 abc or instructor's permission. Advanced overview of complex variables. Topics: Contour integration, analytic continuation, series expansions, multi-valued functions, normal families, Plemelj formulas, conformal mapping, asymptotic expansions, saddle-point method. Not offered 2001–02.
ACM 104. Linear Algebra. 9 units (3-0-6); first term. Prerequisite: ACM 100 abc or instructor's permission. Vector spaces, bases, Gram-Schmidt, linear maps and matrices, linear functionals, the transposed matrix and duality, kernel, image and rank, invertibility, triangulization, determinants and multilinear forms, powers of matrices and difference equations, the exponential of a matrix and ODEs, eigenvalues, Gershgorin's disc theorem, eigenspaces, SVD, polar decomposition. Nilpotent-semisimple decomposition and the Jordan normal form. Symmetric hermitian and positive definite matrices, diagonalizability, unitary matrices, bilinear forms. Hilbert spaces, projections, Riesz theorem, Fourier series, spectrum, self-adjoint operators. Instructor: Novikov.

ACM 105. Applied Real and Functional Analysis. 9 units (3-0-6); second term. Prerequisites: ACM 100 abc and ACM 104 or instructor's permission. The Lebesgue integral on the line, general measure and integration theory; convergence theorems, Fubini, Tonelli, the Lebesgue integral in n dimensions and the transformation theorem, L^p spaces, convolution, Fourier transform and Sobolev spaces with application to PDEs, the convolution theorem, Friedrich's mollifiers, dense subspaces and approximation, normed vector spaces, completeness, Banach spaces, linear operators, the Baire, Banach-Steinhaus, open mapping and closed graph theorems with applications to differential and integral equations, dual spaces, weak convergence and weak solvability theory of boundary value problems, spectral theory of compact operators. Instructor: Novikov.

ACM 110. Introduction to Numerical Analysis: Numerical Linear Algebra. 9 units (3-0-6); first term. Prerequisites: Ma 1 abc, Ma 2 ab, or instructor's permission. Gaussian elimination, LU factorization, Cholesky decomposition, error analysis, Householder and Gram-Schmidt orthogonalization, Schur normal form, computation of eigenvalues and eigenvectors, QR method, singular value decomposition, Lanczos and Arnoldi methods, pseudospectra, nonlinear systems and Newton's method, iterative methods for large linear systems, relaxation methods, conjugate gradient methods, multigrid method. Instructor: Zhou.

ACM 111. Introduction to Numerical Analysis: Approximation Theory and Ordinary Differential Equations. 9 units (3-0-6); second term. Prerequisite: ACM 100 abc or instructor's permission. Approximation theory: interpolation by polynomials, rational functions, trigonometric functions, numerical quadrature, Gaussian integration; numerical integration of ODEs: initial value problems, one-step methods, multistep methods, error analysis and stability analysis, stiff systems, boundary value problems, shooting and multiple shooting methods. Instructor: Zhou.

ACM 112. Introduction to Numerical Analysis: Partial Differential Equations. 9 units (3-0-6); third term. Prerequisite: ACM 100 abc or instructor's permission. Finite difference methods for linear hyperbolic and parabolic PDEs, stability analysis; finite element methods for parabolic and elliptic PDEs, variational, Galerkin and collocation formulations; ADI method; introduction to shock capturing methods for nonlinear hyperbolic equations, level set methods for moving interfaces, projection methods for incompressible Navier-Stokes equations. Instructor: Zhou.

ACM 113. Introduction to Optimization. 9 units (3-0-6); third term. Prerequisite: ACM 100 abc or instructor's permission. Unconstrained optimization: first and second order conditions, Newton-like methods, conjugate direction methods, trust region methods. Constrained optimization: linear programming, general theory for nonlinear constrained optimization, quadratic programming and general linearly constrained optimization, nonlinear programming, optimizing functionals using the calculus of variations. Combinatorial optimization: integer programming, dynamic programming. Not offered 2001–02.

ACM/CS 114 ab. Parallel Algorithms for Scientific Applications. 9 units (3-0-6); first, second terms. Prerequisites: ACM 110, ACM 111, CS 20 abc or equivalents. Introduction to parallel program design for numerically intensive scientific applications. First term: parallel programming methods; distributed-memory model with message passing using the message passing interface; shared-memory model with threads using open MP; object-based models using a problem-solving environment with parallel objects. Parallel numerical algorithms: numerical methods for linear algebraic systems, such as LU decomposition, QR method, Lanczos and Arnoldi methods, pseudospectra, CG solvers. Second term: parallel implementations of numerical methods for PDEs, including finite-difference, finite-element, and shock-capturing schemes; particle-based simulations of complex systems. Implementation of adaptive mesh refinement, Grid-based computing, load balancing strategies. Instructor: Meiron.

ACM 116. Introduction to Probability Models with Applications. 9 units (3-0-6); third term. Prerequisite: Ma 112 a or instructor's permission. Introduction to fundamental ideas and techniques of stochastic modeling, with an emphasis on the applications and development of probability models and their use in engineering and sciences: stochastic processes; Markov chains; and applications in selected areas, such as genetics, decision making, queuing or waiting line theory, reliability theory, finance, simulations, and scientific computing. Instructor: Candes.

ACM 126 ab. Wavelets and Modern Signal Processing. 9 units (3-0-6); first, second terms. Prerequisites: ACM 104, ACM 105 or undergraduate equivalent, or instructor's permission. The aim is to cover the interactions existing between applied mathematics, namely applied and computational harmonic analysis, approximation theory, etc., and statistics and signal processing. The Fourier transform: the continuous Fourier transform, the discrete Fourier transform, FFT, time-frequency analysis, short-time Fourier transform. The wavelet transform: the continuous wavelet transform, discrete wavelet transforms, and orthogonal bases of wavelets. Statistical estimation. Denoising by

Ma/ACM 142 ab. Ordinary and Partial Differential Equations. 9 units (3–0–6). For course description, see Mathematics.

Ma/ACM 144 ab. Probability. 9 units (3–0–6). For course description, see Mathematics.

ACM 151 ab. Asymptotic and Perturbation Methods. 9 units (3–0–6); first, second terms. Prerequisite: ACM 101 abc or equivalent, may be taken concurrently with instructor’s permission. Approximation methods for formulating and solving applied problems, with examples taken from various fields of science. Applications to various linear and nonlinear ordinary and partial differential equations. Singular and multiscale perturbation techniques, boundary layer theory, coordinate straining, a method of averaging. Bifurcation theory, amplitude equations, and nonlinear stability. Instructor: Cohen.

ACM 190. Reading and Independent Study. Units by arrangement. Graded pass/fail only.

ACM 214. Methods of Tomography and Computational Electromagnetism. 9 units (3–0–6). For course description, see Mathematics.

ACM 290 abc. Applied and Computational Mathematics Colloquium. 1 unit (1–0–0); first, second, third terms. A seminar course in applied and computational mathematics. Weekly lectures on current developments are presented by staff members, graduate students, and visiting scientists and engineers. Graded pass/fail only.

AM 35 abc. Statics and Dynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc. Introduction to statics and dynamics of rigid and deformable bodies. Equilibrium of force systems, principle of virtual work, distributed force systems, friction, static analysis of rigid and deformable structures, kinematics, particle dynamics, rigid-body dynamics, dynamics of deformable systems, and vibrating systems. Instructor: Mason.

AM 65. Mechanics of Materials. 9 units (3-0-6); first term. Prerequisites: AM 35 abc, Ma 2 ab. Introduction to continuum mechanics, principles of elasticity, plane stress, plane strain, axisymmetric problems, stress concentrations, thin films, fracture mechanics, variational principles, frame structures, finite element methods, composites, and plasticity. Instructor: Heaton.

AM 66. Vibration. 9 units (3-0-6); third term. Prerequisites: AM 35 abc, Ma 2 ab. Introduction to vibration and wave propagation in continuous and discrete multi-degree-of-freedom systems. Strings, mass-spring systems, mechanical devices, elastic continua. Equations of motion, Lagrange's equations, Hamilton's principle, and time-integration schemes. Instructor: Heaton.

Ae/AM/CE/ME 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6). For course description, see Aeronautics.

CE/Ae/AM 108 abc. Computational Mechanics. 9 units (3-0-6). For course description, see Civil Engineering.

AM 125 abc. Engineering Mathematical Principles. 9 units (3-0-6); first, second, third terms. Prerequisite: ACM 95/100 abc. Topics include linear spaces, operators and matrices, integral equations, variational principles, differential equations, stability, perturbation theory. Applications to problems in engineering and science are stressed. Instructor: Beck.

AM 151 abc. Dynamics and Vibrations. 9 units (3-0-6); first, second, third terms. Prerequisite: ACM 95/100 abc or instructor's permission. Variational principles and Lagrange's equations. Response of mechanical systems to periodic, transient, and random excitation. Free and forced response of discrete and continuous systems. Approximate analysis methods. Introduction to nonlinear oscillation theory and stability. Instructor: Iwan.

AM 175 abc. Advanced Dynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: AM 125 abc and AM 151 abc or equivalents. Topics include linear and nonlinear vibrations of discrete and continuous systems, stability and control of dynamical systems, and stochastic processes with applications to random vibrations. Not offered every year.

AM 176 abc. Nonlinear Dynamical Systems and Chaos. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 125 abc or instructor's permission. Basic ideas from dynamical systems theory. One-dimensional maps, circle maps, rotation numbers, kneading theory, strange attractors, structural stability, hyperbolicity, symbolic dynamics, invariant manifolds, Poincaré maps, the Smale horseshoe. Techniques of local bifurcation theory are developed with emphasis on center manifolds and normal forms, global bifurcations, chaos, homoclinic and heteroclinic motions. Applications will be taken from a variety of areas, including fluid mechanics, structural mechanics, control theory, circuit theory, orbital mechanics, condensed-matter physics, and classical field theory. Not offered every year, but see CDS 140.

AM 200. Special Problems in Advanced Mechanics. Hours and units by arrangement. By arrangement with members of the staff, properly qualified graduate students are directed in independent studies in mechanics.

Ae/AM/ME 209 abc. Seminar in Solid Mechanics. 1 unit (1-0-0). For course description, see Aeronautics.

Ae/AM/MS/ME 213 abc. Mechanics and Materials Aspects of Fracture. 9 units (3-0-6). For course description, see Aeronautics.

Ae/AM/CE/ME 214 abc. Computational Solid Mechanics. 9 units (3-0-6). For course description, see Aeronautics.

Ae/AM/ME 215. Dynamic Behavior of Materials. 9 units (3-0-6). For course description, see Aeronautics.

AM/Ae/ME 220 ab. Elastic Stability of Structures and Solids. 9 units (3-0-6); second, third terms. Prerequisite: instructor’s permission. Introduction to the notions of stability and bifurcation of elastic systems using simple examples. Koiter’s general asymptotic theory for the buckling, post-buckling, mode interaction, and imperfection sensitivity in elastic systems. One-dimensional problems include the elastica, thin-walled beams, circular arches, trusses, and frames. Two-dimensional examples include flat plates with simple or multiple buckling loads and circular cylinders under lateral pressure or axial compression. Extension to continuum solid mechanics includes plane strain and simple three-dimensional problems. Not offered every year.

Ae/AM/ME 223. Plasticity. 9 units (3-0-6). For course description, see Aeronautics.
APh 25. Introductory Quantum Mechanics. 9 units (3-0-6); third term. Prerequisites: Ph 2 ab, Ma 2 ab, or equivalents. Introduction to quantum mechanics: Schrödinger equation, uncertainty principle, postulates of quantum mechanics, wave packets, dispersion, abrupt potentials, harmonic oscillator, angular momentum. Instructor: Quake.

APh 77 bc. Laboratory in Applied Physics. 9 units; second, third terms. Selected experiments chosen to familiarize students with laboratory equipment, procedures, and characteristic phenomena in plasmas, fluid turbulence, fiber optics, X-ray diffraction, microwaves, high-temperature superconductivity, black-body radiation, holography, and computer interfacing of experiments. Instructors: Goodwin and staff.

APh 78 abc. Senior Thesis, Experimental. 9 units; first, second, third terms. Prerequisite: instructor's permission. Supervised experimental research experience, open only to senior applied physics majors. Requirements will be set by individual faculty members, but will include a written report based upon actual laboratory experience. The selection of topic and the final report must be approved by the Applied Physics Undergraduate Committee. Students desiring additional units should register in APh 100. Not offered on a pass/fail basis. Instructors: Culick and applied physics faculty.

APh 79 abc. Senior Thesis, Theoretical. 9 units; first, second, third terms. Prerequisite: instructor's permission. Supervised theoretical research experience, open only to senior applied physics majors. Requirements will be set by individual faculty members, but will include a written report based upon actual laboratory experience. The selection of topic and the final report must be approved by the Applied Physics Undergraduate Committee. Not offered on a pass/fail basis. This course cannot be used to satisfy the laboratory requirement in APh. Instructors: Culick and applied physics faculty.

APh 100. Advanced Work in Applied Physics. Units in accordance with work accomplished. Special problems relating to applied physics, arranged to meet the needs of students wishing to do advanced work. Primarily for undergraduates. Students should consult with their advisers before registering. Graded pass/fail.

Ae/APh/CE/ME 101 abc. Fluid Mechanics. 9 units (3-0-6). For course description, see Aeronautics.

Ae/APh 104 abc. Experimental Methods. 9 units (3-0-6 first term; 1-3-5 second, third terms). For course description, see Aeronautics.

APh 105 abc. States of Matter. 9 units (3-0-6); first, second, third terms. Prerequisite: APh 17 abc or equivalent. A survey emphasizing unifying concepts, such as order parameters, scaling laws, quasi-particle excitations, and correlation functions. Topics: long-range ordered states such as crystals, superfluids, and ferromagnets; phase transitions; critical phenomena; ideal classical and degenerate gases; theory of liquids; band theory of solids; fluctuations; noise. Instructor: Johnson.
APh 107. Advanced Dynamics. 9 units (3-0-6); third term.
Prerequisite: dynamics at level of Ph 106 ab. Review of Hamilton and
Hamilton-Jacobi formalisms; integrable systems; continuous and dis-
crete dynamics (maps); the KAM analysis; solitons; dissipative systems
and fractal sets; a variety of examples. Not offered every year.

APh 110. Topics in Applied Physics. 2 units (2-0-0); first, second
terms. A seminar course designed to acquaint juniors and first-year
graduate students with the various research areas represented in
the option. Lecture each week given by a different faculty member of
the option, reviewing, in general terms, his or her field of research.
Graded pass/fail. Instructors: Bellan and applied physics faculty.

APh 114 abc. Solid-State Physics. 9 units (3-0-6); first, second,
third terms. Prerequisites: APh 25 and APh 125 ab or Pb 125 abc or equivalent.
Introductory lecture and problem course dealing with experimental
and theoretical problems in solid-state physics. Topics include crystal
structure, symmetries in solids, lattice vibrations, electronic states in
solids, transport phenomena, semiconductors, superconductivity,
magnetism, ferroelectricity, defects, and optical phenomena in solids.
Instructor: Atwater.

APh 124. Advanced Modern Optics Laboratory. 9 units; third term.
Prerequisites: APh 24, APh 130, or APh 190 ab. Laboratory experiments
covering both active and passive optical devices and topics relevant to
their use in modern optical systems. Topics covered include propaga-
tion effects in optical fibers; fiber-optic traveling-wave amplifiers; gain
saturation and saturation dynamics in optical amplifiers; sources for
fiber-optic systems including semiconductor lasers and fiber lasers;
direct modulation, external modulation of laser sources; noise in laser
sources. Instructor: Shumate.

APh 125 abc. Quantum Mechanics of Matter. 9 units (3-0-6); first,
second, third terms. Prerequisite: APh 25. Quantum mechanics and
applications to problems in solids, liquids, and gases. Topics: central
force problems; hydrogen atom; multielectron atoms; approximation
methods: time-independent and time-dependent perturbation theory,
variational method, WKB approximation; eigenstates of molecules;
theories for chemical bonding; optical transitions in matter; scattering:
Born approximation, partial wave expansions, electron and photon
scattering in matter; the electromagnetic field; quantum theory of crys-

APh/EE 130 abc. Introduction to Optoelectronics and
Optoelectronic Devices. 9 units (3-0-6); first, second, third terms.
Prerequisites: APh 23, 24, or instructor’s permission. Introduction to phe-
nomena, devices, and applications of optoelectronics. Gaussian beam
propagation, optical resonators. Interaction of light and matter, laser
rate equations, mode-locking, Q-switching, semiconductor lasers.
Optical detectors and amplifiers; noise characterization of optoelec-
tronic devices. Propagation of light in crystals, electro-optic effects and
their use in modulation of light; introduction to nonlinear optics.
System design considerations, with examples from optical com-
APh 156 abc. Plasma Physics. 9 units (3–0–6); first, second, third terms. Prerequisite: Ph 106 abc or equivalent. An introduction to the principles of plasma physics. A multi-tiered theoretical infrastructure will be developed consisting of the Hamilton-Lagrangian theory of charged particle motion in combined electric and magnetic fields, the Vlasov kinetic theory of plasma as a gas of interacting charged particles, the two-fluid model of plasma as interacting electron and ion fluids, and the magnetohydrodynamic model of plasma as an electrically conducting fluid subject to combined magnetic and hydrodynamic forces. This infrastructure will be used to examine waves, transport processes, equilibrium, stability, and topological self-organization. Examples relevant to plasmas in both laboratory (fusion, industrial) and space (magnetosphere, solar) will be discussed. Instructor: Bellan.

EE/APh 180. Solid-State Devices. 9 units (3–0–6). For course description, see Electrical Engineering.

APh/EE 183 abc. Fundamentals of Electronic Devices. 9 units (3–0–6); first, second, third terms. Introduction to the fundamentals of modern electronic and optoelectronic devices. Topics include pn junctions, bipolar transistors, field-effect transistors, magnetic devices, light-emitting diodes, lasers, detectors, solar cells, chemical sensors, and MEMS. Emphasis will be placed on nanostructures and nanofabrication techniques. Where appropriate, integration and systems-level issues will be included. Instructor: McGill.

APh 190 abc. Quantum Electronics. 9 units (3–0–6); first, second, third terms. Prerequisite: Ph 125 or equivalent. Generation, manipulations, propagation, and applications of coherent radiation. The basic theory of the interaction of electromagnetic radiation with resonant atomic transitions. Laser oscillation, important laser media, Gaussian beam modes, the electro-optic effect, nonlinear-optics theory, second harmonic generation, parametric oscillation, stimulated Brillouin and Raman scattering. Other topics include: light modulation, diffraction of light by sound, one integrated optics, phase conjugate optics, and quantum noise theory. Not offered 2001–02.

APh 200. Applied Physics Research. Units in accordance with work accomplished. Offered to graduate students in applied physics for research or reading. Students should consult their advisers before registering. Graded pass/fail.

APh 214 abc. Advanced Solid-State Physics. 9 units (3–0–6); first, second, third terms. Prerequisites: APh 114 abc and Ch 125 abc or Ph 125 abc. Course in experimental and theoretical solid-state physics. Topics: phonons; electronic excitation in solids; electron-phonon interactions; optical transport and magnetic properties; superconductivity; ferroelectricity. Emphasis will be mainly theoretical, with frequent comparison between theoretical predictions and experimental results. Not offered 2001–02.

Ph/APh 223 abc. Advanced Topics in Condensed Matter Physics. 9 units (3–0–6). For course description, see Physics.

APh 250. Advanced Topics in Applied Physics. Units and term to be arranged. Content will vary from year to year; topics are chosen according to interests of students and staff. Visiting faculty may present portions of this course. Instructor: Staff.

APh 300. Thesis Research in Applied Physics. Units in accordance with work accomplished. APh 300 is elected in place of APh 200 when the student has progressed to the point where his or her research leads directly toward a thesis for the degree of Doctor of Philosophy. Approval of the student’s research supervisor and department adviser or registration representative must be obtained before registering. Graded pass/fail.

ART HISTORY

These courses are open only to students who have fulfilled the freshman humanities requirement.

Art 46. The Age of the Great Cathedrals. 9 units (3–0–6). A study of the arts of Western Europe from the disintegration of the Roman Empire circa A.D. 476, to the 14th century. The diverse historical forces at work during this long period produced a correspondingly varied art. Emphasis will be on the later Middle Ages, from circa 1200–1350, a period marked by a synthesizing of inherited traditions into a comprehensive whole. Major monuments of architecture, such as the cathedrals of Notre Dame, Chartres, Reims, Cologne, Strasbourg, and Westminster, as well as sculpture, illuminated manuscripts, mosaics, panel painting, and stained glass will be examined within the aesthetic and social framework of countries as culturally diverse as France, Italy, Germany, Spain, and Britain. Not offered 2001–02.

Art 49. From Van Eyck to Rembrandt: Northern European Art: 1400–1650. 9 units (3–0–6); third term. A survey of artistic developments in Northern Europe and Spain from the late Middle Ages through the Renaissance and Baroque periods. The course will focus upon the complexity of northern art, from its origins in the still forceful medieval culture of 15th-century Flanders, to its confrontation with Italian Renaissance humanism in the 16th century. The effects of this cultural synthesis and the eventual development of distinct national schools of painting in the 17th century are examined through the works of the period’s dominant artists, including Van Eyck, Dürer, Holbein, Velásquez, Rubens, Hals, and Rembrandt. Instructor: Howard.
Art 50. Baroque Art. 9 units (3-0-6); third term. A survey of the arts of painting, sculpture, and architecture from the late 16th century to the late 18th century. A confident and optimistic age, the baroque fostered the rise of national schools that produced artistic giants like Bernini, Caravaggio, Rubens, Rembrandt, Velázquez, Claude, Poussin, Tiepolo, and Guardi. The masterpieces of these and other artists reflect the wide variety of baroque art and will be studied within the context of certain commonly held ideals and of the differing economic, political, and religious systems that characterized the period. Not offered 2001–02.

Art 51. European Art of the 18th Century: From the Rococo to the Rise of Romanticism. 9 units (3-0-6); first term. Course will encompass 18th-century European painting, sculpture, architecture, and the decorative arts. During this period a variety of styles and subjects proliferated in the arts, as seen in the richly diverse works of artists such as Watteau, Boucher, Chardin, Fragonard, Tiepolo, Canaletto, Hogarth, Gainsborough, Blake, David, Piranesi, and Goya, which reflect a new multiplicity in ways of apprehending the world.

Art 52. British Art. 9 units (3-0-6). A survey course on British painting, sculpture, and architecture in the 17th, the 18th, and the 19th centuries. By examining the works of well-known British artists such as Hogarth, Blake, Gainsborough, Reynolds, Constable, and Turner, the class will focus on the multiplicity of styles and themes which developed in the visual arts in Britain from 1740 to 1840 and are part of the wider artistic phenomenon known as Romanticism. This introduction to the British visual arts will be enriched by several class meetings in the Huntington Art Gallery. Not offered 2001–02.

Art 55. Art of the 19th Century. 9 units (3-0-6); second term. A survey of 19th-century art with an emphasis on French painting created between 1780 and 1880. The lectures will focus on issues such as the new image of the artist, the tension between public and private statements in the arts, the rise of landscape painting, the development of the avant-garde, and paintings of modern life during this period.

Art 65. History of Western Architecture. 9 units (3-0-6). A survey of major developments in Western architecture and urbanism from the classical civilizations of Greece and Rome to the 20th century. The course focuses upon the visual, spatial, and functional properties and the cultural significance of key building types ranging from Greek temples, Roman civil and administrative structures, Gothic cathedrals, Renaissance and baroque churches and city palaces, to the technology-based skyscrapers and other forms of 20th-century modernism. Not offered 2001–02.

Art 101. Selected Topics in Art History. 9 units (3-0-6). Offered by announcement. Instructor: Staff.

Art 103. Ancient Art: From the Pyramids to the Colosseum. 9 units (3-0-6). A survey of the art of the earliest civilizations of the Ancient Near East and Mediterranean from the Bronze Age to approximately A.D. 300. The major monuments—architectural, sculptural, and pictorial—of Mesopotamia, Egypt, the Aegean, Greece, and Rome will be examined as solutions to problems of form and function presented by communal political, economic, and religious life. Emphasis will be placed on the creation of Graeco-Roman art, the foundation of the Western artistic tradition. The course will include one or more study trips to the Getty Museum. Not offered 2001–02.

Art 108. Italian Renaissance Art. 9 units (3-0-6); first term. A basic study of the greatest achievements of Italian painting, sculpture, and architecture in the 15th and 16th centuries. Leonardo da Vinci, Michelangelo, Raphael, Titian, Veronese, and others will be examined for their formal beauty and power, and studied as manifestations of individual genius in the context of their time and place: Italy, fragmented politically, yet at the peak of its cultural dominance. Instructor: Howard.

Art 118. Modern Art. 9 units (3-0-6); third term. An in-depth survey of international painting and sculpture of the first half of the 20th century. Crucial movements, among them Fauvism, German Expressionism, Cubism, Dadaism, Surrealism, and American abstraction and realism between the two world wars, will be studied, and masterworks by a number of major artists of this period (e.g., Picasso, Matisse, Nolde, Duchamp, Magritte, Hopper) will be closely examined. Instructor: Staff.

Art 150. The Arts of Dynastic China. 9 units (3-0-6); second term. A survey of 19th-century art with an emphasis on French painting created between 1780 and 1880. The lectures will focus on issues such as the new image of the artist, the tension between public and private statements in the arts, the rise of landscape painting, the development of the avant-garde, and paintings of modern life during this period.

Art 151. Traditions of Japanese Art. 9 units (3-0-6). An introduction to the great traditions of Japanese art from prehistory through the Meiji Restoration (1868–1912). Students will examine major achievements of sculpture, painting, temple architecture, and ceramics as representations of each artistic tradition, whether native or adapted from foreign sources. Fundamental problems of style and form will be discussed, but aesthetic analysis will always take place within the conditions created by the culture. Instructor: Wolfram.
Ay 1. The Evolving Universe. 9 units (3-3-3); third term. This course is intended primarily for freshmen not expecting to take more advanced astronomy courses and will satisfy the menu requirement of the Caltech core curriculum. Introduction to modern astronomy that will illustrate the accomplishments, techniques, and scientific methodology of contemporary astronomy. The course will be organized around a set of basic questions, showing how our answers have changed in response to fresh observational discoveries. Topics to be discussed will include telescopes, stars, planets, the search for life elsewhere in the universe, supernovae, pulsars, black holes, galaxies and their active nuclei, and the big bang. There will be a series of laboratory exercises intended to highlight the path from data acquisition to scientific interpretation. Students will also be required to produce a term paper on an astronomical topic of their choice and make a short oral presentation. In addition, a field trip to Palomar Observatory will be organized. Instructor: Scoville. Additional information concerning this course can be found at http://astro.caltech.edu/academics/ay1/.

Ay 103. Introduction to the Solar System. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

Ay 20. Basic Astronomy and the Galaxy. 9 units (3-0-6); first term. Prerequisites: Ma 1 abc, Ph 1 abc, or for freshmen with a strong high-school background in math and physics. Astronomical terminology. Stellar masses, distances, and motions. Star clusters and their galactic distributions. Stellar spectra, magnitudes, and colors. Structure and dynamics of the galaxy. Instructor: Hillenbrand.

Ay 30. Current Trends in Astronomy. 3 units (2-0-1); second term. Weekly seminar primarily for sophomore astronomy majors. This seminar is held in faculty homes in the evening and is designed to encourage student communication skills as they are introduced to faculty members and their research. Fulfills Institute communications requirement for Ay majors. Graded pass/fail. Instructor: A. Sargent.

Ay 43. Reading in Astronomy and Astrophysics. Units in accordance with work accomplished. Student must have a definite reading plan and obtain permission of instructor before registering. Graded pass/fail.

Ay 78 abc. Senior Thesis. 9 units; second term. Prerequisite: to register for this course, the student must obtain approval of the astronomy option representative and the prospective thesis adviser. Open only to senior astronomy majors. This research must be supervised by a faculty member, your thesis adviser. The written thesis must be completed and approved by the adviser before the end of the third term. Students wishing assistance in finding an adviser and/or a topic for a senior thesis are invited to consult with the astronomy option representative. A grade will not be assigned in Ay 78 until the end of the third term. P grades will be given the first two terms, and then changed at the end of the course to the appropriate letter grade.

Ay 103. Introduction to the Solar System. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

Ay 105. Optical Astronomy Instrumentation Lab. 9 units (1-6-2); second term. Prerequisite: Ay 20. An opportunity for astronomy and physics undergraduates (juniors and seniors) to gain firsthand experience with the basic instrumentation tools of modern optical and infrared astronomy. The 10 weekly lab experiments are expected to include radiometry measurements, geometrical optics, optical aberrations and ray tracing, spectroscopy, fiber optics, CCD electronics, CCD characterization, photon counting detectors, vacuum and cryogenic technology, and stepper motors and encoders. Instructor: Steidel.

Ay 121. Radiative Processes. 9 units (3-0-6); first term. Prerequisites: Ay 101 (undergraduates); Ph 123 or equivalent. The interaction of radiation with matter: radiative transfer, emission, and absorption. Compton processes, synchrotron radiation, collisional excitation, spectroscopy of atoms and molecules. Instructor: Kamionkowski.

Ay 122. Astronomical Measurements and Instrumentation. 9 units (3-0-6); first term. Prerequisite: Ph 106 or equivalent. Measurement and signal analysis techniques throughout the electromagnetic spectrum. Telescopes and interferometers; detectors and receivers; photometry and radiometry; imaging devices and image processing; spectrometers; space telescopes. Instructors: Steidel, Kulkarni.
Ay 123. Structure and Evolution of Single and Binary Stars. 9 units (3-0-6); third term. Prerequisites: Ay 101 (undergraduates); Pb 125 or equivalent. Nuclear reactions, energy transport, equations of state, stellar atmospheres (including winds and irradiation), evolution of low- and high-mass stars. Interacting binary stars: mass transfer, tides, and loss of mass and angular momentum. Applications to nucleosynthesis, galaxy evolution, and exotic binaries: cataclysmic variables, X-ray binaries, and black hole and neutron star binaries. Instructor: Phinney.

Ay 124. Structure and Dynamics of Galaxies. 9 units (3-0-6); second term. Prerequisites: Ay 21 (undergraduates); Pb 106 or equivalent. Stellar dynamics and properties of galaxies; kinematics and dynamics of our galaxy; spiral structure; stellar composition, masses, and rotation of external galaxies; star clusters; galactic evolution; binaries, groups, and clusters of galaxies. Instructor: Ellis.

Ay 125. High-Energy Astrophysics. 9 units (3-0-6); second term. Prerequisites: Ay 21 (undergraduates); Pb 106 or equivalent. High-energy astrophysics and the final stages of stellar evolution; supernovae, binary stars, accretion disks, pulsars; extragalactic radio sources; active galactic nuclei; black holes. Instructor: Readhead.

Ay 126. Interstellar Medium. 9 units (3-0-6); second term. Prerequisite: Ay 102 (undergraduates). Physical processes in the interstellar medium. Ionization, thermal, and dynamic balance of interstellar medium, molecular clouds, hydrodynamics, magnetic fields, H II regions, supernova remnants, star formation, global structure of interstellar medium. Instructors: A. Sargent, Scoville.

Ay 127. Cosmology and Galaxy Formation. 9 units (3-0-6); third term. Prerequisites: Ay 21 (undergraduates); Pb 106 or equivalent. Cosmology; extragalactic distance determinations; relativistic cosmological models; galaxy formation and clustering; thermal history of the universe, microwave background; nucleosynthesis; cosmological tests. Instructor: Djorgovski.

Ay 141 abc. Research Conference in Astronomy. 3 units (1-0-2); first, second, third terms. Oral reports by astronomy students on current research. These provide an opportunity for practice in the organization and presentation of reports. A minimum of two presentations will be expected from each student each year. This course fulfills the Institute communications requirement and is required of all astronomy graduate students who have passed their preliminary exams. It is also recommended for astronomy seniors. Graded pass/fail. Instructor: Blain, Ellis.

Ay 142. Research in Astronomy and Astrophysics. Units in accordance with work accomplished. The student should consult a member of the department and have a definite program of research outlined. Approval by the student's adviser must be obtained before registering. 36 units of Ay 142 or Ay 143 required for candidacy. Graded pass/fail.

Ay 143. Reading and Independent Study. Units in accordance with work accomplished. The student should consult a member of the department and have a definite program of reading and independent study outlined. Approval by the student's adviser must be obtained before registering. 36 units of Ay 142 or Ay 143 required for candidacy. Graded pass/fail.

Ay/EE 144. Imaging at Radio, Infrared, and Optical Wavelengths by Interferometric and Adaptive Techniques. 9 units (3-0-6); third term. The theory of coherence, interferometry, and aperture synthesis observations at radio and visible wavelengths. The technique of adaptive optics to overcome atmosphere blurring at visible wavelengths. Emphasis is given to the formation of images with limited spatial frequency coverage, to applications in astronomy, geodesy, and high-resolution imaging with large optical telescopes. Relative emphasis on interferometric imaging versus adaptive optics will vary from year to year. Not offered 2001–02.

Ay/Ph 145. Data Analysis and Numerical Astrophysics. 9 units (3-0-6); third term. Statistical analysis and signal processing essential to observational and to experimental science. Numerical simulation techniques used in astrophysics, solutions of nonlinear equations, n-body and hydrodynamic simulations. Topics: calculus of probability, Bayes theorem, distributions of single and multiple random variables, normal samples, parameter estimation, time series analysis of signals, Fourier transforms, convolution and correlation, sampling and digitizing, power spectrum measurement, digital filters. Examples from astronomy and physics. Instructor: Kulkarni.

Ay 211. Extragalactic Astronomy. 9 units (3-0-6); third term. Prerequisites: Ay 127, Ay 124, and Ay 123. Instructors: Djorgovski/W. Sargent.

Ay/Ph 212. Topics in Astronomy: Cosmology and Large-Scale Structures. 9 units (3-0-6); third term. This course will cover our current understanding of structure formation and cosmology and will form links with observations and numerical simulations. Topics: overview of basic FRW cosmology; growth of linear perturbations; CMBR anisotropies; nonlinear evolution of dark matter density contrast; abundances of structures; numerical simulation of dark matter; formation of baryonic structure; Universe at z<10 (absorption systems, high-z galaxies, IGM); hydro simulations; inflation and the very early Universe. Not offered 2001–02.
Ay 215. Seminar in Theoretical Astrophysics. 9 units (3-0-6); second term. Course for graduate students and seniors in astronomy and planetary science. Students will be required to lead some discussions. Topic will be selected based on student interest. Possibilities for 2001–02 include the origin of magnetic fields, extrasolar planets, accretion disks. Instructors: Goldreich, Phinney.

Ay 218. High-Energy Astrophysics. 9 units (3-0-6); second term. Prerequisites: Ay 125, Pb 106, and Pb 125 or equivalent. This course will primarily focus on gamma-ray bursts (GRBs) and soft gamma-ray repeaters (SGRs). These two objects are excellent physical laboratories of relativistic shocks and super-strong magnetic fields, respectively. Topics: observational summary of GRBs and afterglow emission; propagation, particle acceleration, and radiation from relativistic shocks; observational summary of SGRs and associated plerions; and super-strong magnetic fields inside neutron stars and their effects on photons outside. Graded pass/fail. Not offered 2001–02.

Ph/Ay 221 abc. Cosmology and Particle Astrophysics. 9 units (3-0-6). For course description, see Physics.

Ge/Ay 226. Observational Planetary Astronomy. 9 units (3-3-3). For course description, see Geological and Planetary Sciences.

Ay 235. Research Seminar. 1 unit (1-0-0); third term. Will present seminars on current research interests of the astronomy faculty to graduate students during the fall term. Instructor: Staff. Not offered 2001–02.

BIOCHEMISTRY AND MOLECULAR BIOPHYSICS

BMB/Bi/Ch 170. Principles of Three-Dimensional Protein Structure. 9 units (3-3-3); first term. Prerequisite: Bi/Ch 110. The forces determining the folding of proteins into their unique tertiary structures. Protein structures will be classified by organization of the structural elements and structural motifs, and their influence on function will be explored. Topics will include enzyme and antibody structure and function, virus structures, protein-nucleic acid interactions, methods of macromolecular structure determination, and protein structure analysis. A computer graphics system will be used for the display and analysis of macromolecular structure. Instructors: Bjorkman and Rees.

BMB 176. The Molecular Basis of Protein Function. 9 units (3-0-6); second term. Prerequisite: BMB/Bi/Ch 170. Theory, mechanisms, and kinetics of protein-ligand interactions and enzyme catalysis, including the role of cofactors. The course will also cover the cooperativity characteristic of multisubunit protein complexes and will emphasize the relationship between protein structure and function. Instructors: Mayo and Roberts.

BMB 178. Fundamentals of Molecular Genetics. 9 units (3-0-6); third term. Prerequisite: BMB 176. Principles and mechanisms of DNA repair and replication, transcription and splicing, and protein synthesis. Instructors: Abelson, Campbell, Parker.

Bi/BMB 251 abc. Current Research in Cellular and Molecular Biology. 1 unit (1-0-0). For course description, see Biology.

BMB 299. Graduate Research. Units to be arranged; first, second, third terms. Students may register for research units after consultation with their adviser.

BIOENGINEERING

BE 200 a. Structure and Function. 12 units (3-3-6); first term. Prerequisite: instructor’s permission. Introduction to the structure and function of living organisms from the biomolecular to the organismal level. Anatomy, biodiversity, development, genetics, and physiology of key systems will be discussed in detail with an emphasis on the enormous potential for the integration of engineering principles with biological phenomena. Instructor: Hove.

BE/ChE 200 b. Introduction to the Design of Biological Molecules and Systems. 9 units (3-0-6) or 12 units (3-3-6); second term. Prerequisite: Bi/Ch 110 or instructor’s permission. Current research problems in biological design will serve to introduce principles and methods of molecular evolution, recombinant DNA, protein design, metabolic engineering, cell and tissue engineering. Discussion of evolutionary design will introduce concepts of sequence space, fitness, evolutionary search strategies and state-of-the-art methods of laboratory evolution. Instructor: Arnold.

BE 200 c. Biomechanics. 12 units (3-3-6); third term. Prerequisite: instructor’s permission. The solid and fluid mechanics of natural systems will be examined from the subcellular to the organismal level by the application of traditional engineering principles and state-of-the-art micro- and nanotechnology. Cellular/intracellular motility, animal locomotion, cardiac/respiratory mechanics, and microfluidic pumping are some of the topics to be explored. Biomaterials and their application to engineering and biomedical problems will also be discussed. Instructor: Gharib.

BE 250 abc. Research in Bioengineering. Units to be arranged. By arrangement with members of the staff, properly qualified graduate students are directed in bioengineering research.
Biology

Bi 1. Drugs and the Brain. 9 units (4–0–5); third term. This course introduces nonbiologists to recent advances in biology, biomedical science, and applied biology. The scientific community is beginning to understand the mechanisms of drug addiction, the causes of major neurological diseases, and some medical therapies for these diseases. Because many of these advances involve molecular biology and genetics, the course treats the fundamental aspects of drug actions on the nervous system, from the quantitative, molecular, physical, and chemical viewpoints. Instructors: Lester, Staff.

Bi 2. Current Research in Biology. 6 units (2–0–4); first term. Intended for students considering the biology option; open to freshmen. Current research in biology will be discussed, on the basis of reading assigned in advance of the discussions, with members of the divisional faculty. Graded pass/fail. Instructors: Abelson, Revel, and staff.

Bi 8. Introduction to Molecular Biology; Organization and Expression of Genetic Information. 9 units (3–0–6); second term. This course and its sequel, Bi 9, cover biology at the cellular level. After introducing basic concepts necessary for understanding biological systems at the molecular level, Bi 8 emphasizes cellular processes involved in the organization and expression of genetic information, including what is commonly called molecular biology, and introduces topics in developmental biology and immunology. Graded pass/fail. Instructor: Varshavsky.

Bi 9. Cell Biology. 9 units (3–0–6); third term. Continues coverage of biology at the cellular level, begun in Bi 8. Topics: cytoplasmic structure, membrane structure and function, cell motility, and cell-cell recognition. Emphasis on both the ultrastructural and biochemical approaches to these topics. Instructors: Dunphy and staff.

Bi 10. Cell Biology Laboratory. 6 units (1–3–2); third term. Prerequisite: Bi 8; designed to be taken concurrently with Bi 9. Introduction to basic methods in cell and molecular biological research, including polymerase chain reaction, molecular cloning, expression and purification of recombinant fusion proteins in bacteria, enzymology, and gel electrophoresis of proteins and nucleic acids. Instructor: Deshaies.

Bi 12. Introduction to Developmental Biology. 9 units (3–0–6); second term. Prerequisite: Bi 1 or Bi 9. A survey of the development of multicellular organisms. Topics will include the beginning of a new organism (fertilization), the creation of multicellularity (cellularization, cleavage), reorganization into germ layers (gastrulation), induction of the nervous system (neuralization), and creation of specific organs (organogenesis). Emphasis will be placed on the mechanisms underlying morphogenetic movements, differentiation, and interactions during development, covering both classical and modern approaches to studying these processes. Instructor: Bronner-Fraser.

Bi 22. Undergraduate Research. Units to be arranged; first, second, third terms. Special problems involving laboratory research in biology; to be arranged with instructors before registration. Graded pass/fail. Instructor: Staff.

Bi 23. Biology Tutorial. Units to be arranged; maximum of 6 units per term; second, third terms. Study and discussion of special problems in biology, usually involving regular tutorial sessions with instructors. To be arranged through the instructor before registration. Graded pass/fail. Instructors: Strauss and staff.

Bi 80. Biology Major Seminar. 3 units (1–0–2); first term. Prerequisite: Bi 9 or instructor’s permission. May be repeated for credit, with permission of instructor. Discussions and student presentations designed for biology majors from sophomores to seniors, to provide information and practice oral communication techniques. Topics will include career choices, admission to medical or graduate school, student research projects including senior thesis research, and current biological topics of interest. Graded pass/fail. Instructors: Revel, Schuman.

Bi 90 abc. Undergraduate Thesis. 12 or more units per term; first, second, third terms. Prerequisites: 18 units of Bi 22 (or equivalent research experience) in the research area proposed for the thesis, concurrent registration for Bi 80 during first term, and instructor’s permission. Intended to extend opportunities for research provided by Bi 22 into a coherent individual research project, carried out under the supervision of a member of the biology faculty. Normally involves three or more consecutive terms of work in the junior and senior years. The student will formulate a research problem based in part on work already carried out, evaluate previously published work in the field, and present new results, in a thesis format. First two terms graded pass/fail; final term graded by letter on the basis of the completed thesis. Instructors: Revel and staff.

Ph/Bi 103 b. Neuroscience for Physicists and Engineers. 9 units (3–0–6). For course description, see Physics.

Bi/Ch 110. Introduction to Biochemistry. 12 units (4–0–8); first term. Prerequisite: Ch 41 abc or instructor’s permission. Lectures and recitation introducing the molecular basis of life processes, with emphasis on the structure and function of proteins. Topics will include the derivation of protein structure from the information inherent in a genome, biological catalysis, the intermediary metabolism that provides energy to an organism, and the use of DNA manipulations, cloning, and expression of proteins in foreign hosts to study protein structure and function. Instructors: Richards, Campbell.

Bi/Ch 111. Biochemistry of Gene Expression. 12 units (4–0–8); second term. Prerequisites: Bi/Ch 110; Bi 8 and Bi 122 recommended. Lectures and recitation on the molecular basis of biological structure and function. Emphasizes the storage, transmission, and expression of genetic information in cells. Specific topics include DNA replication, recombination, repair and mutagenesis, transcription, RNA processing, and protein synthesis. Instructors: Campbell, Parker.
Bi 113. Biochemistry of the Cell. 12 units (4-0-8); third term. Prerequisites: Bi/Ch 110; Bi 9 recommended. Lectures and recitation on the biochemistry of basic cellular processes in the cytosol and at the cell surface, with emphasis on signal transduction, membrane trafficking, and control of cell division. Specific topics include cell-cell signaling, control of gene expression by cell surface molecules, tumorigenesis, endocytosis, exocytosis, viral entry, and cell cycle regulation. Instructors: Chan and staff.

Bi 114. Immunology. 12 units (4-0-8); second term. Prerequisites: Bi 8, Bi 9, Bi 122 or equivalent, and Bi/Ch 110 recommended. The course will cover the molecular and cellular mechanisms that mediate recognition and response in the mammalian immune system. Topics include cellular and humoral immunity, the structural basis of immune recognition, antigen presentation and processing, developmental regulation of gene rearrangement, biochemistry of lymphocyte activation, lymphokines and the regulation of cellular responses, T and B cell development, and mechanisms of tolerance. Instructors: Alberola-Ila, Bjorkman, Rothenberg.

CNS/Bi 120. The Neuronal Basis of Consciousness. 9 units (4-0-5). For course description, see Computation and Neural Systems.

Bi 122. Genetics. 9 units (3-0-6); first term. Prerequisite: Bi 8 or Bi 9, or instructor’s permission. Lecture and discussion course covering basic principles of genetics. Instructors: Hay, Sternberg.

Bi 123. Genetics Laboratory. 12 units (2-8-2); second term. Prerequisite: Bi 122. Laboratory exercises illustrating the principles of genetics, with emphasis on Mendelian inheritance in multicellular eukaryotes, including Drosophila melanogaster and Caenorhabditis elegans. Instructors: Hay and staff.

Bi 125. Principles and Methods of Gene Transfer and Gene Manipulation in Eukaryotic Cells. 6 units (2-0-4); second term. Prerequisite: Bi/Ch 110. Lecture and discussion course dealing with modern approaches to “genetic intervention” in eukaryotic cells. Topics: mutagenesis of cultured animal cells and selection schemes; gene transfer into cultured cells mediated by naked DNA, chromosomes and viruses; transformation of yeast by chromosomal DNA and plasmids; neoplastic transformation of plant cells by Agrobacteria plasmids; nuclear transplantation and gene injection into amphibian eggs and oocytes; selective drug-induced gene amplification in cultured animal cells; somatic cell hybridization. Instructor: Attardi. Given in alternate years; not offered 2001–02.

Bi 127. Regulation of the Cell Cycle. 6 units (2-0-4); third term. Prerequisites: Bi 8, Bi 9, Bi/Ch 110, or graduate standing. Enrollment by instructor’s permission. An advanced seminar focusing on regulation of the cell cycle in eukaryotes. Genetic, biochemical, and molecular studies of cell cycle control in different biological systems including yeast, vertebrate and invertebrate embryos, and vertebrate cells in culture will be featured. The relationship of cell proliferation, and the signals that control it, to cellular differentiation will be a theme. Critical review of current literature will be central. Instructor: Wold. Given in alternate years; offered 2001–02.

Bi/Ch 132. Biophysics of Macromolecules. 9 units (3-0-6); second term. Recommended prerequisite: Bi/Ch 110. Structural and functional aspects of nucleic acids and proteins, including hybridization; electrophoretic behavior of nucleic acids; principles and energetics of folding of polypeptide chains in proteins; allostery and cooperativity in protein action; enzyme kinetics and mechanisms; and methods of structure determination, such as X-ray diffraction and magnetic resonance. Structure and function of metalloenzymes. Not offered 2001–02.

Bi/CNS 150. Neurobiology. 10 units (4-0-6); first term. Lectures and discussions on general principles of the organization and function of nervous systems, providing both an overview of the subject and a foundation for advanced courses. Topics include neurocytology and gross neuroanatomy; developmental neurobiology; the biophysical basis for action potentials, synaptic transmission, and sensory transduction; and the integration of these processes in sensory and motor pathways of the central nervous system. Laboratory demonstrations offer experience with the experimental preparations discussed in the course. Instructors: Laurent, Zinn, Schuman.

Bi 152. Introduction to Neuroethology. 6 units (2-0-4); second term. Introduction to the neurobiological study of natural behavior of animals. Topics include such questions as how animals recognize and localize signals in their natural environments, how animals move, how behavior develops, what and how animals learn, and how natural selection shapes the evolution of brain and behavior. Instructor: Konishi.

Bi 156. Molecular Basis of Behavior. 9 units (3-0-6); second term. Prerequisite: Bi 150 or instructor’s permission. A lecture and discussion course on the neurobiology of behavior. Topics may include biological clocks, eating behavior, sexual behavior, addiction, mental illness, and neurodegenerative diseases. Given in alternate years; offered 2001–02. Instructors: Patterson and Zinn.

Bi/CNS 157. Comparative Nervous Systems. 9 units (2-3-4); third term. An introduction to the comparative study of the gross and microscopic structure of nervous systems. Emphasis on the vertebrate nervous system; also, the highly developed central nervous systems found in arthropods and cephalopods. Variation in nervous system structure
with function and with behavioral and ecological specializations and the evolution of the vertebrate brain. Instructor: Allman. Given in alternate years; not offered 2001–02.

BMB/Bi/Ch 170. Principles of Three-Dimensional Protein Structure. 9 units (3-3-3). For course description, see Biochemistry and Molecular Biophysics.

CNS/Bi 172. Clinical Neuropsychology. 6 units (3-0-3). For course description, see Computation and Neural Systems.

CNS/Bi 176. Cognition. 12 units (6-0-6). For course description, see Computation and Neural Systems.

Bi 177. Principles of Modern Microscopy. 9 units (3-0-6); first term. Lectures and discussions on the underlying principles behind digital, video, differential interference contrast, phase contrast, confocal, and two-photon microscopy. The course will begin with basic geometric optics, characteristics of lenses and microscopes, and principles of accurate imaging. Specific attention will be given to how different imaging elements such as filters, detectors, and objective lenses contribute to the final image. Coursework will include critical evaluation of published images and design strategies for simple optical systems. Emphasis in the second half of the course will be placed on the analysis and presentation of two- and three-dimensional images. No prior knowledge of microscopy will be assumed. Instructor: Fraser.

Bi 180. Methods in Molecular Genetics. 12 units (2-8-2); first term. Prerequisites: Bi 122, Bi 10, or instructor’s permission. An introduction to current molecular genetic techniques including basic microbiological procedures, transposon and UV mutagenesis, gene cloning, preparation of DNA, restriction, ligation, electrophoresis (including pulsed-field), electroporation, Southern blotting, PCR, gene cloning, sequencing, and computer searches for homologies. The first part of the course involves structured experiments designed to demonstrate the various techniques. The second half is devoted to individual research projects in which the techniques are applied to original studies on an interesting, but not well studied, organism. Graded pass/fail. Instructor: Bertani. Additional information concerning this course can be found at http://www.its.caltech.edu/~lebert/bi180/index.html.

Bi 182. Developmental Gene Regulation and Evolution of Animals. 6 units (2-0-4); second term. Prerequisites: Bi 8 and at least one of the following: Bi 111, Bi 114, or Bi 122 (or equivalents). Lectures on and discussion of the regulatory genome; phylogenetic relationships in animals and the fossil record; how developmental gene regulation works; regulatory basis of development in the simplest systems; making parts of the adult animal body plan; pattern formation and deep regulatory networks; the Precambrian world and a gene-regulatory view of the evolutionary origin of animal forms; processes of cis-regulatory evolution; diversification in the arthropods; and the special character of vertebrate evolution. Instructor: Davidson. Given in alternate years; offered 2001–02.
CNS/Bi/EE 186. Vision: From Computational Theory to Neuronal Mechanisms. 12 units (4-4-4). For course description, see Computation and Neural Systems.

CNS/Bi/Ph/CS 187. Neural Computation. 9 units (3-0-6). For course description, see Computation and Neural Systems.

Bi 188. Human Genetics and Genomics. 6 units (2-0-4); second term. Prerequisite: Bi 122; or graduate standing and instructor’s permission.
Introduction to the genetics of humans. Subjects covered include human genome structure, genetic diseases and predispositions, the human genome project, forensic use of human genetic markers, human variability, and human evolution. Instructors: Wold, Staff. Given in alternate years; offered 2001–02.

Bi 190. Advanced Genetics. 6 units (2-0-4); third term. Prerequisite: Bi 122. Lectures and discussions covering advanced principles of genetic analysis. Emphasis on genetic approaches to the study of development in Saccharomyces, Caenorhabditis, Drosophila, and Arabidopsis. Instructor: Sternberg. Given in alternate years; not offered 2001–02.

Bi/CNS 186. Vision: From Computational Theory to Neuronal Mechanisms. 12 units (4-4-4). For course description, see Computation and Neural Systems.

Bi 191. Topics in Membrane and Synaptic Physiology. 6 units (3-0-3); first term. Graduate seminar discussing the original literature on the biophysics and molecular biology of ion channels, neurotransmitter receptors, transporters, and other molecules underlying the excitability of cell membranes. Instructor: Lester. Given in alternate years; not offered 2001–02.

Bi 192. Topics in Neuroethology. 6 units (2-0-4); second term. Reading and discussions of original papers related to animal behavior and its analysis by neuroethological methods. Knowledge of neurophysiology is required. Instructor: Konishi. Given in alternate years; not offered 2001–02.

Bi 194. Hematopoiesis: A Developmental System. 6 units (2-0-4); first term. Prerequisite: Bi 114 or graduate standing. An advanced course with lectures and seminar presentations, based on reading from the current literature. The characteristics of blood cells offer unique insights into the molecular basis of lineage commitment and the mechanisms that control the production of diverse cell types from pluripotent precursors. The course will cover the nature of stem cells, the lineage relationships among differentiated cell types, the role of cytokines and cytokine receptors, apoptosis and lineage-specific proliferation, and how differentiation works at the level of gene regulation and regulatory networks. Roles of prominent regulatory molecules in hematopoietic development will be compared with their roles in other developmental systems. Emphasis will be on explanation of cellular and system-level phenomena in terms of molecular mechanisms. Given in alternate years; offered 2001–02. Instructor: Rothenberg.

Bi/CNS 216. Behavior of Mammals. 6 units (2-0-4); first term.
A course of lectures, readings, and discussions focused on the genetic, physiological, and ecological bases of behavior in mammals. A basic knowledge of neuroanatomy and neurophysiology is desired. Given in alternate years; offered 2001–02. Instructor: Allman.

Bi/CNS 217. Central Mechanisms in Perception. 6 units (2-0-4); first term. Reading and discussions of behavioral and electrophysiological studies of the systems for the processing of sensory information in the brain. Instructor: Allman. Given in alternate years; not offered 2001–02.

Bi 218. Molecular Neurobiology Graduate Seminar. 6 units (2-0-4); second term. Topics to be announced. Instructor: Anderson.

Bi 219. Developmental Neurobiology. 12 units (3-0-9); second term. Advanced discussion course involving extensive reading of current papers and student presentations. Topics: proliferation, migration, differentiation, and death of neurons; role of trophic factors, cell surface molecules, and hormones. Emphasis on the generation of specific synaptic connections and the molecular basis underlying it. Given in alternate years; offered 2001–02. Instructor: Fraser.

CS/CNS/Bi 221. Computational Neuroscience. 9 units (4-0-5). For course description, see Computation and Neural Systems.

Bi 222. Structure and Function of the Synapse. 6 units (2-0-4); third term. Prerequisite: Bi/Cb 110, Bi 150, graduate standing, or instructor’s permission. Lectures, reading, and discussion covering recent research on synaptic structure and function. Topics will include structure and function of synaptic proteins, emphasizing mechanisms of neurotransmitter release and regulation of post-synaptic receptors; the extracellular matrix and synaptic structure; protein kinase signalling cascades; and developmental and adult synaptic plasticity, emphasizing long-term potentiation and long-term depression. Reading and discussion will focus on evaluation of the primary research literature. Instructor: Kennedy. Given in alternate years; not offered 2001–02.

Bi 225. Topics in Cellular and Molecular Genetics. 6 units (2-0-4); second term. Reading and discussion of current papers on the theory and practice of “genetic intervention” in higher eukaryotic cells. Approaches will include DNA and chromosome-mediated transformation of cells in culture, gene amplification, cell fusion, gene injection into eggs, and use of somatic cell genetics techniques for gene cloning.
Emphasis on the use of these approaches to study problems in areas such as cell differentiation, cell cycle control, cell compartmentation, and membrane physiology and assembly. Instructor: Attardi. Given in alternate years; offered 2001–02.

Bi 226. Topics in Genetics. 6 units (2-0-4); third term. Reports and discussion on a broad range of topics in genetic analysis. Designed for graduate students intending a major or minor specialization in genetics. Instructors: Sternberg, Deshaies, Hay.

Bi 227. Methods in Modern Microscopy. 12 units (2-6-4); first term. Prerequisite: instructor’s permission. Discussion and laboratory-based course covering the practical use of the confocal microscope, with special attention to the dynamic analysis of living cells and embryos. Course will begin with basic optics, microscope design, Koehler illumination, and the principles of confocal microscopy. After introductory period, the course will consist of semi-independent week-long modules organized around different imaging challenges. Early modules will focus on three-dimensional reconstruction of fixed cells and tissues, with particular attention being paid to accurately imaging very dim samples. Later modules will include time-lapse confocal analysis of living cells and embryos, including Drosophila, zebrafish, chicken and Xenopus embryos. Dynamic analysis will emphasize the use of fluorescent proteins. No prior experience with confocal microscopy will be assumed; however, a basic working knowledge of microscopes is highly recommended. Enrollment limited to 12 students, with preference given to graduate students who will be using confocal microscopy in their research. Instructor: Fraser.

Ch/Bi 231. Advanced Topics in Biochemistry. 6 units (2-0-4). For course description, see Chemistry.

Ge/Bi 244 ab. Paleobiology Seminar. 5 units. For course description, see Geological and Planetary Sciences.

CNS/Bi 246. Multicellular Recording. 9 units (2-6-1). For course description, see Computation and Neural Systems.

CNS/Bi 247. Cerebral Cortex. 6 units (2-0-4). For course description, see Computation and Neural Systems.

Bi 250 abc. Adventures in Biology. 9 units (3-0-6); first, second, third terms. Prerequisite: graduate standing. Lectures and discussion covering the breadth of biology, research methods, logic, techniques and strategies, fundamental and general principles of modern biology, and unsolved problems. During this course, students will learn to read papers in a wide range of biological disciplines such as cell biology, developmental biology, immunology, molecular and systems neuroscience, structural biology, genetics, molecular biology, and biochemistry. Instructors: Biology staff.

Bi/BMB 251 abc. Current Research in Cellular and Molecular Biology. 1 unit (1-0-0). Prerequisite: graduate standing. Presentations and discussion of research at Caltech in biology and chemistry. Discussions of responsible conduct of research are included. Instructors: Sternberg, Deshaies, Hay.

Bi 260. How to Present a Seminar. 6 units (3-0-3); third term. Prerequisite: Graduate standing in Biology or instructor’s permission. General data presentation techniques, including how to design a seminar, how to develop or set up a problem, the appropriate and clear description of data, and the presentation of conclusions and future directions. We will also focus on general speaking skills and discuss how to give a good journal club presentation. Students will have the opportunity to practice speaking skills and work on individual presentations. Graded pass/fail. Instructors: Laurent, Schuman. Given in alternate years; not offered 2001–02.

Bi 270. Special Topics in Biology. Units to be arranged; first, second, third terms. Students may register with permission of the responsible faculty member.

CNS/Bi 286 abc. Special Topics in Computation and Neural Systems. Units to be arranged. For course description, see Computation and Neural Systems.

Bi 299. Graduate Research. Units to be arranged; first, second, third terms. Students may register for research units after consultation with their adviser.

BUSINESS ECONOMICS AND MANAGEMENT

BEM 101. Introduction to Accounting. 9 units (3-0-6); first term. An introduction to accounting in business. Topics include: financial accounting, cost accounting. Instructor: Staff.

BEM 102. Topics in Management Science. 9 units (3-0-6). Prerequisite: Ec 11. Offered by announcement. Various management and industrial organization topics, including queuing, inventory and reliability theory, optimal stopping with applications to job search, and R&D. Underlying theory of simple stochastic processes will be developed as needed. Not offered 2001–02.

BEM 103. Introduction to Finance. 9 units (3-0-6); first term. Ec 11 recommended. An introduction to corporate finance. Economic theory is used to study asset valuation and financial decision making in business. Topics include: financial decision making under certainty, introduction to valuation of risky assets (stocks and bonds), the corporate investment decision, dividend policy, and the corporate financing decision. Instructor: Bossaerts.
BEM 104. Investment Analysis. 9 units (3–0–6). Prerequisites: BEM 103, some familiarity with statistics. Ec 11 recommended. An introduction to investment analysis, portfolio management, and capital markets. Its focus is the application of modern financial theory to portfolio selection and asset pricing. Topics include asset pricing models, the term structure of interest rates, contingent claim valuation. Instructor: Bossaerts.

BEM 105. Options. 9 units (3–0–6). Prerequisites: BEM 103, some familiarity with statistics. Ec 11 recommended. An introduction to modern option pricing theory. The focus is the valuation of contingent claims. Both American and European options are considered. The binomial and Black-Scholes option pricing models are derived. The theory is also applied to risky debt and portfolio choice. Instructor: Bossaerts.

BEM/Ec 146. Organization Design. 9 units (3–0–6). Prerequisite: Ec 11. An introduction to the analysis, design, and management of organizations with an emphasis on incentives and information. Principles from economics, political science, and game theory will be applied to problems in project and team management, in organizational computing, and in allocating and pricing shared facilities. Instructor: Camerer.

Ec/BEM 163. Financial Intermediation. 9 units (3–0–6). For course description, see Economics.

CHEMICAL ENGINEERING

ChE 10. Introduction to Chemical Engineering Systems. 9 units (3–3–3); third term; open to freshmen only. An introduction to the breadth of chemical engineering through several short-term projects supervised by individual chemical engineering faculty. Areas covered include fluid mechanics, separations, catalysis, and materials properties. Not offered 2001–02.

ChE 64. Principles of Chemical Engineering. 9 units (3–0–6); third term. Prerequisite: ChE 63 ab. Material and energy balances, including recycle processes. Elements of chemical kinetics and chemical reactors. Ideal and nonideal reactors. Instructor: Arnold.

ChE 80. Undergraduate Research. Units by arrangement. Research in chemical engineering offered as an elective in any term other than in the senior year. Graded pass/fail.

ChE 90 ab. Senior Thesis. 9 units (0–4–5); second, third terms. Prerequisite: ChE 126 a. A research project carried out under the direction of a chemical engineering faculty member. A grade will not be assigned to ChE 90 prior to completion of the thesis, which normally takes two terms. A P grade will be given for the first term and then changed to the appropriate letter grade at the end of the course. Instructor: Gavalas.

ChE 103 abc. Transport Phenomena. 9 units (3–0–6); first, second, third terms. Prerequisite: ACM 95/100 abc or concurrent registration. A rigorous development of the basic differential equations of conservation of momentum, energy, and mass in fluid systems. Solution of problems involving fluid flow, heat transfer, and mass transfer. Instructors: Kornfield, Seinfeld.

ChE 104. Separation Processes. 9 units (3–0–6); first term. Prerequisites: ChE 103 abc, ChE 63 ab. Equilibrium stage separations, including distillation, absorption, and extraction. Rate-based separations, including chromatography and membrane separations. Instructor: Gavalas.

ChE 105. Process Control. 9 units (3–0–6); first term. Prerequisite: ACM 95/100 abc or concurrent registration. Review of Laplace transforms and linear algebra. Feedback control of linear systems. Frequency response. Sampled-data systems. Introduction to multivariable control. Instructor: Staff.

ChE 110 ab. Optimal Design of Chemical Systems. 9 units (3–0–6); second, third terms. Prerequisites: ChE 63, ChE 101, ChE 103, or equivalents. Introduction to process design; flowsheets for chemical processes; synthesis of multicomponent separation sequences and reaction paths; synthesis of heat exchange networks; optimization; process economics; simulation of chemical processes; design of a major process. Instructor: Wagner.
ChE 126 ab. Chemical Engineering Laboratory. 9 units (1-6-2); first, second terms. Prerequisites: ChE 101, ChE 103 abc, and ChE 105, or concurrent registration. Projects illustrative of problems in transport phenomena, unit operations, chemical kinetics, process control, and reactor design are performed, with special emphasis on oral and written presentation of scientific results. Instructors: Flagan, Staff.

Ch/E 140 ab. Principles and Applications of Semiconductor Photoelectrochemistry. 6 units (4-0-2). For course description, see Chemistry.

Ch/E 147. Polymer Chemistry. 9 units (3-0-6). For course description, see Chemistry.

Ch/E 148. Polymer Physics. 9 units (3-0-6); third term. Prerequisite: Ch/E 147 or instructor’s permission. An introduction to the physics that govern polymer structure and dynamics in liquid and solid states, and to the physical basis of characterization methods used in polymer science. Topics include characterization, scaling, and dynamics of polymers in solutions and melts; polymer-polymer thermodynamics in blends and block-copolymers; rubber elasticity; the rubber-glass transition; crystallization and morphology of semicrystalline polymers. Not offered 2001–02.

ChE 151 ab. Physical and Chemical Rate Processes. 12 units (3-0-9); first, second terms. The foundations of heat, mass, and momentum transfer for single and multiphase fluids will be developed. Governing differential equations; laminar flow of incompressible fluids at low and high Reynolds numbers; forced and free convective heat and mass transfer, diffusion, and dispersion. Emphasis will be placed on physical understanding, scaling, and formulation and solution of boundary-value problems. Applied mathematical techniques will be developed and used throughout the course. Instructor: Brady.

ChE 152. Heterogeneous Kinetics and Reaction Engineering. 9 units (3-0-6); first term. Prerequisite: ChE 64 or equivalent. Survey of heterogeneous reactions and reaction mechanisms on metal and oxide catalysts. Characterization of porous catalysts. Reaction, diffusion, and heat transfer in heterogeneous catalytic systems. Instructor: Staff.

ChE/Ch 155. Chemistry of Catalysis. 9 units (3-0-6); third term. Discussion of homogeneous and heterogeneous catalytic reactions, with emphasis on mechanistic principles and on the relationships between the two areas. Topics include homogeneous hydrogenation; catalysis by metals; homogeneous oxidation; catalysis by metal oxides; acid-base catalysis and zeolites. Not offered 2001–02.

ChE/ESE 157. Sources and Control of Air Pollution. 9 units (3-0-6); third term. Open to graduate students and seniors with instructor’s permission. Principles necessary to understanding the sources and control of air pollutants; generation of pollutants in combustion systems; control techniques for particulate and gaseous pollutants; solution of large-scale regional air pollution control problems. Not offered 2001–02.

ChE/ESE 158. Aerosol Physics and Chemistry. 9 units (3-3-3); second term. Open to graduate students and seniors with instructor’s permission. Fundamentals of aerosol physics and chemistry; aerodynamics and diffusion of aerosol particles; condensation and evaporation; thermodynamics of particulate systems; nucleation; coagulation; particle size distributions; optics of small particles. Instructor: Flagan.

ChE 163. Biocatalysis and Protein Technology. 9 units (3-0-6); second term. Prerequisites: ChE 64, Bi/Ch 110, or instructor’s permission. Biochemical engineering and industrial biotechnology, including biocatalysis and fermentation processes, enzyme kinetics, protein engineering, special topics in protein evolution. Instructor: Arnold. Not offered 2001–02.

ChE/Ch 164. Introduction to Statistical Thermodynamics. 9 units (3-0-6); second term. Prerequisite: ChE 63 ab or equivalent. An introduction to the fundamentals and simple applications of statistical thermodynamics. Foundation of statistical mechanics; derivation of various ensembles; statistical fluctuations; connection to thermodynamics; non-interacting quantum and classical gases; heat capacity of solids; adsorption; chemical equilibria; phase transitions; linear response theory; classical fluids; computer simulation methods. Instructor: Wang.

ChE 174. Special Topics in Transport Phenomena. 9 units (3-0-6); third term. Prerequisites: ACM 95/100, ChE 151 ab. May be repeated for credit. Advanced problems in heat, mass, and momentum transfer. Introduction to mechanics of complex fluids; physicochemical hydrodynamics; microstructured fluids; selected topics in hydrodynamic stability theory; transport phenomena in materials processing. Other topics may be discussed depending on class needs and interests. Instructor: Brady. Not offered 2001–02.

ChE 189. Special Topics in Materials Processing. 9 units (3-0-6); third term. Prerequisites: ChE 63, ChE 103, or equivalent. Fundamental physics and chemistry of partially ionized, chemically reactive, low-pressure plasmas and their roles in electronic materials processing. Basic plasma equations and equilibrium. Plasma and sheath dynamics. Gas-surface interactions. Plasma diagnostics and monitoring. Plasma-assisted etching and deposition in integrated circuit fabrication.
Visiting faculty or scientists may present portions of this course. Instructor: Giapis. Given in alternate years; not offered 2001–02.

BE/ChE 200 b. Introduction to the Design of Biological Molecules and Systems. 9 units (3–0–6) or 12 units (3–3–6). For course description, see Bioengineering.

ChE 280. Chemical Engineering Research. Offered to Ph.D. candidates in Chemical Engineering. Main lines of research now in progress are covered in detail in Section Two.

CHEMISTRY

Ch 1 ab. General Chemistry. 6 units (3–0–3) first term; 9 units (4–0–5) second term. Lectures and recitations dealing with the principles of chemistry. First term: electronic structure of atoms, periodic properties, ionic substances, covalent bonding, Lewis representations of molecules and ions, shapes of molecules, Lewis acids and bases, Bronsted acids and bases, hybridization and resonance, bonding in solids. Second term: chemical equilibria, oxidation and reduction, thermodynamics, kinetics, introduction to organic chemistry and the chemistry of life. Graded pass/fail. Instructors: Lewis, Beauchamp, Tirrell. Additional information concerning this course can be found at http://www.its.caltech.edu/~chem1/.

Ch 3 a. Fundamental Techniques of Experimental Chemistry. 6 units (0–5–1); first, second, third terms. Introduces the basic principles and techniques of synthesis and analysis and develops the laboratory skills and precision that are fundamental to experimental chemistry. Enrollment first term will be limited to students who have gained advanced placement into Ch 41 or Ch 21, or by permission of the instructor. Graded pass/fail. Instructor: Staff.

Ch 3 b. Experimental Procedures of Synthetic Chemistry. 8 units (1–6–1); first term. Prerequisites: Ch 1 a, Ch 1 b, and Ch 3 a. Instruction in fundamental synthesis, separation, and characterization procedures used in chemical research. Graded pass/fail. Instructor: Staff.

Ch 4 ab. Synthesis and Analysis of Organic and Inorganic Compounds. 9 units (1–6–2). Prerequisites: Ch 1 (or the equivalent) and Ch 3 a. Previous or concurrent enrollment in Ch 41 is strongly recommended. Introduction to methods of synthesis, separation, purification, and characterization used routinely in chemical research laboratories. Ch 4 a emphasizes spectroscopic methods of analysis; Ch 4 b stresses applications of chromatography in addition to more classical separation techniques. Ch 4 a, first and third terms; Ch 4 b, second term only. Instructor: Staff.

Ch 5 ab. Advanced Techniques of Synthesis and Analysis. 9 units (1–6–2); second, third terms. Prerequisite: Ch 4 ab. Modern synthetic chemistry. Specific experiments may change from year to year. Multistep syntheses of natural products, coordination complexes, and organometallic complexes will be included. Experiments to illustrate the fundamental principles of inorganic and organometallic chemistry. Methodology will include advanced techniques of synthesis and instrumental characterization. Instructors: Peters, Stolz.

Ch 6 ab. Application of Physical Methods to Chemical Problems. 10 units (0–6–4); second, third terms. Prerequisites: Ch 1, Ch 4 ab, and Ch 21 or equivalents (may be taken concurrently). Introduction to the application of modern physical methods to chemical problems, with emphasis in the area of molecular spectroscopy. Techniques including X-ray crystallography, laser Raman spectroscopy, microwave spectroscopy, electron spin resonance, ultraviolet photoelectron spectroscopy, and Fourier transform ion cyclotron resonance spectroscopy are used to examine the structure, properties, and reaction dynamics of molecules in the gas phase, in solution, and at surfaces. Instructors: Okumura, Beauchamp.

Ch 7. Advanced Experimental Methods in Bioorganic Chemistry. 9 units (1–6–2); third term. Prerequisites: Ch 41 abc, and Bi/Ch 110, Ch 4 ab. Enrollment by instructor’s permission. Preference will be given to students who have taken Ch 5 a or Bi 10. This advanced laboratory course will provide experience in the powerful contemporary methods for polypeptide and oligonucleotide synthesis. Experiments will address nucleic acid and amino acid protecting group strategies, biopolymer assembly and isolation, and product characterization. A strong emphasis will be placed on understanding the chemical basis underlying the successful utilization of these procedures. In addition, experiments to demonstrate the application of commercially available enzymes for useful synthetic organic transformations will be illustrated. Instructor: Dervan.

Ch 10 abc. Frontiers in Chemistry. 3 units (2–0–1); first, second terms. Open for credit to freshmen and sophomores. Prerequisites: Ch 10 c prerequisites are Ch 10 ab, Ch 3 a, and either Ch 1 ab, Ch 41 ab, or Ch 21 ab, and instructor’s permission. Ch 10 ab is a weekly seminar by a member of the chemistry department on a topic of current research; the topic will be presented at an informal, introductory level. The other weekly session will acquaint students with the laboratory techniques and instrumentation used on the research topics. Ch 10 c is a research-oriented laboratory course, which will be supervised by a chemistry faculty member. Weekly class meetings will provide a forum for participants to discuss their research projects. Graded pass/fail. Instructors: Barton, Hsieh-Wilson.
Ch 14. **Chemical Equilibrium and Analysis.** 6 units (2-0-4); first term. A systematic treatment of ionic equilibria in solution. Topics covered include acid-base equilibria in aqueous and nonaqueous solutions, complex ion formation, chelation, oxidation-reduction reactions, and some aspects of reaction mechanisms. Instructor: Richards.

Ch 15. **Chemical Equilibrium and Analysis Laboratory.** 10 units (0-6-4); first term. Prerequisites: Ch 1 ab, Ch 3 a, Ch 14 (may be taken concurrently). Laboratory experiments are used to illustrate modern instrumental techniques that are currently employed in industrial and academic research. Emphasis is on determinations of chemical composition, measurement of equilibrium constants, evaluation of rates of chemical reactions, and trace-metal analysis. Instructors: Anson, Rees, staff.

Ch 21 abc. **The Physical Description of Chemical Systems.** 9 units (3-0-6); first, second, third terms. Prerequisites: Ch 1 ab, Ph 2 ab, Ma 2 ab. Atomic and molecular quantum mechanics, spectroscopy, thermodynamics, statistical mechanics, and chemical kinetics. Instructors: McKoy, Blake, Okumura.

Ch 24 ab. **Introduction to Biophysical Chemistry.** 9 units (3-0-6); second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc, Ch 21 a or Ph 2 ab. Fundamental physical chemistry, with emphasis on those topics most important in biology. Thermodynamics and its applications to aqueous solutions and living systems, membrane potentials and the thermodynamics of transport, reaction kinetics and mechanisms, transport properties, applications of molecular spectroscopy in biology, and statistical mechanics with applications to biological polymers. Instructors: R. Roberts, Rees.

Ch 41 abc. **Organic Chemistry.** 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 1 ab or instructor’s permission. The synthesis, structures, and mechanisms of reactions of organic compounds. Instructors: Dervan, Dougherty, MacMillan.

Ch 80. **Chemical Research.** Offered to B.S. candidates in chemistry. Units in accordance with work accomplished. Prerequisite: consent of research supervisor. Experimental and theoretical research requiring a report containing an appropriate description of the research work.

Ch 81. **Independent Reading in Chemistry.** Units by arrangement. Prerequisite: instructor’s permission. Occasional advanced work involving reading assignments and a report on special topics. No more than 12 units in Ch 81 may be used as electives in the chemistry option.

Ch 90. **Oral Presentation.** 3 units (2-0-1); second term. Training in the techniques of oral presentation of chemical and biochemical topics. Practice in the effective organization and delivery of technical reports before groups. Graded pass/fail. Instructor: Bikle.

Ch 91. **Scientific Writing.** 3 units (1-0-2); third term. Practical training in the writing of technical reports, reviews, and research papers on chemical topics. Open to undergraduates only. Graded pass/fail. Not offered 2001-02.

Bi/Ch 110. **Introduction to Biochemistry.** 12 units (4-0-8). For course description, see Biology.

Bi/Ch 111. **Biochemistry of Gene Expression.** 12 units (4-0-8). For course description, see Biology.

Ch 112. **Inorganic Chemistry.** 9 units (3-0-6); first term. Prerequisite: Ch 41 abc or equivalent. Introduction to group theory, ligand field theory, and bonding in coordination complexes and organotransition metal compounds. Systematics of synthesis, bonding, and reactivities of commonly encountered classes of transition metal compounds. Instructor: Bercaw.

Bi/Ch 113. **Biochemistry of the Cell.** 12 units (4–0–8). For course description, see Biology.

Ch 117. **Introduction to Electrochemistry.** 6 units (2-0-4); second term. Discussion of the structure of electrode-electrolyte interface, the mechanism by which charge is transferred across it, and experimental techniques used to study electrode reactions. Topics change from year to year but usually include diffusion currents, polarography, coulometry, irreversible electrode reactions, the electrical double layer, and kinetics of electrode processes. Not offered 2001-02.

Ch 120 abc. **Nature of the Chemical Bond.** 9 units (3-0-6) first term; 6 units (2-0-4) second term; 6 units (1-1-4) third term. Prerequisites: general exposure to quantum mechanics (e.g., Ph 2 ab, Ph 12 abc, or equivalent). Modern ideas of chemical bonding, with an emphasis on qualitative concepts and how they are used to make predictions of structures, energetics, excited states, and properties. Part a: The quantum mechanical basis for understanding bonding, structures, energetics, and properties of materials (polymers, ceramics, metals alloys, semiconductors, and surfaces). The emphasis is on explaining chemical, mechanical, electrical, and thermal properties of materials in terms of atomistic concepts. Part b: The quantum mechanical basis for understanding transition metal systems with a focus on chemical reactivity. There will be an emphasis on organometallic complexes, on homogeneous catalysis, and on heterogeneous catalysis. Part c: The student does an individual research project using modern quantum chemistry computer programs to calculate wavefunctions, structures, and properties of real molecules. Part b not offered 2001-02. Instructor: Goddard.

Ch 121 ab. **Atomic Level Simulations of Materials and Molecules.** 9 units (3-1-5) second, third terms. Prerequisites: Ma 2 ab, Ph 2 ab, Ch 1 ab, or equivalent. Recommended: Ch 41 abc, Ch 21 a. Methods for predicting the structures and properties of molecules and solids. The course
will highlight theoretical foundations and applications to current problems in: biological systems (proteins, DNA, carbohydrates, lipids); polymers (crystals, amorphous systems, copolymers); semiconductors (group IV, III-V, surfaces, defects); inorganic systems (ceramics, zeolites, superconductors, and metals); and organometallics and catalysis (heterogeneous and homogeneous). Both terms will involve the use of computers for building and calculating systems of interest. Part a covers the basic methods. Part b will focus on simulations applied to problems in petroleum chemistry. Ch 120 a is recommended but not required for Ch 121 a. Instructor: Goddard.

Ch 122 abc. Methods for the Determination of the Structure of Molecules. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 21 abc or instructor’s permission. Modern methods used in the determination of the structure of molecules, including X-ray, electron, and neutron diffraction; mass spectrometry; optical, infrared, Raman, microwave, Mössbauer, nuclear magnetic, and electron spin resonance spectroscopy. The emphasis will be on nuclear magnetic resonance (first term), and diffraction methods and mass spectrometry (third term). All three terms can be taken independently. Ch 122 a will be offered first term. Instructor: Day. Ch 122 bc not offered 2001–02.

Ch 125 abc. The Elements of Quantum Chemistry. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 21 abc or an equivalent brief introduction to quantum mechanics. A first course in molecular quantum mechanics consisting of a quantitative treatment of quantum mechanics with applications to systems of interest to chemists. The basic elements of quantum mechanics, the electronic structure of atoms and molecules, the interactions of radiation fields and matter, scattering theory, and reaction rate theory. Instructors: Kuppermann, McKoy, Weitekamp.

Ch 126. Molecular Spectra and Molecular Structure. 9 units (3-0-6); third term. Prerequisite: Ch 21 and Ch 125 a taken concurrently, or instructor’s permission. Quantum mechanical foundations of the spectroscopy of molecules. Topics include quantum theory of angular momentum, rovibrational Hamiltonian for polyatomic molecules, molecular symmetry and permutation-inversion groups, electronic spectroscopy, interaction of radiation and matter. Not offered 2001–02.

Ge/Ch 127. Nuclear Chemistry. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

Ge/Ch 128. Cosmochemistry. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

Ch 130. Spectroscopy. 9 units (3-0-6); third term. Discussion of various topics in lasers and their applications. Group theory with applications to molecular structure and spectroscopy will also be discussed. Instructor: Zewail.

Bi/Ch 132. Biophysics of Macromolecules. 9 units (3-0-6). For course description, see Biology.

Ch 135 ab. Chemical Dynamics. 9 units (3-0-6); part a, third term; part b, second term. Prerequisites: Ch 21 abc and Ch 41 abc, or equivalent, or instructor’s permission. Part a: Introduction to the dynamics of chemical reactions. Topics include scattering cross sections, rate constants, intermolecular potentials, reactive scattering, nonadiabatic processes, statistical theories of unimolecular reactions, and the application of laser and molecular beam techniques to the study of reaction mechanisms. Part b: The quantum description of chemical reactions. The scattering matrix. The calculation of reaction cross sections, probabilities, and rate constants. Collision lifetimes and resonances. Classical trajectories. The two terms can be taken independently. Instructor: Kuppermann. Ch 135 a not offered 2001–02.

Ch/ChE 140 ab. Principles and Applications of Semiconductor Photoelectrochemistry. 6 units (4-0-2); second, third terms. Prerequisite: APh 9 or instructor’s permission. The properties and photoelectrochemistry of semiconductors and semiconductor/liquid junction solar cells will be discussed. Topics include: optical and electronic properties of semiconductors; electronic properties of semiconductor junctions with metals, liquids, and other semiconductors, in the dark and under illumination, with emphasis on semiconductor/liquid junctions in aqueous and nonaqueous media. Problems currently facing semiconductor/liquid junctions and practical applications of these systems will be highlighted. The course will meet for four one-hour lectures per week and will be in a tutorial format with instruction predominantly from graduate students and postdoctoral fellows with expertise in the field. Given in alternate years. Instructor: Lewis.

Ch 142. Frontiers in Chemical Biology. 4 units (2-0-2); second term. Prerequisite: Bi/Ch 110 or instructor’s permission. A discussion of enzyme structure and function, and ligand-protein-nucleic acid interactions. Not offered 2001–02.

Ch 143. Basic FT NMR Spectroscopy. 9 units (3-2-4); second term. Prerequisite: Ch 41 abc. Will cover NMR basics and applications, with emphasis on FT NMR and the principles of multipulse NMR techniques used in structural analysis, including determination of relaxation times, INEPT, DEPT, NOSEY, and COSY. A number of NMR techniques will be illustrated with the Chapman-Russell FT NMR Problems video-disc-based computer program, which features on-screen spectra at a variety of magnetic fields with, and without, decoupling, 2-D spectra, and so on. The practical use of NMR will be further demonstrated by laboratory exercises using modern pulse FT NMR techniques with high-field spectrometers for structural analysis. Instructor: J. D. Roberts.
Ch 144 ab. Advanced Organic Chemistry. 9 units (3-0-6); second, third terms. Prerequisite: Ch 41 abc or equivalent. An advanced survey of modern organic chemistry. First term: structural and theoretical organic chemistry; kinetic, thermochemical, and orbital symmetry concepts. Second term: organic reaction chemistry emphasizing studies of reactive intermediates. Instructor: Dougherty, Pirrung.

Ch 145. Bioorganic Chemistry of Proteins. 9 units (3-0-6); first term. Prerequisites: Ch 41 abc and Bi/Ch 110. This course aims to define the information that can be derived from the structure and function of enzymes through the use of affinity labeling reagents, mechanism-based inactivators, and transition-state analog inhibitors. While the focus will be on selected classes of enzymes, the material covered is intended to give insight into general rules for the investigation of enzyme mechanisms and inhibitor design. Instructor: Hsieh-Wilson.

Ch 146. Bioorganic Chemistry of Nucleic Acids. 9 units (3-0-6); third term. Prerequisite: Ch 41 ab. Will examine the bioorganic chemistry of nucleic acids, including DNA and RNA structures, molecular recognition, and mechanistic analyses of covalent modification of nucleic acids. Topics such as synthetic methods for the construction of DNA and RNA; separation techniques; recognition of duplex DNA by peptide analogs, proteins, and oligonucleotide-directed triple helical formation; RNA structure and RNA as catalysts (ribozymes) will be discussed. Given in alternate years; not offered 2001-02.

Ch/ChE 147. Polymer Chemistry. 9 units (3-0-6); second term. Prerequisite: Ch 41 ab. An introduction to the chemistry of polymers, including synthetic methods, mechanisms and kinetics of macromolecule formation, and characterization techniques. Not offered 2001-02.

ChE/Ch 148. Polymer Physics. 9 units (3-0-6). For course description, see Chemical Engineering.

Ch 153. Advanced Inorganic Chemistry. 9 units (2-0-7); second term. Prerequisites: Ch 112 and Ch 21 abc or concurrent registration. Topics in modern inorganic chemistry. Electronic structure, spectroscopy, and photochemistry with emphasis on examples from the modern research literature. Instructor: Gray.

Ch 154. Organometallic Chemistry. 9 units (3-0-6); second term. Prerequisite: Ch 112 or equivalent. A general discussion of the reaction mechanisms, and synthetic and catalytic uses of transition metal organometallic compounds. Instructor: Peters.

ChE/Ch 155. Chemistry of Catalysis. 9 units (3-0-6). For course description, see Chemical Engineering.

Ch 163. Lectures-Seminars in Physical Chemistry. 6 units (2-0-4); third term. Topic will be “Electron Transfer Reactions in Chemistry and Biology.” For further description, see Ch 221.

ChE/Ch 164. Introduction to Statistical Thermodynamics. 9 units (3-0-6). For course description, see Chemical Engineering.

Ch 165. Nonequilibrium Statistical Mechanics. 9 units (3-0-6); third term. Prerequisite: Ch 21 abc or equivalent. Transport processes in dilute gases; Boltzmann equation; Brownian Motion; Langevin and Fokker-Planck equations; linear response theory; time-correlation functions and applications; nonequilibrium thermodynamics. Instructor: Marcus.

BMB/Bi/Ch 170. Principles of Three-Dimensional Protein Structure. 9 units (3-3-3). For course description, see Biochemistry and Molecular Biophysics.

ESE/Ge/Ch 171. Atmospheric Chemistry I. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

ESE/Ge/Ch 172. Atmospheric Chemistry II. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

ESE/Ch/Ge 175 ab. Environmental Organic Chemistry. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

Ch 212. Bioinorganic Chemistry. 9 units (3-0-6); third term. Prerequisites: Ch 112 and Bi/Ch 110 or equivalent. Current topics in bioinorganic chemistry will be discussed, including metal storage and regulation, metalloenzyme structure and reactions, biological electron transfer, metalloprotein design, and metal-nucleic acid interactions and reactions. Given in alternate years; offered 2001-02. Instructor: Barton.

Ch 213 abc. Advanced Ligand Field Theory. 12 units (1-0-11); first, second, third term. Prerequisite: Ch 21 abc or concurrent registration. A tutorial course of problem solving in the more advanced aspects of ligand field theory. Recommended only for students interested in detailed theoretical work in the inorganic field. Instructors: Gray and staff.

Ch 224. Advanced Topics in Magnetic Resonance. 9 units (2-0-7); third term. Prerequisites: Ch 125 abc or Ph 125 abc or concurrent registration or equivalent, Ch 122 b or equivalent. A detailed presentation of some of the important concepts in magnetic resonance unified by the spin density operator formalism. Topics will include both classic phenomena and recent developments, especially in solid-state and two-dimensional NMR. Instructor: Weitekamp.

Ch 227 ab. Advanced Topics in Chemical Physics. 9 units (3-0-6); part a second term; part b first term. Prerequisite: Ch 125 abc or Ph 125 abc or equivalent. The general quantum mechanical theory of molecular collisions will be presented in detail. Quasi-classical, semi-classical, and other approximations. Applications to inelastic and reactive molecule-molecule and inelastic electron-molecule collisions. Not offered 2001–02.

Ch 228. The Dynamics of the Chemical Bond. 9 units (3-0-6); third term. Prerequisite: Ch 21 abc. Fundamentals of time-dependent phenomena will be discussed with particular focus on the primary processes important to molecular reaction dynamics. Topics such as reaction dynamics, nonradiative decay, coherence, energy redistribution, and wave packet dynamics will be covered. Instructor: Zewail.

Ch/Bi 231. Advanced Topics in Biochemistry. 6 units (2-0-4); third term. Transcriptional Regulation in Eukaryotes. Topics: The subunit structure of eukaryotic RNA polymerases and their role in transcriptional reaction; the composition of eukaryotic promoters, including regulatory units; general and specific transcription factors; developmental regulatory circuits and factors; structural motifs involved in DNA binding and transcriptional initiation and control. Instructor: Parker.

Ch 242 ab. Chemical Synthesis. 9 units (3-0-6); first, second terms. Prerequisite: Ch 41 abc. An integrated approach to synthetic problem solving featuring an extensive review of modern synthetic reactions with concurrent development of strategies for synthesis design. Part a will focus on the application of modern methods of stereoccontrol in the construction of stereochemically complex acyclic systems. Part b will focus on strategies and reactions for the synthesis of cyclic systems. Part c is an intensive development of the tools of mechanistic problem solving in organic chemistry and their application to problems in chemical synthesis. Instructors: Stoltz, MacMillan.

Ch 244 a. Topics in Chemical Biology. 9 units (3-0-3); second term. Current topics at the interface of chemistry and biology. Instructor: R. Roberts.

Ch 280. Chemical Research. Hours and units by arrangement. By arrangement with members of the faculty, properly qualified graduate students are directed in research in chemistry.

CIVIL ENGINEERING

CE 90 abc. Structural Analysis and Design. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 35 abc. Structural loads; influence lines for statically determinate beams and trusses; deflection of beams; moment area and conjugate beam theorems; approximate methods of analysis of indeterminate structures; slope deflection and moment distribution techniques. Generalized stiffness and flexibility analyses of indeterminate structures. Design of selected structures in timber, steel, and reinforced concrete providing an introduction to working stress, load and resistance factor, and ultimate strength approaches. In each of the second and third terms a design project will be undertaken involving consideration of initial conception, cost-benefit, and optimization aspects of a constructed facility. Instructor: Carlson.

CE 95. Introduction to Soil Mechanics. 9 units (2-3-4); second term. Prerequisite: AM 35 ab. A general introduction to the physical and engineering properties of soil, including origin, classification and identification methods, permeability, seepage, consolidation, settlement, slope stability, and lateral pressures and bearing capacity of footings. Standard laboratory soil tests will be performed. Not offered every year.

ME/CE 96. Mechanical Engineering Laboratory. 6 or 9 units as arranged with instructor. For course description, see Mechanical Engineering.

CE/ME 97. Fluid Mechanics Laboratory. 6 or 9 units as arranged with instructor; third term. Prerequisite: ME 19 ab. A laboratory course in the basic mechanics of incompressible fluid flow, complementing lecture course ME 19 abc. Students usually select approximately three regular experiments, but they may propose special investigations of brief research projects of their own. Students also gain experience in making engineering reports. Although the course is primarily for undergraduates, first-year graduate students who have not had an equivalent course can take it under CE 100. Instructor: Raichen.

CE 100. Special Topics in Civil Engineering. Units to be based upon work done, any term. Special problems or courses arranged to meet the needs of first-year graduate students or qualified undergraduate students. Graded pass/fail.

Ae/APh/CE/ME 101 abc. Fluid Mechanics. 9 units (3-0-6). For course description, see Aeronautics.
Ae/AM/CE/ME 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6). For course description, see Aeronautics.

CE/Ae/AM 108 abc. Computational Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: instructor's permission. Numerical analysis by the finite element method covering fundamental concepts and computer implementation. Solution of systems of linear equations and eigenvalue problems. Solution of the partial differential equations of heat transfer, solid and structural mechanics, and fluid mechanics. Transient and nonlinear problems. Not offered every year.

CE 110. Analysis and Design of Hydraulic Projects. 6 or more units as arranged; any term. Prerequisite: ME 19 abc. The detailed analysis or design of a complex hydraulic structure or water resources project emphasizing interrelationships of various components, with applications of fluid mechanics and/or hydrology. Students generally work on a single problem for the entire term, with frequent consultations with their instructor. Instructor: Staff.

CE 113 ab. Coastal Engineering. 9 units (3-0-6); first, second terms. Prerequisites: ME 19 abc or equivalent; ACM 95/100 abc. Engineering applications of the theory of small and finite amplitude water waves; diffraction, reflection, refraction; wind-generated waves and wave prediction procedures; tides and their interaction with the coastline; effect of waves on coastal structures such as breakwaters and pile-supported structures; coastal processes. Instructor: Raitchlen.

CE 115 ab. Soil Mechanics. 9 units (3-0-6); first term. 9 units (2-3-4); second term. Prerequisite: instructor's permission. Study of the engineering behavior of soil through examination of its chemical, physical, and mechanical properties. Classification and identification of soils, surface chemistry of clays, interparticle reactions, soil structure. Linear constitutive relations for soils, including steady-state and transient water flow. Second term: nonlinear soil behavior, theories of yielding, plasticity, constitutive models, and problems of plastic stability. Failure modes of footings, walls, and slopes. Not offered every year.

CE 124. Special Problems in Structures. 9 units (3-0-6); any term. Selected topics in structural mechanics and advanced strength of materials to meet the needs of first-year graduate students. Instructor: Staff.

CE 130 abc. Civil Engineering Seminar. 1 unit (1-0-0); each term. All candidates for the M.S. degree in civil engineering are required to attend a graduate seminar, in any division, each week of each term. Students not registered for the M.S. degree in civil engineering must receive the instructor's permission. Graded pass/fail. Instructor: Staff.

CE 150. Foundation Engineering. 9 units (3-0-6); third term. Prerequisite: CE 115 ab. Methods of subsoil exploration. Study of types and methods of design and construction of foundations for structures, including single and combined footings, mats, piles, caissons, retaining walls, cofferdams, and methods of underpinning. Text: Foundation Analysis, Scott. Not offered every year.

CE 160 abc. Structural and Earthquake Engineering. 9 units (3-0-6); first, second, third terms. Prerequisite: CE 90 or equivalent. Topics forming the foundation for structural analysis and design are covered. Techniques for linear and nonlinear, static and dynamic analysis, including analysis of structure-foundation and structure-fluid systems, the nature of loads due to wind and earthquake, concepts in design. Special consideration is given to behavior and design of specific structural systems such as buildings, bridges, concrete dams, liquid-storage tanks, tunnels and pipelines, cable structures, and offshore structures. Special emphasis on engineering for earthquakes. Instructor: Hall.

CE 180. Experimental Methods in Earthquake Engineering. 9 units (1-5-3); third term. Prerequisite: AM 151 abc or equivalent. Laboratory work involving calibration and performance of basic transducers suitable for the measurement of strong earthquake ground motion, and of structural response to such motion. Study of principal methods of dynamic tests of structures, including generation of forces and measurement of structural response. Instructor: Hushmand.

CE/Ge 181. Engineering Seismology. 9 units (3-0-6); second term. Characteristics of potentially destructive earthquakes from the engineering point of view. Determination of location and size of earthquakes; magnitude, intensity, frequency of occurrence; engineering implications of geological phenomena, including earthquake mechanisms, faulting, fault slippage, and effects of local geology on earthquake ground motion. Instructor: Heaton.

CE 200. Advanced Work in Civil Engineering. 6 or more units as arranged; any term. Members of the staff will arrange special courses on advanced topics in civil engineering for properly qualified graduate students. The following numbers may be used to indicate a particular area of study.

CE 201. Advanced Work in Structural Engineering.

CE 203. Advanced Work in Hydraulic Engineering. Units to be based upon work done; any term. Special course to meet the needs of advanced graduate students.

CE 210 ab. Hydrodynamics of Sediment Transport. 9 units (3-0-6); second, third terms. Prerequisites: ACM 95/100 abc and CE 101 abc. The mechanics of the entrainment, transportation, and deposition of solid particles by turbulent fluids, including discussion and interpretation of results of laboratory and field studies of alluvial streams, and wind erosion. Not offered every year.
CE 211. Advanced Hydraulics Seminar. 4 units (2-0-2); every term. A seminar course for advanced graduate students to discuss and review the recent technical literature in hydraulics and fluid mechanics. Civil and environmental engineering topics that are not available in courses offered by the Division of Engineering and Applied Science. Subject will vary depending upon the needs and interests of the students. May be taken any number of times with the permission of the instructor. Instructor: Staff.

CE 212. Advanced Hydraulics Laboratory. 6 or more units as arranged; any term. Prerequisite: instructor’s permission. A laboratory course, primarily for first-year graduate students, dealing with flow in open channels, sedimentation, waves, hydraulic structures, hydraulic machinery, or other phases of hydraulics of special interest. Students may perform one comprehensive experiment or several shorter ones. Instructor: Staff.

CE 213. Advanced Coastal Engineering. 9 units (3-0-6); third term. Prerequisites: CE 101 abc and CE 113 ab. Selected topics in coastal engineering such as harbor resonance, mooring and berthing of ships, and structural forces due to waves, tsunamis, and other impulsive wave systems. Not offered every year.

AE/AM/CE/ME 214 abc. Computational Solid Mechanics. 9 units (3-0-6). For course description, see Aeronautics.

CE 300. Research in Civil Engineering. Hours and units by arrangement. Research in the field of civil engineering. By arrangements with members of the staff, properly qualified graduate students are directed in research.

For courses in Environmental Science and Engineering, see that section.

COMPUTATION AND NEURAL SYSTEMS

CNS 100. Introduction to Computation and Neural Systems. 3 units (3-0-0); second term. This course is designed to introduce first-year CNS students and the campuswide CNS community to the wide variety of research being undertaken by CNS faculty. Topics from all the CNS research labs are discussed and span the range from biology to engineering. Graded pass/fail. Instructor: Koch.

CNS/Bi 120. The Neuronal Basis of Consciousness. 9 units (4-0-5); third term. What are the correlates of consciousness in the brain? The course provides a framework for beginning to address this question using a reductionist point of view. It focuses on the neurophysiology of the primate visual system, but also discusses alternative approaches more suitable for work with rodents. Topics to be covered include the anatomy and physiology of the primate’s visual system (striate and extrastriate cortical areas, dorsal/ventral distinction, visual-frontal connections), iconic and working memory, selective visual attention, visual illusions, clinical studies (neglect, blind sight, split-brain, agnosia), direct stimulation of the brain, delay and trace associative conditioning, conscious and unconscious olfactory processing, and philosophical approaches to consciousness. Instructor: Koch. For more information, see http://klab.caltech.edu/ CNS120/.

CNS/EE 124. Pattern Recognition. 9 units (3-0-6); third term. Prerequisite: Ma 2 or equivalent. An introduction to pattern recognition from a fundamental mathematical and statistical viewpoint with an emphasis on classic results in the field from the 1950s to the present. Methods and techniques discussed will include optimal Bayesian discrimination, discriminant functions, basic principles of estimation, linear discriminants (including Fisher’s method and the perceptron), parametric models such as multivariate Gaussian classifiers, mixture and kernel density methods, nearest neighbor classifiers, feedforward neural network models, decision tree methods, as well as general techniques for unsupervised learning (clustering), dimensionality reduction, and performance estimation such as cross-validation. Instructor: Staff. Not offered 2001–02.

EE/CNS 148. Selected Topics of Computational Vision. 9 units (3-0-6). For course description, see Electrical Engineering.

Bi/CNS 150. Neurobiology. 10 units (4-0-6). For course description, see Biology.

CS/CNS/EE 156 ab. Learning Systems. 9 units (3-0-6). For course description, see Computer Science.

Bi/CNS 157. Comparative Nervous Systems. 9 units (2-3-4). For course description, see Biology.

Bi/CNS 158. Vertebrate Evolution. 9 units (3-0-6). For course description, see Biology.

Bi/CNS 161. Cellular and Molecular Neurobiology Laboratory. 9 units (0-9-0). For course description, see Biology.

Bi/CNS 162. Central Nervous System Laboratory. 12 units (2-7-3). For course description, see Biology.

CS/CNS 171. Introduction to Computer Graphics Laboratory. 12 units (3-6-3). For course description, see Computer Science.

CNS/Bi 172. Clinical Neuropsychology. 6 units (3-0-3); second term. Prerequisite: Bi 150 or instructor’s permission. Lecture course discussing the relationship between cerebral structures and behavior, in particular with respect to the clinical literature. Cerebral functions are considered in light of acquired behavioral deficits such as aphasia, apraxia, agnosia,
callosal syndrome (split-brain), hemineglect, dementia, amnesia, and anosognosia. Instructor: Bogen.

CS/CNS 173. Global Illumination Laboratory. 12 units (3-6-3). For course description, see Computer Science.

CS/CNS 174. Computer Graphics Projects. 12 units (3-6-3). For course description, see Computer Science.

CNS/Ph 175. Artificial Life. 9 units (3-0-6); first term. Prerequisites: Ph 12 or equivalent; programming skills. Introduction to the study of simple living systems using the paradigm of self-replicating codes evolving in a noisy environment replete with information, implemented on a computer. Applications to the evolution of complexity, adaptive computation, self-organized criticality, thermodynamical and statistical theories of evolution, population biology, and the “directed” mutation hypothesis. Instructor: Adami.

CNS/CS/EE 188 a. Computation Theory and Neural Systems. 9 units (3-0-6); second term. Prerequisite: Ma 2. Introduction to computational models and methods that are inspired by, and related to, neural systems. Specific topics include computing elementary and symmetric Boolean functions with neural/linear threshold (LT) circuits and AND, OR, NOT (AON) circuits. Computing arithmetic functions with LT circuits and AON circuits, including COMPARISON, ADDITION, PRODUCT, SORTING, and COUNTING. Algebraic techniques and their applications in the construction of minimal weight linear threshold functions. The class includes a project that focuses on creating an interactive Web-based linear threshold calculator. Instructor: Bruck. Additional information concerning this course can be found at http://paradise.caltech.edu/cns188/.

CNS/CS/EE 188 b. Topics in Computation and Biological Systems. 9 units (3-0-6); third term. Prerequisite: CNS/CS/EE 188 a. Advanced topics related to computational methods in biology. Topics might change from year to year. Examples include spectral analysis techniques and their applications in threshold circuits complexity and in computational learning theory. The role of feedback in computation. The logic of computation in gene regulation networks. The class includes a project that has the goal of learning how to understand, criticize, and present the ideas and results in research papers. Instructor: Bruck. Additional information concerning this course can be found at http://paradise.caltech.edu/cns188/.

CS/CNS/Bi 191 ab. Biomolecular Computation. 9 units (3-0-6) second term; (2-4-3) third term. For course description, see Computer Science.

Bi/CNS 216. Behavior of Mammals. 6 units (2-0-4). For course description, see Biology.

Bi/CNS 217. Central Mechanisms in Perception. 6 units (2-0-4). For course description, see Biology.
CNS/Bi 221. Computational Neuroscience. 9 units (4-0-5); third term. Prerequisite: Bi/CNS 150 or instructor’s permission. Lecture and discussion aimed at understanding computational aspects of information processing within the nervous system. The course will emphasize single neurons and how their biophysical properties relate to neuronal coding, i.e., how is information actually represented in the brain at the level of action potentials. Topics include biophysics of single neurons, signal detection and signal reconstruction, information theory, population coding and temporal coding in sensory systems of invertebrates and in primate cortex. Students are required to hand in three homeworks, discuss one set of papers in class, and participate in the debates. Instructor: Koch. Not offered 2001–02.

CNS/Bi 246. Multicellular Recording. 9 units (2-6-1); third term. Prerequisite: Bi 150 or equivalent. Laboratory course in techniques and applications of multineuron recording in the central nervous system. The course will cover (1) methods for collecting single-cell data, (2) the analysis of multineuron data including spike sorting, and (3) scientific issues addressed by multicellular recording, including population coding and functional connectivity. Students are required to attend a two-hour laboratory lecture/discussion once a week, and complete one project. Multidisciplinary approaches are encouraged that combine engineering principles for data collection and analysis with experimental and theoretical approaches to understanding the nervous system. To this end, students will be encouraged to work in pairs, with one student coming from an engineering laboratory, and one from a neurobiology laboratory. Instructor: Andersen. Not offered 2001–02.

CNS/Bi 247. Cerebral Cortex. 6 units (2-0-4); second term. Prerequisite: Bi 150 or equivalent. A general survey of the structure and function of the cerebral cortex. Topics include cortical anatomy, functional localization, and newer computational approaches to understanding cortical processing operations. Motor cortex, sensory cortex (visual, auditory, and somatosensory cortex), association cortex, and limbic cortex. Emphasis is on using animal models to understand human cortical function and includes correlations between animal studies and human neuropsychological and functional imaging literature. Instructor: Andersen.

CNS/EE 248. Sensory Information Processing Laboratory. 12 units (1–2–9); third term. Prerequisite: any of CNS/EE 124, CNS 186, EE/CNS 148 or equivalent. Laboratory course in real-time applications of sensory processing. Students will be guided through the construction of working systems performing recognition, tracking, and navigation using vision, audition, and other sensors. Examples: vehicle navigation, face recognition, signature verification, fingerprint identification, and voice classification. At the beginning of the term a number of lectures will introduce the materials and methods involved in the experiments. Instructors: Psaltis, Perona. Additional information about this course can be found at http://www.vision.caltech.edu/CNS248/.

CS/CNS 257 abc. Simulation. 9 units (3-3-3) first; (3-3-1) second, third terms. For course description, see Computer Science.

CS 280. Research in Computation and Neural Systems. Hours and units by arrangement. For graduate students admitted to candidacy in computation and neural systems.

CNS/Bi 286 abc. Special Topics in Computation and Neural Systems. Units to be arranged. First, second, third terms. Students may register with permission of the responsible faculty member.

COMPUTER SCIENCE

CS 1. Introduction to Computation. 9 units (3–4–2); first term. CS 1 is an introduction to the automated processing of information, including computer programming. This course gives students the conceptual background necessary to understand and construct programs (i.e., specify computations, understand evaluation models, and use and understand major constructs, including functions and procedures, scoping and environments, data storage, side-effects, conditionals, recursion and looping, and higher-order functions). CS 1 introduces key issues that arise in computation (e.g., universality, computability, complexity, representation, abstraction management). This course puts the components of computer science in context, serving as an overview for students specializing in computational disciplines and alerting all students to important subletties that may arise when applying computation in their studies, research, and work. At the end of this course, students should be able to read and write (synthesize, analyze, understand) small programs (100 lines) and have the intellectual framework necessary to rapidly assimilate new computer languages as the need arises. All Caltech undergraduates are encouraged to take this course. Instructor: DeHon.

CS 2. Introduction to Data Structures and Algorithms. 9 units (2–4–3); second term. Prerequisite: CS 1 or equivalent. CS 2 is a challenging course in programming languages and computer science, emphasizing modes of algorithmic expression. The course will include such topics as performance analysis of algorithms; proofs of program correctness; recursive and higher-order procedures; data structures, including lists, trees, graphs, and arrays; objects and abstract data types. The course includes weekly laboratory exercises and written homework covering the lecture material and program design. Instructor: Staff.

CS 3. Structure and Interpretation of Computer Programs. 9 units (2–4–3); third term. Prerequisite: CS 2 or equivalent. CS 3 is an advanced introduction to the fundamentals of computer science and software engineering methodology. Topics will be chosen from the following: abstract data types; object-oriented models and methods; logic, specification, and program composition; abstract models of computation;
probabilistic algorithms; non-determinism; distributed algorithms and data structures. The weekly laboratory exercises allow the students to investigate the lecture material by writing non-trivial applications.

Instructor: Staff.

Ma/CS 6 abc. Introduction to Discrete Mathematics. 9 units (3-0-6). For course description, see Mathematics.

CS 11. Computer Language Shop. 3 units (0-3-0); first, second, third terms. Prerequisite: CS 1 or instructor’s permission. CS 11 is a self-paced lab that provides students with extra practice and supervision transferring their programming skills to a particular programming language; the course can be used for any language of the student's choosing, subject to approval by the instructor. A series of exercises guides the student through the pragmatic use of the chosen language, building his or her familiarity, experience, and style. Lab staff will critique the student’s technique and craftsmanship, offering expert feedback on areas for attention and helping the student with any conceptual difficulties that may arise while mastering the particular language. CS 11 may be repeated for credit up to a total of 9 units. Instructor: Staff.

CS 20 abc. Computation, Computers, and Programs. 9 units (3-3-3); first, second, third terms. Prerequisite: CS 2 or equivalent. This course will focus on the fundamental underpinning of computer science. Topics will include abstract models of computation, the limits of computation, analysis of algorithms, formal languages, automata theory, graph theory, logic, combinatorics, numeric and symbolic computation, and program translation and semantics. Practical examples will be drawn from diverse areas such as computational geometry, numerical analysis, computational logic, and compiler design. Course work will be both theoretical and practical, with assignments involving both proofs and programs. Students will learn to program in languages such as Lisp, Prolog, and Java. Instructor: Arvo. Additional information about this course can be found at http://www.cs.caltech.edu/~cs20/.

CS 40/140 ab. Programming Laboratory. 9 units (1-8-0); second, third terms. Prerequisite: CS 20 or equivalent. Undergraduates must enroll for CS 40; graduates must enroll for CS 140. This laboratory course is meant to expose students to programming in the large. The lectures cover both object-oriented program design techniques and other methodologies with the goal of demonstrating proper design techniques for large programming projects. These methodologies are then applied to the design and implementation of a significant program project. This project is of a large enough scale that the students must work in large teams in order to design and implement the system in the two-term course. Throughout the course, students will be expected to present their designs and implementations at scheduled design reviews. The emphasis in the course is not only in achieving the task, but also in properly analyzing the problem space, presenting a clear problem specification, and implementing a modular and maintainable design. Instructor: George.

CS 47/147. Advanced Object-Oriented Programming. 9 units (3-3-3); first term. Prerequisites: CS 2 and CS 20 or equivalent. Undergraduates must enroll for CS 47; graduates must enroll for CS 147. This course covers the advanced object-oriented programming techniques typically used in large programming projects. Fundamental programming techniques such as object design, inheritance of implementation and/or interface, and polymorphism are also discussed. Other, more advanced, programming concepts covered include smart pointers, garbage collection, object permanence, patterns, and internet programming. Instructor: George.

EE/CS 51. Principles of Microprocessor Systems. 9 units (3-0-6). For course description, see Electrical Engineering.

EE/CS 52. Microprocessor Systems Laboratory. 12 units (1-11-0). For course description, see Electrical Engineering.

EE/CS 53. Microprocessor Project Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor. For course description, see Electrical Engineering.

EE/CS 54. Advanced Microprocessor Projects Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor. For course description, see Electrical Engineering.

EE/CS 80 abc. Senior Thesis. 9 units. For course description, see Electrical Engineering.

CS 81 abc. Undergraduate Laboratory in Computer Science. Units in accordance with work accomplished. Consent of both research adviser and course supervisor required before registering. Supervised experimental research in computer science by undergraduates. Topic must be approved by the supervisor, and a formal final report must be presented on completion of research. Graded pass/fail. Instructor: Staff.

CS 90. Undergraduate Research in Computer Science. Units in accordance with work accomplished. Consent of both research adviser and course supervisor required before registering. Supervised research in computer science by undergraduates. Topic must be approved by the supervisor, and a formal final report must be presented on completion of research. Graded pass/fail. Instructor: Staff.

CS 101 abc. Special Topics in Computer Science. Units in accordance with work accomplished. Offered by announcement. Prerequisite: CS 20. The topics covered vary from year to year, depending on the students and staff. Primarily for undergraduates.

ACM/CS 114 ab. Parallel Algorithms for Scientific Applications. 9 units. For course description, see Applied and Computational Mathematics.
Ma/CS 117 abc. Computability Theory. 9 units (3–0-6). For course description, see Mathematics.

CS/EE/Ma 129 abc. Information and Complexity. 9 units (3–0-6), first and second terms; (1–4-4) third term. Prerequisite: basic knowledge of probability and discrete mathematics. A basic course in information theory and computational complexity with emphasis on fundamental concepts and tools that equip the student for research and provide a foundation for pattern recognition and learning theory. First term: What is information and what is computation; entropy, source coding, Turing machines, uncomputability. Second term: Topics in information and complexity; Kolmogorov complexity, channel coding, circuit complexity, NP completeness. Third term: Theoretical and experimental projects on current research topics. Instructor: Abu-Mostafa. Only section a will be offered in 2001–02.

CS 133. Topics in Symbolic Computation. 9 units (3–3-3); second term. Prerequisite: CS 20 or instructor’s permission. This course will introduce students to a number of topics in symbolic computation including computational logic, mechanical theorem proving, and computer algebra. A number of important concepts from artificial intelligence will also be discussed, such as non-monotonic reasoning, belief revision, and planning. Useful programming techniques such as continuations, nondeterminism, and heuristic search will be covered. Students will gain practical experience by implementing many of the basic algorithms in Lisp or Prolog, and by completing a term project. Some prior experience with Lisp, Prolog, or predicate calculus is desirable. Instructor: Arvo. Not offered 2001–02.

CS 134 b. Computing Systems, Compilers, and Languages Laboratory. 12 units (3–6-3); second term. Prerequisite: CS 134 a or instructor’s permission. Programming models and languages for operating systems. Execution environments, storage management, and operating system interfaces. Binding mechanisms, abstraction, optimization, and code generation. Parsing and lexical analysis. Students will build a working compiler. Instructor: Hickey.

CS 134 c. Advanced Computing Systems. 9 units (3–3-3) or 12 units (3–6-3); third term. Prerequisite: CS 134 b or instructor’s permission. Programming and computing environments. Parallel and distributed operating systems, cache coherency, virtual network paging, SIMD and MIMD models. Language-based operating systems. Modular kernels, kernel/user abstraction weakening. Naming, distributed security policy, resource management. Mobile code. Execution models for non-Von Neumann machines. Instructor: Hickey.

CS/EE 137 ab. Electronic Design Automation. 9 units (3–3-3); second, third terms. Prerequisite: basic algorithms and computational theory (CS 138 a, may take CS 138 b concurrently), some exposure to VLSI and/or architecture (CS 181 or CS 184), or instructor’s permission. Formulation, automation, and analysis of design mapping problems, with emphasis on VLSI and computational realizations. Major themes include formulating and abstracting problems, figures of merit (e.g., energy, delay, throughput, area, mapping time), representation, traditional decomposition of flow (logic optimization, covering, scheduling, retiming, assignment, partitioning, placement, routing), and techniques for solving problems (e.g., greedy, dynamic programming, search, integer linear programming, graph algorithms, randomization). This is a two-term sequence. The first term will cover the major intellectual ground and present students a series of contained projects as a chance to exercise their understanding of the material. In the second term, students will work through all the phases of formulation, design, automation, and analysis of some particular automation problem, preferably one that arises in the student’s own research. Instructor: DeHon.

CS 138 abc. Computer Algorithms. 9 units (3–0-6); first, second, third terms. Prerequisite: CS 20 or equivalent. Design and analysis of algorithms. Techniques for problems concerning graphs, flows, number theory, string matching, data compression, geometry, linear algebra and coding theory. Optimization, including linear programming. Randomization. Basic complexity theory and cryptography. Instructor: Schulman. Only sections a and b will be offered in 2001–02.

CS 139 abc. Concurrency in Computation. 9 units (3–0-6); first, second, third terms. Prerequisite: CS 20 or equivalent. Design and verification of concurrent algorithms. Topics: different models of concurrent computations; process synchronization by shared variables and synchronization primitives; distributed processes communicating by message exchange; the concepts of synchronization, indivisible actions, deadlock, and fairness; semantics and correctness proofs; implementation issues; and application to VLSI algorithm design. Parallel machine architecture issues include mapping a parallel algorithm on a network of processors, and classical parallel algorithms and their complexity. Instructor: Martin. Not offered 2001–02.

CS 141 abc. Distributed Computation Laboratory. 9 units (3–3-3); first, second, third terms. Prerequisite: CS 20 or equivalent. This laboratory course deals with the systematic design and implementation of high-confidence scalable networks of communicating objects that discover other objects, configure themselves into collaborating groups of objects, and adapt to their environment. Teams of students explore theories and methods of implementation to obtain predictability and adaptability in distributed systems. Each team of students is expected
to submit a research paper at the end of the third term, schedule demonstrations periodically, and maintain documents describing their project status. Instructor: Chandy. Given in alternate years; not offered 2001–02.

CS/EE 145 ab. Networking. 9 units (3-3-3); first, second terms. Prerequisite: Ma 2 ab. This course introduces the basic mechanisms and protocols in communication networks and mathematical models for their analysis. Part a covers topics such as digitization, switching, switch design, routing, error control (ARQ), flow control, layering, queuing models, and optimization models; and basics of protocols in the Internet, wireless networks and optical networks. Part b covers current research topics in the design, analysis, control, and optimization of networks, protocols, and applications. Instructor: Low.

CS/CNS/EE 156 ab. Learning Systems. 9 units (3–0-6); first, second terms. Prerequisites: Ma 2 and CS 2, or equivalent. Introduction to the theory, algorithms, and applications of automated learning. How much information is needed to learn a task, how much computation is involved, and how it can be accomplished. Special emphasis will be given to unifying the different approaches to the subject coming from statistics, function approximation, optimization, pattern recognition, and neural networks. Instructor: Abu-Mostafa. Only section b will be offered in 2001–02 (first term).

BI/CS 164. Projects in Bioinformatics. 9 units (3-3-3); third term. For course description, see Biology.

CS/CNS 171. Introduction to Computer Graphics Laboratory. 12 units (3-6-3); second term. Prerequisites: Ma 2 and extensive programming experience. This course introduces the basic ideas behind computer graphics and its fundamental algorithms. Topics include graphics input and output, the graphics pipeline, sampling and image manipulation, three-dimensional transformations and interactive modeling, basics of physically based modeling and animation, simple shading models and their hardware implementation, and fundamental algorithms of scientific visualization. Students will be required to perform significant implementations. Instructor: Barr.

CS/CNS 173. Global Illumination Laboratory. 12 units (3-6-3); second term. Prerequisites: Ma 2 and extensive programming experience. CS/CNS 171 recommended. This course will concentrate on the theory and efficient algorithms for the solution of the illumination problem based on physical principles. Fundamental algorithms discussed include ray tracing and radiosity methods together with their associated theories: the rendering equation, Monte Carlo sampling methods, and finite element approximations, including hierarchical methods based on wavelets. Extensive implementation exercises are an integral part of this class and solid programming ability is required, though prior exposure to interactive computer graphics techniques is not. Not offered 2001–02.

CS/CNS 174. Computer Graphics Projects. 12 units (3-6-3); third term. Prerequisites: Ma 2 and CS/CNS 171 or CS/CNS 173 or CS 175 or instructor’s permission. This laboratory class offers students an opportunity for independent work covering recent computer graphics research. In coordination with the instructor, students select a computer graphics modeling, rendering, interaction, or related algorithm and implement it. Students are required to present their work in class and discuss the results of their implementation and any possible improvements to the basic methods. Instructor: Barr.

CS 175. Topics in Geometric Modeling. 9 units (3-3-3); third term. Prerequisite: Instructor’s permission. This course will cover both classical and state-of-the-art approaches to geometric modeling as needed in computer-aided geometric design and graphics. Subjects treated include classical splines and their theory and practice (Bernstein Bezier form, de Casteljau algorithm, knot insertion, polar forms and blossoming, degree elevation) as well as more recent approaches based on subdivision (Chaikin’s algorithm, subdivision schemes of Loop, Catmull-Clark, and Butterfly). Both the underlying mathematical theory and its implementation in the form of highly efficient algorithms will be taught. Instructor: Schröder.

CS 180. Master’s Thesis Research. Units (total of 45) are determined in accordance with work accomplished.

CS/EE 181 abc. VLSI Design Laboratory. 12 units (3-6-3); first, second, third terms. Digital integrated system design, with projects involving the design, verification, and testing of high-complexity CMOS microcircuits. First-term lecture and homework topics emphasize disciplined design, and include CMOS logic, layout, and timing; computer-aided design and analysis tools; and electrical and performance considerations. Each student is required in the first term to complete individually the design, layout, and verification of a moderately complex integrated circuit. Advanced topics second and third terms include self-timed design, computer architecture, and other topics that vary year by year. Projects are large-scale designs done by teams. Instructor: Martin.

CS/EE 184 abc. Computer Architecture. 9 units (3-3-3); first, second, third terms. Prerequisites: basic digital design (EE 4), basic computability (CS 20), or instructor’s permission. Organization and design of physical computational systems, basic building blocks for computations, understanding and exploiting structure in computational problems, design space, costs, and tradeoffs in computer organization, common machine abstractions, and implementation/optimization techniques. The course will develop the fundamental issues and tradeoffs that define computer organizational and architectural styles, including RISC, VLIW, Super Scalar, EPIC, SIMD, Vector, MIMD, reconfigurable, FPGA, PIM, and SoC. Basic topics in the design of computational units, instruction organization, memory systems, control and data flow, interconnect, and the hardware-software abstraction will also be covered. Instructor: DeHon. Given in alternate years; not offered 2001–02.
CS 185 abc. Asynchronous VLSI Design Laboratory. 9 units
(3-3-3); first, second, third terms. Prerequisite: CS 139. The design of digital integrated circuits whose correct operation is independent of delays in wires and gates. (Such circuits do not use clocks.) Emphasis is placed on high-level synthesis, design by program transformations, and correctness by construction. The first term introduces delay-insensitive design techniques, description of circuits as concurrent programs, circuit compilation, standard-cell layout and other computer-aided design tools, and electrical optimizations. The second term is reserved for advanced topics, and for the presentation and review of mid-size projects, which will be fabricated in CMOS or GaAs technologies, and tested. Instructor: Martin. Not offered 2001–02.

CNS/BI/Ph/CS 187. Neural Computation. 9 units (3-0-6). For course description, see Computation and Neural Systems.

CNS/CS/EE 188 a. Computation Theory and Neural Systems. 9 units (3-0-6). For course description, see Computation and Neural Systems.

CNS/CS/EE 188 b. Topics in Computation and Biological Systems. 9 units (3-0-6). For course description, see Computation and Neural Systems.

CS/CNS/BI 191 ab. Biomolecular Computation. 9 units (3-0-6) second term; (2-4-3) third term. This course investigates computation by molecular systems, emphasizing models of computation based on the underlying physics, chemistry, and organization of biological cells. Topics will be selected from computation by self-assembly, molecular folding, signal transduction, genetic regulatory networks, and transcription; simulation and design of biochemical systems; physical limits of computation, reliability, and the role of noise; reversible computation; DNA-based computers; in vitro evolution; molecular ecosystems. Part (a) develops fundamental results. Part (b) is a reading and research course: classic and current papers will be discussed, and students will do lab work on current research topics. Instructor: Winfree. Given in alternate years; offered 2001–02.

Ph/CS 219 abc. Quantum Computation. 9 units (3-0-6); first, second, third terms. For course description, see Physics.

CS 237 abc. Compiler Design Laboratory. 9 units (3-3-3); first, second, third terms. Prerequisite: advanced programming background. Current practice and research in programming languages. Syntactic and semantic issues with emphasis on the latter. Syntactic topics: finite automata, regular expressions, and lexical analysis; push-down automata and context-free grammars; top-down and bottom-up parsing techniques; syntax-directed translation. Semantic topics: code generation, optimization, binding mechanisms, storage management, and execution environments. Language design topics: abstraction mechanisms, advanced control regimes, very-high-level languages, functional languages, object-oriented languages, logic programming languages.

Further topics: interpreter and compiler construction issues, the impact of languages on hardware design. Extensive laboratory work will be required. Instructor: Hickey. Not offered 2001–02.

CS/CNS 257 abc. Simulation. 9 units (3-3-3) first; (3-5-1) second, third terms. Prerequisite: instructor’s permission. Mathematical and computational modeling methods. First term: the mathematical foundations of simulation, such as Eulerian equations of motion, tensor analysis, applied 3-D geometry, and the mathematics of continuum dynamics. Second term: the numerical methods of simulation, such as the numerical solution of differential equations, the finite element method, and Monte Carlo techniques. Third term: case studies applying these techniques to selected three-dimensional problems in the physical sciences. Term projects for the third term will involve implementing a case study or other computational application of the methods. Some experience with vector and raster graphics would be helpful. Instructor: Barr. Not offered 2001–02.

CS 274 abc. Topics in Computer Graphics. 9 units (3-3-3); first, second, third terms. Prerequisite: instructor’s permission. Each term will focus on some topic in computer graphics, such as geometric modeling, rendering, animation, human-computer interaction, or mathematical foundations. The topics will vary from year to year. May be repeated for credit with permission of instructor. Not offered 2001–02.

CS 280. Research in Computer Science. Units in accordance with work accomplished. Approval of student’s research adviser and his or her option adviser must be obtained before registering.

CS 282 b. Reading in Computer Science. 6 units or more by arrangement; first, second, third terms. Instructor’s permission required.

CS 284 abc. Computer Science Seminar on Mathematics of Program Construction. 9 units (3-0-6); first, second, third terms. Prerequisite: CS 20 or instructor’s permission. This course addresses the mathematical basis of programming. First term: predicate calculus, lattice theory, sequential programming. Second term: relational calculus, programs as trace-sets, temporal properties. Third term: models of concurrency and concurrent programming. Not offered 2001–02.

CS 286 abc. Seminar in Computer Science. 3, 6, or 9 units, at the instructor’s discretion. Instructor’s permission required.
CONTROL AND DYNAMICAL SYSTEMS

CDS 110 ab. Introduction to Control of Physical Systems. 9 units (3-0-6); first, second terms. Prerequisite: ACM 95/100 abc. Application of feedback analysis and design to physical systems, including classical control theory in the frequency and time domains. Stability, performance; methods based on Bode, Nyquist, and root-locus diagrams. Representation in state space. Analog and discrete dynamical systems. Introduction to multivariable control. Instructor: Staff. Additional information concerning this course can be found at http://www cds.caltech.edu/cds/courses/cds110/.

CDS 111. Applications of Control Technology. 9 units (3-3-3); third term. Prerequisite: CDS 110 or equivalent. Application of modern control design techniques to physical systems. The goal of this course is to teach students how to design and implement control controllers on physical systems, and to allow students to evaluate different control design methodologies on experimental hardware. Instructor: Staff. Additional information concerning this course can be found at http://www.cds.caltech.edu/cds/courses/cds111/.

CDS 140 ab. Introduction to Dynamics. 9 units (3-0-6); first, second terms. Prerequisite: ACM 95 or equivalent. Basics in topics in dynamics in Euclidean space, including equilibria, stability, Liapunov functions, periodic solutions, Poincaré-Bendixson theory, Poincaré maps. Attractors and structural stability. The Euler-Lagrangian equations, mechanical systems, small oscillations, dissipation energy as a Liapunov function, conservation laws. Introduction to simple bifurcations and eigenvalue crossing conditions. Discussion of bifurcations in applications, invariant manifolds, the method of averaging, Melnikov's method, and the Smale horseshoe. Instructor: Staff.

CDS 201. Applied Operator Theory. 9 units (3-0-6); first term. Prerequisite: ACM 95/100 or equivalent. Invariant subspaces, Jordan form, Cayley-Hamilton theorem, matrix exponential, singular value decomposition, some Banach and Hilbert spaces, operators, duals, adjoints, induced norms, and spectral theory. Calculus in linear spaces, the inverse and implicit function theorems. Instructor: Staff.

CDS 205. Geometric Mechanics. 9 units (3-0-6); third term. Prerequisites: CDS 202, CDS 140. The geometry and dynamics of Lagrangian and Hamiltonian systems, including symplectic and Poisson manifolds, variational principles, Lie groups, momentum maps, rigid-body dynamics, Euler-Poincaré equations, stability, and an introduction to reduction theory. More advanced topics will include (taught in a course the following year) reduction theory, fluid dynamics, the energy momentum method, geometric phases, bifurcation theory for mechanical systems, and nonholonomic systems. Given in alternate years; not offered 2001–02.

CDS 212. Introduction to Modern Control. 9 units (3-0-6); first term. Prerequisites: ACM 95/100 abc or equivalent; CDS 110 ab or equivalent. Introduction to modern control systems with emphasis on the role of control in overall system analysis and design. Examples drawn from throughout engineering and science. Open versus closed loop control. State-space methods, time and frequency domain, stability and stabilization, realization theory. Time-varying and nonlinear models. Uncertainty and robustness. Instructor: Staff.

CDS 213. Robust Control. 9 units (3-0-6); second term. Prerequisites: CDS 212, CDS 201. Linear systems, realization theory, time and frequency response, norms and performance, stochastic noise models, robust stability and performance, linear fractional transformations, structured uncertainty, optimal control, model reduction, μ analysis and synthesis, real parametric uncertainty, Kharitonov's theorem, uncertainty modeling. Instructor: Doyle.

CDS 221. Control of Nonlinear Systems. 9 units (3-0-6); third term. Prerequisites: CDS 140, CDS 201, CDS 202 or AM 125 a, CDS 212. Analysis and design of nonlinear control systems using Lyapunov theory and differentiable geometric methods. Controllability, observability, feedback linearization, invariant distributions, disturbance decoupling. Second-order systems, describing functions, direct and indirect method of Lyapunov, I/O stability, adaptive control. Given in alternate years; offered 2001–02. Instructor: Staff.

CDS 270. Advanced Topics in Systems and Control. Hours and units by arrangement. Topics dependent on class interests and instructor. Can be repeated for credit.
CDS 280. Advanced Topics in Geometric Mechanics or Dynamical Systems Theory. Hours and units by arrangement. Prerequisite: instructor’s permission. Topics will vary according to student and instructor interest. Examples include chaotic transport theory, invariant manifold techniques, multidimensional geometric perturbation theory, the dynamics of coupled oscillators, rigid-body dynamics, numerical methods in dynamical systems theory. Can be repeated for credit. Instructor: Staff.

CDS 300 abc. Research in Control and Dynamical Systems. Hours and units by arrangement. Research in the field of control and dynamical systems. By arrangement with members of the staff, properly qualified graduate students are directed in research. Instructor: Staff.

CORE

Core 1 ab. Science Writing. 3 units (no credit for 1 a; 3 units for 1 b); first, second; second, third terms. Satisfactory completion of this course is required to satisfy the written component of the Science Communications Requirement. Students must complete a 3,000-word paper on some subject in science or engineering, which will be published in the student electronic journal established for this purpose. Completion of 1 a requires submission of a draft of the paper; completion of 1 b requires acceptance of the final version of the paper. Each student will work individually with a faculty member on the writing of the paper. Instructor: Pierce.

ECONOMICS

Ec 11. Introduction to Economics. 9 units (3–0–6); first, third terms. An introduction to economic methodology, models, and institutions. Includes both basic microeconomics and an introduction to modern approaches to macroeconomic issues. Instructors: Plott, Wilkie.

Ec 13. Readings in Economics. Units to be determined for the individual by the department. Not available for credit toward humanities–social science requirement. Graded pass/fail.

Ec/SS 20. Oral Presentation. 3 units (2–0–1); second term. In this course students will present material of their own choosing to other members of the class. The material can come from any field in economics and the social sciences, and can be theoretical or empirical, contemporary or historical. Emphasis will be placed on the optimal organization and delivery of the material. Instructor: Staff.

Ec 98 abc. Senior Research and Thesis. Prerequisite: instructor’s permission. Senior economics majors wishing to undertake research may elect a variable number of units, not to exceed 12 in any one term, for such work under the direction of a member of the economics faculty.

Ec 101. Selected Topics in Economics. 9 units (3–0–6). Offered by announcement. Instructor: Staff, visiting lecturers.

Ec 105. Industrial Organization. 9 units (3–0–6). Prerequisite: Ec 11 or equivalent. A study of how technology affects issues of market structure and how market structure affects observable economic outcomes, such as: prices, profits, advertising, and research and development expenditures. Emphasis will be on how the analytic tools developed in the course can be used to examine particular industries in detail. Not offered 2001–02.

Ec 116. Contemporary Socioeconomic Problems. 9 units (3–0–6); first term. Prerequisites: Ec 11 and PS 12 or equivalents. An analytical investigation of the economic aspects of certain current social issues. Topics: the economics of education, medical-care systems, urban affairs, and the welfare system. Instructor: Dubin.

Ec 118. Environmental Economics. 9 units (3–0–6). Prerequisite: Ec 11 or equivalent. The methods of price and welfare theory are used to analyze the causes of air, water, and other environmental pollution, to examine their impact on economic welfare, and to evaluate selected policy alternatives for managing our environment. Not offered 2001–02.

Ec 121 ab. Theory of Value. 9 units (3–0–6); first, second terms. Prerequisites: Ec 11 and Ma 2 (may be taken concurrently). A study of consumer preference, the structure and conduct of markets, factor pricing, measures of economic efficiency, and the interdependence of markets in reaching a general equilibrium. Instructor: Border.

Ec 122. Econometrics. 9 units (3–0–6); second term. Prerequisite: Ma 112 a. The application of statistical techniques to the analysis of economic data. Instructor: Grether.

Ec/SS 128. Economic and Financial Development in the 19th and 20th Centuries. 9 units (3–0–6); second term. Prerequisite: Ec 11 or SS 13. Economic analysis of financial and industrial development of various regions of the world from 1800 to the present. Topics may include agrarian reform and the end of serfdom; capital markets and financial institutions and their role in industrialization; bank panics, market crashes, and hyperinflation; and the rise and fall of communism in Eastern Europe. Not offered 2001–02.
Ec/SS 129. Economic History of the United States. 9 units (3-0-6); second term. Prerequisite: Ec 11 or SS 13. An examination of certain analytical and quantitative tools and their application to American economic development. Instructor: Davis.

Ec/SS 130. Economic History of Europe from the Middle Ages to the Industrial Revolution. 9 units (3-0-6). Prerequisite: Ec 11 or SS 13. Employs the theoretical and quantitative techniques of economics to help explore and explain the development of the European cultural area between 1000 and 1850. Topics include the rise of commerce, the demographic transition, the industrial revolution, and changes in property rights and capital markets. Not offered 2001–02.

Ec 131. Labor Economics. 9 units (3-0-6). Prerequisite: Ec 11 or equivalent. Modern theory of labor markets. Uses empirical evidence to supplement theoretical results. Instructor: MacLeod.

PS/Ec 134. The Political Economy of Urban Areas. 9 units (3-0-6). For course description, see Political Science.

Ec 135. Economics of Uncertainty and Information. 9 units (3-0-6); third term. Prerequisites: Ec 11, Ma 2. An analysis of the effects of uncertainty and information on economic decisions. Included among the topics are individual and group decision making under uncertainty, expected utility maximization, insurance, financial markets and speculation, product quality and advertisement, and the value of information. Instructor: Ghirardato.

BEM/Ec 146. Organization Design. 9 units (3-0-6). For course description, see Business Economics and Management.

Ec 155. Decision Theory. 9 units (3-0-6); third term. Prerequisite: Ma 2. Course will discuss the formal analysis of individual decision making from normative and descriptive standpoints. Topics to be covered include choice under certainty, under risk (von Neumann and Morgenstern) and under certainty (Anscombe-Aumann and Savage), conditional preferences and probabilities, independence and de Finetti’s theorem on exchangeability, dynamic decision making, non-expected utility models, non-additive probabilities, and multiple priors. Instructor: Ghirardato.

Ec/PS 160 abc. Laboratory Experiments in the Social Sciences. 9 units (3-3-3). An examination of recent work in laboratory testing in the social sciences with particular reference to work done in social psychology, economics, and political science. Students are required to design and conduct experiments. Instructor: Plott.

Ec 161. Business Cycles. 9 units (3-0-6); third term. Prerequisite: Ec 11. The role of dynamic decision making in economic fluctuations and growth. Topics include: labor supply decisions and unemployment, behavior of inventories, real investment behavior, productivity, and real capital markets. Instructor: Arifovic.

Ec 162. Monetary Theory. 9 units (3-0-6). Prerequisite: Ec 11. The role of money and the payments mechanism in the U.S. economy. Topics include: behavior of the Federal Reserve and the commercial banking system, determination of interest rates and the term structure of interest rates, empirical analysis of the demand and supply of money, and financial markets. Not offered 2001–02.

Ec/BEM 163. Financial Intermediation. 9 units (3-0-6); third term. Prerequisite: Ec 11. Existence, structure, and regulation of financial intermediaries. Information asymmetry, transactions costs, maturity and liquidity transformation, credit rationing, financial fragility and systemic risk, deposit insurance, regulatory issues, comparative systems. Theoretical foundations and empirical testing. Emphasis on class discussion and development of student research. Instructor: Staff.

PS/Ec 172. Noncooperative Games in Social Sciences. 9 units (3-0-6). For course description, see Political Science.

PS/Ec 173. Cooperation and Social Behavior. 9 units (3-0-6). For course description, see Political Science.

ELECTRICAL ENGINEERING

EE/Mu 17 abc. Projects in Music and Science. Units to be individually arranged, up to a maximum of 12. Students will carry out, singly or in groups, projects of study or research exploring the connections of music with the sciences. EE/Mu 107 a will be devoted to Analytic
Listening to Live and Reproduced Sound; it may be taken by itself and has no prerequisites. EE/Mu 107 b and c, devoted to the projects, require instructor's permission. Projects may be done for joint credit with EE 91 if approved by both instructors. EE/Mu 107 projects may be continued into a second year. Instructor: Boyk. Additional information concerning this course can be found at http://www.its.caltech.edu/~musiclab and http://www.its.caltech.edu/~boyk.

EE 20 ab. Electronics Laboratory. 9 units (3-3-3); first, second terms. Prerequisite: EE 20 ab; Ph 5/105 may be used as a prerequisite with the instructor's permission. Introduction to operational amplifiers and other linear integrated circuits. Covers op amp internal design from the basic differential amplifier to the 741. Frequency compensation and stability. Op amp application circuits linear and nonlinear such as integrator, differentiator, summer, multiplier, active filters, signal generation. Other linear ICs: current differencing (Norton) amplifier, 555 timer, phase-locked loop, A/D converter, sample and hold, comparator, voltage controlled oscillator (VCO), voltage regulators. Homeworks and lab experiments integrated with course work. Not offered 2001–02.

EE 30. Op Amps and Linear Integrated Circuits. 9 units (2-3-4); second term. Prerequisite: EE 20 ab; Ph 5/105 may be used as a prerequisite with the instructor's permission. Introduction to operational amplifiers and other linear integrated circuits. Covers op amp internal design from the basic differential amplifier to the 741. Frequency compensation and stability. Op amp application circuits linear and nonlinear such as integrator, differentiator, summer, multiplier, active filters, signal generation. Other linear ICs: current differencing (Norton) amplifier, 555 timer, phase-locked loop, A/D converter, sample and hold, comparator, voltage controlled oscillator (VCO), voltage regulators. Homeworks and lab experiments integrated with course work. Not offered 2001–02.

EE 32 ab. Signals, Systems, and Transforms. 9 units (3–0–6); first, second terms. Prerequisites: Ma 1 abc, Ma 2, and EE 20 ab. An introduction to the analysis and synthesis of analog and digital circuits, signals, and systems. Sampling, modulation, and filtering of signals represented as continuous or discrete functions of time. Input-output relations of linear time-invariant systems, state-space representations, and stability analysis. Special emphasis will be placed on transform techniques (Fourier, Laplace, and Z-transforms). Instructor: McEliece.

EE 40. Introduction to Sensors and Actuators. 9 units (3-0-6); third term. Prerequisites: Ph 1 abc and EE 20 ab. This course provides an introduction to various sensors and actuators. The fundamental principles of the devices will be emphasized, together with their electrical implementation, such as biasing and signal processing circuits. A collection of devices that will be discussed include optical sensors, solar cells, CCD, CMOS imager, temperature sensors, magnetic sensors, mechanical sensors, acoustic sensors (microphones), speakers, electrical generators, motors, etc. Instructor: Tai.

EE 50. Advanced Digital Design. 9 units (3–0–6); first term. Prerequisite: EE 4 or EE/CS 52. Advanced digital design as it applies to the design of ASICs, in particular gate arrays and standard cells. The course covers both design and implementation details for various logic device technologies with emphasis on the practical aspects of ASIC design such as timing, testing, and fault grading. Topics include synchronous design, state machine design, design for testability, PALs, FPGAs, standard cells, timing considerations, fault vectors, and fault grading. Not offered 2001–02.

EE/CS 51. Principles of Microprocessor Systems. 9 units (3–0–6); second term. The principles and design of microprocessor-based computer systems. Lectures cover both hardware and software aspects of microprocessor system design such as interfacing to input and output devices, user interface design, real-time systems, and table-driven software. The homework emphasis is on software development, especially interfacing to hardware, in assembly language. Instructor: George.

EE/CS 52. Microprocessor Systems Laboratory. 12 units (1-11-0); third term. Prerequisite: EE/CS 51 or equivalent. The student will design, build, and program a specified microprocessor-based system. This structured laboratory is organized to familiarize the student with electronic circuit construction techniques, modern development facilities, and standard design techniques. The lectures cover topics in microprocessor system design such as display technologies, interfacing to analog systems, and programming microprocessors in high-level languages. Instructor: George.

EE/CS 53. Microprocessor Project Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor; first, second, third terms. Prerequisite: EE/CS 52 or equivalent. If this course is used to satisfy part of the senior design project requirement, it must be taken as a 12-unit course. A project laboratory to permit the student to select, design, and build a microprocessor-based system. The student must propose, build, and test a microprocessor-based system. The student is expected to take a project from proposal through design and implementation (possibly including PCB fabrication) to final review and documentation. Instructor: George.

EE/CS 54. Advanced Microprocessor Projects Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor; first, second, third terms. Prerequisite: instructor's permission. A project laboratory to permit the student to design and build a microprocessor-based system of significant complexity. The student must propose, design, implement, and document a project which uses microprocessors and includes a significant hardware and/or software component. The laboratory is for the experienced student who can work independently and who has taken or has had experience equivalent to EE/CS 53. Instructor: George.

EE 55. Advanced Digital Design Laboratory. 9 units (0-9-0); first, second, third terms. Prerequisite: EE 50. This laboratory affords the student the opportunity to apply the digital design techniques learned in EE 50 to the design of a large ASIC. The student is expected to propose, design, and test a digital system with a significant amount of complexity. This system will be implemented and tested in either FPGAs, standard cell, or gate arrays. Instructor: George.
EE/CS 80 abc. Senior Thesis. 9 units; first, second, third terms. Prerequisites: instructor’s permission, which should be obtained during the junior year to allow sufficient time for planning the research. Individual research project, carried out under the supervision of a member of the electrical engineering or computer science faculty. Project must include significant design effort. Written report required. Open only to senior electrical engineering or electrical and computer engineering majors. Not offered on a pass/fail basis. Instructor: Potter.

EE 90. Analog Electronics Project Laboratory. 9 units (1-8-0); third term. Prerequisites: EE 20 ab. A structured laboratory course which gives the student the opportunity to design and build a sequence of simple analog electronics projects. The goal is to gain familiarity with circuit design and construction, component selection, CAD support, and debugging techniques. Text: Literature references. Instructor: Megdal.

EE 91 a. Experimental Projects in Electronic Circuits. Units by arrangement; first, second terms. 12 units minimum each term. Prerequisites: EE 20 ab. Recommended: EE/CS 51 and 52, and EE 114 ab (may be taken concurrently). Open to seniors; others only with instructor’s permission. An opportunity to do advanced original projects in analog or digital electronics and electronic circuits. Selection of significant projects, the engineering approach, modern electronic techniques, demonstration and review of a finished product. DSP/microprocessor development support and analog/digital CAD facilities available. Text: Literature references. Instructor: Megdal.

EE 99. Advanced Work in Electrical Engineering. Units to be arranged. Special problems relating to electrical engineering will be arranged. For undergraduates; students should consult with their advisers. Graded pass/fail.

EE 105. Application-Specific Computers. 9 units (3-3-3); third term. Prerequisite: EE 50 or CS/EE 181 a. This class studies computer architecture and the design of application-specific processors. After covering the general principles of generic CPU design, the class investigates the design of processors specialized to specific applications such as string processing, binary programming, digital signal processing, and machine control. There is significant laboratory work in the course in which the students are expected to design and implement processors discussed in the class using FPGAs. Instructor: George.

EE 112 abc. Digital Signal Processing. 9 units (3-0-6); first, second, third terms. Prerequisite: EE 32 ab or equivalent. Discrete time signals and systems, classical filter approximations, IIR digital filters, optimal FIR filters, linear-phase filters, digital filter structures, stability test, FFT and fast convolutions, allpass filters and applications, cascaded lattice structures, state-space descriptions, finite-precision effects, limit cycles and their suppression, low-sensitivity structures, and roundoff noise and its minimization in digital filters. Multirate digital signal processing, decimation and interpolation of data, efficient polyphase structures, Nyquist filtering, filter banks, subband coders, orthonormal signal basis, principal component filter banks, wavelet transforms, and unconventional ways of sampling a signal. Optimal quantization, bit-allocation, optimal subband coders and transform coders for data compression, discrete-time Karhunen-Loeve transforms, and discrete cosine transform (DCT). Linear predictive coding and applications, detection of sinewaves in noise, theoretical data compression bounds (rate-distortion), autoregressive modeling, and differential coding (DPCM) of signals. Applications are drawn from signal compression, digital audio, speech, signal-detection, and digital communications. Instructor: Vaidyanathan.

EE 113. Feedback and Control Circuits. 9 units (3-3-3); first term. Prerequisite: EE 20 ab or equivalent. This class studies the design and implementation of feedback and control circuits. The course begins with an introduction to basic feedback circuits, using both op amps and transistors. These circuits are used to study feedback principles, including circuit topologies, stability, and compensation. Following this, basic control techniques and circuits are studied, including PID (Proportional-Integrated-Derivative) control, digital control, and fuzzy control. There is a significant laboratory component to this course in which the student will be expected to build, analyze, test, and measure the circuits and systems discussed in the lectures. Instructor: George.

- a. Analog Circuit Design. 9 units (3-0-6); first term. Prerequisite: EE 20 ab or equivalent. Deals with continuous time and amplitude signals. Covers the physics of bipolar and MOS transistors, low-frequency behavior of single-stage and multistage amplifiers, current sources, active loads, differential amplifiers, operational amplifiers, and supply and temperature independent biasing.

- b. Analog Circuit Design. 9 units (3-0-6); second term. Prerequisite: EE 114 a or equivalent. Covers high frequency response of amplifiers, feedback in electronic circuits, stability of feedback amplifiers, and noise in electronic circuits. A number of the following topics will be covered each year: translinear circuits, switched capacitor circuits, data conversion circuits (A/D and D/A), continuous-time filters and phase locked loops.

Ph/EE 118. Low Noise Electronic Measurement. 9 units (3-0-6). For course description, see Physics.

CNS/EE 124. Pattern Recognition. 9 units (3-0-6). For course description, see Computation and Neural Systems.
EE/Ma 126 ab. Information Theory. 9 units (3-0-6); first, second terms. Prerequisite: Ma 2. Shannon’s mathematical theory of communication, 1948–present. Entropy, relative entropy, and mutual information for discrete and continuous random variables. Shannon’s source and channel coding theorems. Mathematical models for information sources and communication channels, including memoryless, first-order Markov, ergodic, and Gaussian. Calculation of capacity-cost and rate-distortion functions. Kolmogorov complexity and universal source codes. Side information in source coding and communications. Network information theory, including multiuser data compression, multiple access channels, broadcast channels, and multi-terminal networks. Discussion of philosophial and practical implications of the theory. This course, when combined with EE 112 abc, EE/Ma 127 ab, EE 161, and/or EE 167 should prepare the student for research in information theory, coding theory, wireless communications, and/or data compression. Instructor: Effros.

EE/Ma 127 abc. Error-Correcting Codes. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 2. This course, which is a sequel to EE/Ma 126 a, but which may be taken independently, will develop from first principles the theory and practical implementation of the most important techniques for combating errors in digital transmission or storage systems. Topics include algebraic block codes, e.g., Hamming, Golay, Fire, BCH, Reed-Solomon (including a self-contained introduction to the theory of finite fields); convolutional codes; and concatenated coding systems. Emphasis will be placed on the associated encoding and decoding algorithms, and students will be asked to demonstrate their understanding of these algorithms with software projects. In the third term, the modern theory of “turbo” and related codes (e.g., regular and irregular LDPC codes), with suboptimal iterative decoding based on belief propagation, will be presented. Not offered 2001–02.

CS/EE/Ma 129 ab. Information and Complexity. 9 units (3-0-6) first, second terms; (1-4-4) third term. For course description, see Computer Science.

APh/EE 130 abc. Introduction to Optoelectronics and Optoelectronic Devices. 9 units (3-0-6). For course description, see Applied Physics.

APh/EE 132. Fourier Optics. 9 units (3-0-6). For course description, see Applied Physics.

CS/EE 137 ab. Electronic Design Automation. 9 units (3-3-3). For course description, see Computer Science.

EE 141. Swarm Intelligence. 9 units (2-4-3); second term. Prerequisites: Ma 2, Ph 1, CS 1. Swarm intelligence is a new computational and behavioral metaphor for solving distributed problems; it is based on the principles underlying the behavior of natural systems consisting of many individuals, such as ant colonies and bird flocks. The approach emphasizes distributedness, direct or indirect interactions among relatively simple but autonomous individuals, flexibility, and robustness. Applications include optimization algorithms, telecommunication and VLSI routing, and autonomous collective robotics. In this course, we will study natural systems exhibiting swarm intelligence, and apply their principles to the control of simulated and real collective autonomous robots of different sizes (from 2 cm to 30 cm in diameter) and capabilities (from PIC-based to PC104-based Linux architectures). Weekly labs and a final 3-week project are integral components of the course. Instructors: Martinoli, Goodman, Holland.

Ay/EE 144. Imaging at Radio, Infrared, and Optical Wavelengths by Interferometric and Adaptive Techniques. 9 units (3-0-6). For course description, see Astronomy.

CS/EE 145 ab. Networking. 9 units (3-3-3). For course description, see Computer Science.

EE 150. Topics in Electrical Engineering. Units and terms to be arranged. Content will vary from year to year, at a level suitable for advanced undergraduate or beginning graduate students. Topics will be chosen according to the interests of students and staff. Visiting faculty may present all or portions of this course from time to time. Instructor: Staff.

EE 151. Electromagnetic Engineering. 12 units (3-2-7); second term. Prerequisites: EE 20 ab or equivalent and ACM 95/100 abc. Electric fields, magnetic fields, and Maxwell’s equations, and their engineering applications. Foundations of circuit theory, plane wave propagation, guided wave propagation, resonators, and antennas. Instructor: Psaltis.

CS/CNS/EE 156 ab. Learning Systems. 9 units (3-0-6). For course description, see Computer Science.
communication processes; signals and noise as random processes; sampling and quantization; modulation and spectral occupancy; intersymbol interference and synchronization considerations; signal-to-noise ratio and error probability; optimum demodulation and detection in digital baseband and carrier communication systems. Instructor: Divsalar.

EE 164. Adaptive Filters and Optimal Filters. 9 units (3-0-6); third term. Prerequisites: EE 112 abc and EE 162 or equivalents. Adaptive FIR and IIR filters, adaptation algorithms, convergence analysis, adaptive FIR lattice filters and other orthogonalizing techniques, recursive least squares techniques, fast-Kalman techniques, stable IIR adaptive filtering, adaptive filtering in subbands, Wiener and matched digital filters, linear predictive coding, normal equations, Levinson’s recursion, and associated lattice structures. Some applications from the following areas will be used as motivators: speech compression, spectral factorization, channel equalization, echo and noise cancellation, interference minimization, and antenna arrays. Not offered 2001–02.

EE 165. Introduction to Spacecraft Telecommunications Engineering. 9 units (3-0-6); second term. Prerequisites: EE 160 or equivalent, or EE 163 ab. This course will cover topics in both earth-orbiting satellite and deep-space communications with respect to both ends of the communications link (i.e., the spacecraft and the ground station). Not offered 2001–02.

EE/APh 180. Solid-State Devices. 9 units (3-0-6); second term. Prerequisite: EE 20 ab. Starting with the phenomenological statement of physical processes, the operation of a device is derived from fundamental principles and the device’s materials and design. Subjects include the motion of charge carriers in solids, equilibrium statistics, the electronic structure of solids, doping, nonequilibrium states, the pn junction, the junction transistor, the Schottky diode, the field-effect transistor, the light-emitting diode, and the photodiode. Instructor: Scherer.

CS/EE 181 abc. VLSI Design Laboratory. 12 units (3-6-3). For course description, see Computer Science.

APh/EE 183 abc. Fundamentals of Electronic Devices. 9 units (3-0-6). For course description, see Applied Physics.
CS/EE 184 abc. Computer Architecture. 9 units (3-3-3). For course description, see Computer Science.

EE 185 ab. Microfabrication Technology for Solid-State Devices. 9 units (3-0-6); first, second terms. Prerequisites: APb 9, EE/APb 180, or instructor’s permission. Course in advanced (silicon) microfabrication technology. Topics: lithography; oxidation; diffusion; ion implantation; thin-film deposition; wet and dry etching; metalization. The use of these techniques to fabricate a wide variety of solid-state devices, including MOSFETs, microsensors, and microactuators will be discussed. Practical equipment for these processes will also be included. Instructor: Tai.

CNS/B/EE 186. Vision: From Computational Theory to Neuronal Mechanisms. 12 units (4-4-4). For course description, see Computation and Neural Systems.

CNS/CS/EE 188 a. Computation Theory and Neural Systems. 9 units (3-0-6). For course description, see Computation and Neural Systems.

CNS/CS/EE 188 b. Topics in Computation and Biological Systems. 9 units (3-0-6). For course description, see Computation and Neural Systems.

EE 243 abc. Quantum Electronics Seminar. 6 units (3-0-3); first, second, third terms. Advanced treatment of topics in the field of quantum electronics. Each weekly seminar consists of a review and discussion of results in the areas of quantum electronics and optoelectronics. Instructor: Yariv.

CNS/EE 248. Sensory Information Processing Laboratory. 12 units (1-2-9). For course description, see Computation and Neural Systems.

EE 291. Advanced Work in Electrical Engineering. Units to be arranged. Special problems relating to electrical engineering. Primarily for graduate students; students should consult with their advisers.

ENGINEERING (GENERAL)

E 2. Engineering and Entrepreneurship. 2 units (1-0-1); first term. Reflections on engineering and entrepreneurship by co-founder of TRW, Dr. Simon Ramo. Items to be covered include: the nature of practical engineering; entrepreneurship; financing a company; manufacturing: the role of government; the international economy; environment, safety, and liability; and large versus small companies. Discussion will center around a number of current issues, such as electric vehicles, supersonic transports, the information superhighway, interactive television, genetic engineering, and others. Graded pass/fail. Instructor: Ramo. Not offered 2001–02.

E 5. Laboratory Research Methods in Engineering and Applied Science. 6 units (1-3-2); second term. 6 units credit allowed toward freshman laboratory requirement. An introduction to experimental methods and problems typical of a variety of engineering fields. Staff members representing various areas of interest within engineering and applied science will supervise experiments related to their specialty. As the situation permits, students are given some choice in selecting experiments. Instructor: Staff. Not offered 2001–02.

E 10. Technical Seminar Presentations. 3 units (1-0-2); second, third terms. (Only graduating students required to take E 10 are permitted to pre-register. Others wishing to take the course should come to the organizational meeting and will be admitted if there is room. NOTE: Those who neither preregister nor attend the O.M. may not be permitted to enroll.) Guidance and practice in organizing and preparing topics for presentation and in speaking with the help of visual aids, including blackboards, overhead projectors, and slide projectors. Instructor: Staff.

E 102. Entrepreneurial Development. 6 units (3-0-3); second term. An introduction to the basics of getting a high-technology business started, including early-stage patent, organizational, legal, and financing issues; growing a company; taking a company public; merger and acquisitions; and closing down operations. Lectures include presentations by invited experts in various specialties and keynote guest lecturers of national stature in technology business development. Graded pass/fail. Instructor: Baldeschwieler.

E 103. Management of Technology. 9 units (3-0-6); third term. A course intended for students interested in learning how rapidly evolving technologies are harnessed to produce useful products. Students will work through Harvard Business School Case Studies, supplemented by lectures to elucidate the key issues. The course is designed for students considering working in companies (any size including start-up) or perhaps eventually going to business school. Topics include technology as a growth agent, financial fundamentals, integration into other business processes, product life cycle, product development pipeline, learning curves, risk assessment, financial implications, technology trend methodologies (scenarios, projections), portfolio management and decision criteria, motivation, rewards and recognition, and sourcing and joint venturing. E 102 (Entrepreneurial Development) and E 105 (Product Design) are useful but not required precursors. Instructor: Pickar.

E 105. Product Design. 9 units (3-0-6); first term. Course to provide the student with a working knowledge of contemporary methods of product design to meet the constraints of cost, performance, quality, and time to market. Areas covered include design for X (X-manufacturability/assembly, six sigma quality, environment, failure modes and
ENGLISH AS A SECOND LANGUAGE (ESL)

Please see pages 216 and 217 for requirements regarding English competency. All of the following courses are open to international graduate students only. None are available for credit.

ESL 102. Advanced Spoken English for Academic Purposes. Noncredit; first and third terms. Development of fluency and communication strategies. Emphasis on presentation skills and interpersonal communication on scientific topics. Strongly recommended for first-time international graduate teaching assistants. Instructors: Geasland and Laib.

ESL 103. English in Everyday Life. Noncredit; first, second, third terms. Expressions, vocabulary, slang, and idioms used in daily life. Conversation and discussion, with feedback from instructors. Occasional grammar and pronunciation review. Comprehension of newspaper and magazine articles, as well as films and television programs. Instructors: Geasland and Laib.

ESL 106. Writing Seminar. Noncredit; third term only. Strategies for improving academic writing. Emphasis on grammar, word choice, organization, logical connectors, and punctuation. Classroom exercises and editing practice based on student writing samples. Instructors: Geasland and Laib.
ENVIRONMENTAL SCIENCE AND ENGINEERING

ESE 1. Engineering Problems of the Environment. 9 units (3-0-6); third term. Prerequisites: Ph 1 ab, Ch 1 ab, and Ma 1 ab. An introduction to the engineering design of measures to limit impacts on the environment. Global and local cycles in the hydrosphere, atmosphere, and biosphere; energy and materials balance in environmental problems; source control of pollutants. The process of establishing environmental goals is discussed. Instructor: Staff. Not offered 2001–02.

ESE 90. Undergraduate Laboratory Research in Environmental Engineering Science. Units by arrangement; any term. Approval of research supervisor required prior to registration. Independent research on current environmental problems; laboratory or field work is required. A written report is required for each term of registration. Seniors may prepare a thesis with approval of the EES faculty at the beginning of the senior year; in this case, registration should be for at least three consecutive terms. Graded pass/fail. Instructor: Staff.

ESE 100. Special Topics in Environmental Science and Engineering. 6 or more units as arranged. Prerequisite: instructor's permission. Special courses of reading, problems, or research for graduate students working for the M.S. degree, or qualified undergraduates. Graded pass/fail. Instructor: Staff.

ESE 101. Current Problems in ESE. 3 units; first term. A discussion course that focuses on current research by ESE faculty, and open research questions in the field. Required for first-year ESE graduate students. Instructor: Staff.

ESE 116. Aerosol Measurements. 9 units (3-2-4); third term. Prerequisites: ChE/ESE 158 or instructor's permission. Lectures and experiments on the sampling and measurement of aerosol size distributions, instrument calibration, particle characterization, and particle sampling. Given in alternate years; offered 2001–02. Instructor: Flagan.

ESE 142. Aquatic Chemistry. 9 units (3-0-6); second term. Prerequisites: Ch 1, Ch 14, or instructor's permission. Principles of inorganic and physical chemistry applied to natural and engineered aquatic systems. Biogeochemical processes controlling the major ion composition of aquatic systems and the behavior of the trace inorganic constituents of such systems are examined. Fundamental aspects of thermodynamics and quantitative description of the composition of natural waters are stressed. Instructor: Hering.

ESE 143. Water Chemistry Laboratory. 9 units (0-6-3); third term. Prerequisite: ESE 142. Laboratory experiments dealing with the major and minor constituents of natural waters. Topics include seawater chemistry, heterogeneous equilibria, redox processes, adsorption, and particle coagulation. Instructor: Hering. Not offered 2001–02.

ESE 144. Applications of Aquatic Chemistry. 9 units (3-0-6); first term. Prerequisite: ESE 142. Case studies are used to illustrate the effects of biogeochemical processes on the composition of ground and surface waters. Systems to be examined include natural waters subject to varying levels of perturbations as a result of human activities and engineered systems, such as constructed wetlands or water treatment systems. Quantitative equilibrium and kinetic modeling are emphasized. Instructor: Hering.

ESE 146. Chemical Reaction Engineering for Water Quality Control. 9 units (3-0-6); third term. Prerequisite: ESE 142. Basic principles of reaction engineering applied specifically to unit operations used in water and wastewater engineering. Emphasis on underlying chemical principles. Topics: adsorption, catalysis, chlorination, coagulation and flocculation, gas transfer, ion exchange, nitrogen and phosphorus removal, oxidation-reduction, ozonation, precipitation, reverse osmosis, and ultrafiltration. Instructor: Hoffmann.

ESE/Ge 148 abc. Global Environmental Science. 9 units each term. Prerequisites: Ch 1, Ma 2, Ph 2, or equivalents. Global change on time scales of years to centuries.

c. Biogeochemical Cycles. (3-0-6); third term. Prerequisite: ESE/Bi 166. Global biogeochemical cycles, fluxes, and chemical reservoirs in the solid earth, atmosphere, and oceans. Regulation of atmospheric composition by photosynthesis and microbial processes. Variability in biogeochemical cycles during the Pleistocene and recent modification by human activity. Constraints on fluxes from remote-sensing data, isotope sampling, and models. Instructor: Randerson.

Ge/ESE 149. Marine Geochemistry. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

ESE 150 abc. Seminar in Environmental Science and Engineering. 1 unit (1-0-0); each term. Seminar on current developments and research within the field of environmental engineering science, with special consideration given to work at the Institute. Graded pass/fail. Instructor: Hering.
ESE/Ge/Ch 172. Atmospheric Chemistry II. 9 units (3-0-6); first term. Prerequisite: ESE/Ge/Ch 171 or equivalent. A lecture and discussion course about active research in atmospheric chemistry. Potential topics include halogen chemistry of the stratosphere and troposphere; formation of aerosol in remote environments; coupling of dynamics and photochemistry; development and use of modern remote sensing and in situ instrumentation. Instructors: Wennberg, Seinfeld. Given in alternate years; not offered 2001–02.

ESE/Ch/Ge 175 ab. Environmental Organic Chemistry. 9 units (3-0-6); first and second terms. A detailed analysis of the important chemical reactions and physico-chemical processes governing the behavior and fate of organic compounds in the surface and subsurface waters. Fundamental aspects of thermodynamics, kinetics, mechanisms, and transport are stressed. Instructor: Hoffmann.

ESE 200. Advanced Topics in Environmental Science and Engineering. Units by arrangement, any term. Course to explore new approaches to environmental problems. The topics covered vary from year to year, depending on the interests of the students and staff.

ESE 214 abc. Advanced Environmental Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae/APh/CE/ME 101, ACM 101 or AM 125. A study of the transport and dispersing properties of fluid motions in the air, oceans, estuaries, rivers, lakes, and groundwater. Emphasis is given to the processes and scales of motion that are important to engineering problems of pollution control. Instructor: Staff. Not offered 2001–02.

ESE 250. Advanced Environmental Seminar. Units by arrangement, not to exceed 4 units (2-0-2); each term. Prerequisite: instructor's permission. A seminar course for advanced graduate students and staff to discuss current research and technical literature on environmental problems. As the subject matter changes from term to term, it may be taken any number of times. Instructor: Staff.

ESE 300. Thesis Research.

For other closely related courses see listings under Chemistry, Chemical Engineering, Civil Engineering, Mechanical Engineering, Biology, Geology, Economics, and Social Science.

Graduate students may also enroll in graduate courses offered by Scripps Institution of Oceanography under an exchange program. Graduate students majoring in environmental science and engineering, who may take a subject minor in oceanography for the Ph.D. degree, should consult the executive officer for more information.
GEOLOGICAL AND PLANETARY SCIENCES

Ge 1. Earth and Environment. 9 units (3-3-3); third term. An introduction to the ideas and approaches of earth and environmental sciences, including both the special challenges and viewpoints of this kind of science as well as the ways in which basic physics, chemistry, and biology relate to these sciences. In addition to a wide-ranging lecture-oriented component, there will be a required field trip component (two weekend days), and a special research topic (often lab-oriented) chosen from many alternatives and to be carried out in small groups each led by a professor. The lectures and topics cover such issues as solid earth structure and evolution, plate tectonics, oceans and atmospheres, climate change, and the relationship between geological and biological evolution. Instructors: Farley, staff. Satisfies the menu requirement of the Caltech core curriculum.

Ge 10. Frontiers in Geological and Planetary Sciences. 3 units (2-0-1); third term. Open for credit to sophomores, juniors, and seniors; the course may be taken multiple times. Prerequisites: Ge 1 (enrollment can be concurrent), or instructor’s permission. Weekly seminar by a member of the Division of Geological and Planetary Sciences or a visitor to discuss a topic of his or her current research at an introductory level. A second hour is used to discuss proposals written by class members for future research projects in the area of each seminar topic. The course is designed to introduce students to research and research opportunities in the division and to help students find faculty sponsors for individual research projects. Graded pass/fail. Instructors: Stolper, Rossman.

Ge 11 abc. Introduction to Earth and Planetary Sciences. 9 units each term. Prerequisites: Ch 1, Ma 1, and Ph 1; or instructor’s permission. Comprehensive, integrated overview of the earth and planets. Although designed as a sequence, any one term can be taken as a stand-alone course. Biologists are particularly welcome in Ge 11 b, as are physicists and astronomers in Ge/Ay 11 c.

- **a. Earth as a Planet.** (3-3-3); first term. Systematic introduction to the physical and chemical processes that have shaped Earth as a planet over geological time, and the observable products of these processes—rock materials, minerals, land forms. Geophysics of Earth. Plate tectonics; earthquakes; igneous activity. Weathering, erosion, and sedimentary rocks. Metamorphism and metamorphic rocks. Rock deformation and mountain building. Role of aqueous, atmospheric, glacial, and tectonic processes in shaping the earth’s surface and our environment. Earth resources. Field trips, interpretation of geological maps, and laboratory study of earth materials (minerals and rocks). Instructor: Eiler.

- **b. Earth and the Biosphere.** (3-3-3); second term. Systematic analysis of the origin and evolution of life in the solar system, and its impact on the atmosphere, hydrosphere, and climate of Earth. Archean surface environments and production of oxygen. Bacterial evolution, photosynthesis, genes as fossils. Banded iron stones, algal mats, stromatolites, global glaciation, and molecular evolution. Biological fractionation of stable isotopes. Numerical calibration of the geological time scale, the Cambrian evolutionary explosion, mass extinction events, and human evolution. The course usually includes one major field trip, and laboratory studies of fossils, Precambrian rocks, and geological processes. Instructor: Kirschvink.

- **c. Planetary Sciences.** (3-0-6); third term. A broad introduction to what is known about the origin, evolution, and present state of the solar system. Observations on young solar mass stars, disks, and extrasolar planets, as well as meteorite properties and planet formation models, are the constraints on solar-system origin. Based on data from earth-based observations, planetary spacecraft, and extraterrestrial materials, the evolution and present states of planetary objects are addressed systematically by considering small bodies (comets and asteroids), the terrestrial planets, the giant planets, and finally, the icy bodies of the outer solar system. Instructor: Burnett.

Ge 40. Special Problems for Undergraduates. Units to be arranged; any term. This course provides a mechanism for undergraduates to undertake honors-type work in geologic sciences. By arrangement with individual members of the staff. Graded pass/fail.

Ge 41 abc. Undergraduate Research and Bachelor’s Thesis. Units to be arranged; first, second, third terms. Guidance in seeking research opportunities and in formulating a research plan leading to preparation of a bachelor’s thesis is available from the division undergraduate research counselors, Professors Rossman and Kirschvink. Graded pass/fail.

Ge 100 abc. Geology Club. 1 unit (1-0-0); first, second, third terms. Presentation of papers on research in geological and planetary sciences by guest speakers. Graded pass/fail. Instructor: Kirschvink.

Ge 101. Introduction to Geology and Geochemistry. 12 units (4-0-8); first term. Prerequisites: Ch 1, Ma 2, Ph 2, or equivalents, or instructor’s permission. Historical deduction in geological and planetary sciences. Nucleosynthesis and chemical differentiation of the solar system; distribution of the elements in the earth; isotopic systems as tracers and clocks; igneous, surficial, metamorphic, and structural processes; tectonics of the lithosphere; evolution of the biosphere; global geochemical and biogeochemical cycles. Instructor: Aspanow.
Ge 102. Introduction to Geophysics. 9 units (3-0-6); second term. Prerequisites: Ma 2, Ph 2, or Ge 108, or equivalents. An introduction to the physics of the earth. The present internal structure and dynamics of the earth are considered in light of constraints from the gravitational and magnetic fields, seismology, and mineral physics. The fundamentals of wave propagation in earth materials are developed and applied to inferring earth structure. The earthquake source is described in terms of seismic and geodetic signals. The following are also considered: the contributions that heat-flow, gravity, paleomagnetic, and earthquake mechanism data have made to our understanding of plate tectonics, the driving mechanism of plate tectonics, and the energy sources of mantle convection and the geodynamo. Instructor: Stevenson.

Ge 104. Introduction to Geobiology. 9 units (3-1-5); second term. Prerequisite: Ge 101 or equivalent. Systematic analysis of the origin and evolution of life in the solar system as read through the geological record. Effects of global glaciations, volcanism, and impact processes on the atmosphere, hydrosphere, and climate of Earth. Magnetofossils, genes as fossils, banded iron stones, algal mats, stromatolites, global glaciation, mass extinction events, the Cambrian Explosion, human and molecular evolution. The course usually includes one or two major field trips, in which each student is assigned the major responsibility of being the resident expert on a pertinent subject for each trip. Instructor: Kirschvink.

Ge 106. Introduction to Field and Structural Geology. 12 units (3-6-3); second term. Prerequisite: Ge 11 ab. Introduction to continuum mechanics and rock deformation. Interpretation of the record of deformation of the earth’s crust on megascopic, mesoscopic, and microscopic scales. Tectonics of mountain belts. Laboratories introduce geometrical and graphical techniques of structural analysis using geologic maps. Field trips introduce methods of geologic mapping in preparation for Ge 120. Instructor: Wernicke.

Ge 108. Applications of Physics to the Earth Sciences. 9 units (3-0-6); first term. Prerequisites: Pb 2 and Ma 2 or equivalent. An intermediate course in the application of the basic principles of classical physics to the earth sciences. Topics will be selected from: mechanics of rotating bodies, the two-body problem, tidal theory, oscillations and normal modes, diffusion and heat transfer, wave propagation, electro- and magneto-statics, Maxwell’s equations, and elements of statistical and fluid mechanics. Instructor: Brown.

Ge 109. Oral Presentation. 3 units (1-0-2); third term. Practice in the effective organization and delivery of reports before groups. Successful completion of this course is required of all candidates for degrees in the division. Graded pass/fail. Instructors: Bikle, staff.

Ge 111 ab. Applied Geophysics Seminar and Field Course. An introduction to the theory and application of basic geophysical field techniques consisting of a comprehensive survey of a particular field area using a variety of methods (e.g., gravity, magnetic, electrical, GPS, seismics, studies, and satellite remote sensing). The course will consist of a seminar held in the third term, which will discuss the scientific background for the chosen field area, along with the theoretical basis and implementation of the various measurement techniques. The 6–10 day field/data analysis component is covered in Ge 111 b. May be repeated for credit with an instructor’s permission. Instructors: Simons, Clayton, Stock.

a. Applied Geophysics Seminar. 6 units (3-3-0); third term. Prerequisite: instructor’s permission.

b. Applied Geophysics Field Course. 9 units (0-3-6); summer term. Prerequisite: Ge 111 a.

Ge 112.Geomorphology and Stratigraphy. 12 units (3-5-4); first term. Prerequisite: Ge 11 ab. This course is an introduction to Earth’s landscapes and strata. We explore the nature of fluvial, lacustrine, glacial, volcanic, tectonic, and various marine landforms and sediments. Their character and sequencing are the strata that enable us to understand geologic history and processes. The course will describe modern, active systems and the interpretation of paleoenvironments and paleo-climates of the past million years. The nature and genesis of sequence architecture of sedimentary basins will also be introduced. Field trips and laboratory exercises. Instructor: Sieh.

Ge 114. Mineralogy. 12 units (3-6-3) or 9 units (3-4-2); first term. Prerequisites: Ma 2 and Ph 2 or equivalent. An intermediate course in the application of the basic principles of classical physics to the earth sciences. Topics will be selected from: mechanics of rotating bodies, the two-body problem, tidal theory, oscillations and normal modes, diffusion and heat transfer, wave propagation, electro- and magneto-statics, Maxwell’s equations, and elements of statistical and fluid mechanics. Instructor: Brown.

Ge 115 ab. Petrology and Petrography. Systematic study of rocks and rock-forming minerals with emphasis on use of the petrographic microscope and megascopic identification; interpretation of mineral assemblages, textures, and structures; problems of genesis.

a. Igneous Petrology and Petrography. 12 units (3-6-3) or 6 units (3-0-3) with instructor’s permission; second term. Prerequisite: Ge 114. The mineralogical and chemical composition, origin, occurrence, and classification of igneous rocks, considered mainly in the light of chemical equilibrium and of experimental studies. Detailed consideration of
the structures, phase relations, and identification of the major igneous minerals. Instructor: Stolper.

b. Metamorphic Petrology and Petrography. 12 units (3-6-3) or 6 units (3-0-3) with instructor’s permission; third term. Prerequisite: Ge 115 a. The mineralogical and chemical composition, occurrence, and classification of metamorphic rocks; interpretation of mineral assemblages in the light of chemical equilibrium and experimental studies. Detailed consideration of structure, phase relations, composition, and determination of the major metamorphic minerals. Instructor: Eiler.

Ge 120. Summer Field Geology. 12 units (0-12-0); summer. Prerequisites: Ge 11 ab, Ge 106; or instructor’s permission. Intensive course in techniques of field observation and documentation. Course includes two and one-half weeks of mapping in a well-exposed area of the southwestern United States and the preparation of a report, in September prior to registration week. Instructor: Saleeby.

Ge 121 ab. Advanced Field and Structural Geology. 12 units (0-9-3); first, third terms. Prerequisites: Ge 11 ab and 106, or instructor’s permission. Field mapping and supporting laboratory studies in topical problems related to southern California tectonics and petrogenesis. Each year the sequence offers a breadth of experience in igneous, metamorphic, and sedimentary rocks. Instructors: Stock (first term); Saleeby (third term).

Ge 122. Geologic Hazard Assessment. 12 units (1-8-3); summer term. Prerequisites: Ge 120 or equivalent, or instructor’s permission. Two and one-half weeks of intensive field-based description and evaluation of the deposits and landforms related to a geologic hazard. Field location will vary from year to year, but will focus on a particular locale, either within the U.S. or abroad, where a seismic, volcanic, slope-stability, or other hazard can be documented and evaluated. Instructor: Sieh.

Ge 124 ab. Paleomagnetism and Magnetostratigraphy. Application of paleomagnetism to the solution of problems in stratigraphic correlation and to the construction of a high-precision geological time scale. Given in alternate years; not offered 2001–02. Instructor: Kirschvink.

a. 9 units (3-3-3); second term. Prerequisite: Ge 11 ab. The principles of rock magnetism and physical stratigraphy; emphasis on the detailed application of paleomagnetic techniques to the determination of the history of the geomagnetic field.

b. 6 units (0-0-6); third term. Prerequisite: Ge 124 a. A field trip to the southwest U.S. to study the physical stratigraphy and magnetic zonation, followed by lab analysis.

Ge/Ch 127. Nuclear Chemistry. 9 units (3-0-6); second term. Prerequisite: instructor’s permission. A survey course in the properties of nuclei, and in atomic phenomena associated with nuclear-particle detection. Topics include rates of production and decay of radioactive nuclei; interaction of radiation with matter; nuclear masses, shapes, spins, and moments; modes of radioactive decay; nuclear fission and energy generation. Instructor: Burnett. Given in alternate years; not offered 2001–02.

Ge/Ch 128. Cosmochemistry. 9 units (3-0-6); third term. Prerequisite: instructor’s permission. The chemistry of the interstellar medium, of protostellar nebulae, and of primitive solar-system objects with a view towards establishing the relationship of the chemical evolution of atoms in the interstellar radiation field to complex molecules and aggregates in the early solar system. Emphasis will be placed on identifying the physical conditions in various objects, time scales for physical and chemical change, chemical processes leading to change, observational constraints, and various models that attempt to describe the chemical state and history of cosmological objects in general and the early solar system in particular. Instructor: Blake. Given in alternate years; not offered 2001–02.

Ge 131. Planetary Structure and Evolution. 9 units (3-0-6); first term. Prerequisite: instructor’s permission. A critical assessment of the physical and chemical processes that influence the initial condition, evolution, and current state of planets, including our planet and planetary satellites. Topics to be covered include: A short survey of condensed matter physics as it applies to planetary interiors, remote sensing of planetary interiors, planetary modeling, core formation, physics of ongoing differentiation, the role of mantle convection in thermal evolution, and generation of planetary magnetic fields. Instructor: Stevenson. Given in alternate years; offered 2001–02.

Ge/Ay 132. Atomic and Molecular Processes in Astronomy and Planetary Sciences. 9 units (3-0-6); second term. Prerequisite: instructor’s permission. Fundamental aspects of atomic and molecular spectra that enable one to infer physical conditions in astronomical, planetary, and terrestrial environments. Topics will include the structure and spectra of atoms, molecules, and solids; transition probabilities; photoionization and recombination; collisional processes; gas-phase chemical reactions; and isotopic fractionation. Each topic will be illustrated with applications in astronomy and planetary sciences, ranging from planetary atmospheres and dense interstellar clouds to the early universe. Instructor: Blake. Given in alternate years; offered 2001–02.

Ge/Ay 133. The Formation, Evolution, and Detection of Planetary Systems. 9 units (3-0-6); third term. Review current theoretical ideas and observations pertaining to the formation and evolution of low-mass stars and their associated planetary systems. Ongoing and proposed observational strategies for the detection of extra-solar planets, planetary systems, and brown dwarfs will be discussed and analyzed. Instruction will be via seminars by staff and students. Instructors: Brown, Kulkarni. Not offered 2001–02.
Ge 135. Regional Geology of Southern California (Seminar). 6 units (3–0–3); second term. Prerequisite: Ge 11 ab or equivalent. Reading and discussion of selected topics in the geology of southern California and adjacent areas, with emphasis on outlining the important regional research problems. Instructor: Silver, Saleeby.

Ge 136 abc. Regional Field Geology of the Southwestern United States. 3 units (1–0–2); first, second, third terms. Prerequisite: Ge 11 ab or Ge 101, or instructor's permission. Includes approximately three days of weekend field trips into areas displaying highly varied geology. Each student is assigned the major responsibility of being the resident expert on a pertinent subject for each trip. Graded pass/fail. Offered by announcement. Instructor: Staff.

Ge 140 ab. Introduction to Isotope Geochemistry. 9 units (2–0–7); second, third terms. Prerequisite: instructor's permission. An introduction to the physics and chemistry of isotopes and a broad overview of the principles and conceptual techniques used in stable and radiogenic isotope geochemistry will be illustrated by examples of geologic or planetary processes.

a. second term. The processes responsible for natural variations in the isotopic composition of the lighter elements (H, C, O, N, Si, S), with applications to geochemical problems. Isotopic fractionation mechanisms. Use of oxygen and hydrogen isotopic data to study the origin and history of various types of rocks and to determine the climatic records in clays, carbonate fossils, ancient woods, and ice cores. Significance of $^{18}O/^{16}O$ and $^{13}C/^{12}C$ variations in the sulfur and carbon cycles, with applications to problems in geobiology. Use of stable isotopes in the study of meteorites and lunar materials. Instructor: Taylor.

b. third term. The origin and evolution of radiogenic parent-daughter systems in nature, with application to the determination of the ages of rocks and minerals, and of the earth, meteorites, and the moon, mainly utilizing the U-Th-Pb-Hf, Rb-Sr, Sm-Nd, K-Ar, and ^{14}C systems. Applications to problems of igneous petrology and metamorphism, and to the large-scale differentiation of the planets. Instructor: Wasserburg.

ESE/Ge 148 abc. Global Environmental Science. 9 units (3–0–6). For course description, see Environmental Science and Engineering.

Ge 149. Marine Geochemistry. 9 units (3–0–6); third term. Introduction to chemical oceanography and sediment geochemistry. We will address the question “Why is the ocean salty?” by examining the processes that determine the major, minor, and trace element distributions of seawater and ocean sediments. Topics include river and estuarine chemistry, air/sea exchange, nutrient uptake by the biota, radioactive tracers, redox processes in the water column and sediments, carbonate chemistry, and ventilation. Alternates with Ge/ESE 155. Instructor: Adkins. Not offered 2001–02.

Ge 151 a. Fundamentals of Planetary Surfaces. 9 units (3–0–6); second term. Prerequisite: Ge 11 ab or equivalent. Review of surface histories and processes responsible for the formation and modification of the surfaces of the terrestrial planets and the Jovian satellites. Topics: exogenic surface processes, including impact, gravitational degradation, atmospheric modification of surfaces by wind and water, and the direct interaction of surfaces with plasmas; endogenic modification of surfaces by tectonics and volcanism; surface histories of Mercury, Venus, the moon, and Mars; the surfaces of icy bodies. Grades assigned on basis of homework and written and oral term project. Instructors: Murray and staff. For more information, see http://www.gps.caltech.edu/~ge151/.

Ge 151 b. Topics in Planetary Surfaces. 6 units (3–0–3); third term. Prerequisite: Ge 151 a or instructor's permission. Reading about and discussion of current understanding of the surface of a selected terrestrial planet, major satellite, or asteroid. Important “classic” papers will be reviewed, relative to the data that are being returned from recent and current missions. Grades based on assigned oral and written presentations. May be repeated for credit. Instructors: Albee and staff.

ESE/Ge 152 abc. Physics of Atmospheres and Oceans. 9 units (3–0–6). For course description, see Environmental Science and Engineering.

Ge 153. Planetary Radio Astronomy. 9 units (3–0–6); second term. Prerequisite: instructor's permission. Investigates the atmospheres and surfaces of the planets and their satellites using microwave techniques. Information from the literature and current observations in millimeter and submillimeter spectroscopy, thermal microwave emission, radio and visual occultations, and radar astronomy will be discussed from the standpoint of the physics and chemistry of solar-system objects. Instructor: Staff. Given in alternate years; not offered 2001–02.

Ge/ESE 154. Readings in Paleoclimate. 6 units (2–0–4); second term. Prerequisite: instructor's permission. Lectures and readings in areas of current interest in palaeocenography and paleoclimate. Instructor: Adkins. Alternates with Ge/ESE 155; not offered 2001–02.
Ge/ESE 155. Paleoeceanography. 9 units (3-0-6); third term.
Evaluation of the data and models that make up our current understanding of past climates. Emphasis will be placed on a historical introduction to the study of the past ten- to a few hundred-thousand years, with some consideration of longer time scales. Evidence from marine and terrestrial sediments, ice cores, corals, and speleothems will be used to address the mechanisms behind natural climate variability. Models of this variability will be evaluated in light of the data. Topics will include sea level and ice volume, surface temperature evolution, atmospheric composition, deep ocean circulation, tropical climate, ENSO variability, and terrestrial/ocean linkages. Instructor: Adkins. Alternates with Ge/ESE 149. Offered 2001-02.

EE/Ge 157 ab. Introduction to the Physics of Remote Sensing. 9 units (3-0-6). For course description, see Electrical Engineering.

EE/Ge 158. Application of Remote Sensing in the Field. 6 units (0-5-1). For course description, see Electrical Engineering.

Ae/Ge/ME 160 abc. Continuum Mechanics of Fluids and Solids. 9 units (3-0-6). For course description, see Aeronautics.

Ge 161. Plate Tectonics. 9 units (3-0-6); first term. Prerequisite: Ge 11 ab or equivalent. Geophysical and geological observations related to plate tectonic theory. Instantaneous and finite motion of rigid plates on a sphere; marine magnetic and paleomagnetic measurements; seismicity and tectonics of plate boundaries; reference frames and absolute plate motions. Interpretations of geologic data in the context of plate tectonics; plate tectonic evolution of the ocean basins. Instructor: Stock.

Ge 162. Seismology. 9 units (3-0-6); second term. Prerequisite: ACM 95/100 abc or equivalent. Review of concepts in classical seismology. Topics to be covered: basic theories of wave propagation in the earth, instrumentation, Earth's structure and tomography, theory of the seismic source, physics of earthquakes, and seismic risk. Emphasis will be placed on how quantitative mathematical and physical methods are used to understand complex natural processes, such as earthquakes. Instructor: Kanamori.

Ge 163. Physics of the Earth's Interior. 9 units (3-0-6); third term. Prerequisite: Ae/Ge/ME 160 ab. Quantitative introduction to the dynamics, composition, and state of the interior of the earth from the inner core to the upper mantle. Potential theory is developed and applied to the gravitational and geomagnetic fields. In addition, the following topics are considered: heat flow and the geothermal flux, equations of state and comparison to seismic earth models, the microphysics of solid-state creep, and postglacial rebound. Special emphasis will be placed on the origin of the geodynamo, mantle convection, and the thermal history of the earth. Instructor: Gurnis.

Ge 164. Dynamics of the Lithosphere. 9 units (3-0-6); third term. Prerequisite: Ae/Ge/ME 160 ab. Introduction to lithospheric dynamics, including sources of stress in the lithosphere, topographic compensation, different observational methods, and observations of deformation in various plate boundary environments. Special attention is focused on the application of different rheological models to real observations. The course covers coseismic, postseismic, interseismic, as well as volcanic deformation. Instructor: Simons.

Ge 165 ab. Geophysical Data Analysis. 9 units (3-0-6); first, second terms. Prerequisites: basic linear algebra and Fourier transforms.

b. Prerequisite: Ge 165 a or instructor's permission. Advanced signal processing: multichannel and multidimensional extensions, multitaperspectral estimation, Kalman filters, 2-D wavelets, inverse theory with constraints, L1-norms, Monte Carlo methods. Instructors: Simons, Clayton.

Ge 166. Radar Imaging of the Earth for Geoscience Applications. 9 units (3-0-6); third term. Prerequisite: Ge 165 a or instructor's permission. Basics of wave propagation and backscattering from surfaces, synthetic aperture radar imaging theory, radar signal processing, image interpretation, methods of interferometry and polarimetry. Practical experience in forming radar images from signal data, interfering them for measuring topography and surface change. Computer laboratory based on interferometric radar processing package applied to data from modern spaceborne radar sensors. Emphasis on understanding the characteristics of the images, including geophysical signals, random error sources, and signal processing artifacts. Instructor: Rosen.

Ge 167. Planetary Physics. 9 units (3-0-6); first term. Prerequisites: Ph 106 abc, ACM 95/100 abc. Solar-system dynamics, with emphasis on slow changes in the orbit and rotation rates of planets and satellites. Topics: tidal friction, resonant orbits and rotation rates, gravitational fields of planets and satellites, dynamics of polar wandering, continental drift, and planetary rings. Instructor: Goldreich.

Ge 168. Crustal Geophysics. 9 units (3-0-6); third term. Prerequisite: ACM 95/100 or equivalent, or instructor's permission. The analysis of geophysical data related to crust processes. Topics include reflection and refraction seismology, tomography, gravity, magnetics, and geodesy. Instructor: Clayton.

Ge 169 ab. Readings in Geophysics. 6 units (3-0-3); second, third terms. Reading courses are offered to teach students to critically read the works of others and to broaden their knowledge about specific topics. Each student will be required to write a short summary of each paper that summarizes the main goals of the paper, to give an assessment of how well the author achieved those goals, and to point out related issues not discussed in the paper. Each student will be expected...
Ge 194. Special Topics in the Planetary Sciences. Units to be
arranged. Offered by announcement only. Advanced-level discussions of
problems of current interest in the planetary sciences. Students may
enroll for any or all terms of this course without regard to sequence.
Instructor: Staff.

Ge 203. Special Topics in Atmospheres and Oceans. 9 units
(3-0-6); third term. Recommended: ESE/Ge 148, ACM 95/100, Ph 106, or
equivalent. Photochemistry of planetary atmospheres, atmospheric evol-
ution, comparative planetology, climate change. Instructor: Yung.

Ge 211. Applied Geophysics II. Units to be arranged. Prerequisite:
instructor’s permission. Intensive geophysical field experience in either
marine or continental settings. Marine option will include participation
in a student training cruise, with several weeks aboard a geophysical
research vessel, conducting geophysical measurements (multibeam
bathymetry, gravity, magnetics, and seismics), processing and interpret-
ing the data. Supporting lectures and problem sets on the theoretical
basis of the relevant geophysical techniques and the tectonic back-
ground of the survey area will occur before and during the training
cruise. The course might be offered in a similar format in other isolate-
d situations. The course will be scheduled only when opportunities
arise and this usually means that only six month’s notice can be given.
Auditing not permitted. Class may be taken more than once.

Ge 212. Thermodynamics of Geological Systems. 9 units
(3-0-6); first term. Prerequisites: Ch 21 abc, Ge 115 abc, or equivalents.
Chemical thermodynamics, with emphasis on applications to geologic problems.
Heat flow, diffusion, phase transformations, silicate phase equilibria,
solid solutions, the effect of H_2O in silicate melts, and equilibrium in a
gravitational field. Text: *Chemical Thermodynamics*, Prigogine and

Ge 214. Spectroscopy of Minerals. 9 units (3-0-6); third term.
Prerequisites: Ge 114, Ch 21, or instructor’s permission. The origin of
color, pleochroism, and luminescence in minerals, infrared absorption
spectroscopy of mineral substances. The application of spectroscopic
methods to mineralogical problems, including site populations and
other optical properties. Given in alternate years; not offered 2001–02.
Instructor: Rossman.

Ge 215 abc. Topics in Advanced Petrology. 12 units each term
(3-6-3); first, second, third terms. Prerequisite: Ge 115; Ch 21 recommend-
ed.

a. Chemical Petrology. First term. Lectures, seminars, and labora-
tory studies of the chemical reactions that occur in rocks. Emphasis on
rock-water interactions, mineral deposition, hydrothermal alteration,
and the formation of ore deposits. Instructor: Taylor. Given in alter-
nate years; offered 2001–02.

b. Advanced Igneous Petrology. Second term. Lectures, seminars,
and laboratory studies on igneous petrogenesis and rocks, emphasizing

Ge 225 abc. Planetary Sciences Seminar. 1 unit (1-0-0); first, second, third terms. Required of all planetary-science graduate students; others welcome. First term: current research by staff and students. Second and third terms: planetary research with spacecraft and current developments in planetary science. Instructor: Staff.

Ge/Ay 226. Observational Planetary Astronomy. 9 units (3-3-3); second term. Prerequisite: Ay 122 or instructor’s permission. Discussion of applications of astronomical techniques to the study of solar system bodies. Topics will include the study of atmospheres, surfaces, and magnetospheres using ground- and space-based telescopes at wavelengths ranging from radio to X-ray wavelengths. Laboratory work will emphasize the acquisition, reduction, and interpretation of planetary astronomical data. Instructor: Brown. Given in alternate years; not offered 2001–02.

Ge 229. Glaciology. 9 units (3-0-6); third term. Characteristics of existing glaciers and ice sheets; ice-age glaciers; glacier flow and fracture mechanics in relation to ice physics; mass and energy balance and response to climatic change; glacial erosion and deposition; causes of glaciation. Instructor: Kamb. Given in alternate years; not offered 2001–02.

Ge 232. Chemistry of the Solar System. 9 units (3-0-6); second term. Prerequisite: Ge 140 b or instructor’s permission. Advanced course using both chemical and isotopic data to evaluate the current state of knowledge concerning the composition of major segments of the solar system, viz., solar and meteoritic abundance data to infer the average solar-system composition; chemistry of meteorites as a clue to initial conditions in the solar nebula; bulk composition of the earth and moon; constraints on the bulk composition of the other planets, emphasizing data on atmospheric constituents. Instructor: Burnett. Given in alternate years; offered 2001–02.

Ge 236. Applications of Rare Gases to Earth Science Problems. 9 units (3-0-6); offered by announcement; third term. Prerequisite: instructor’s permission. Discussion of the principles, applications, and limitations of rare gases as records of terrestrial processes. Origin and behavior of rare gases in natural systems. Specific areas to be considered include: K/Ar and 40Ar/39Ar dating; Ar thermochronology; surface-exposure dating; rare gas constraints on mantle evolution and models of atmosphere formation; additional applications in geology, hydrology, paleoclimatology, and oceanography. Instructor: Farley.

Ge 240. Advanced Isotope Geochemistry. 9 units (3-0-6); offered by announcement only. Prerequisite: Ge 140 ab or instructor’s permission. Lectures and problems on the variations in the isotopic composition of elements in nature, with applications to studies of the origin of the solar system, planetary evolution, igneous and metamorphic petrology, hydrothermal alteration and ore deposits, and the origin and history of the earth’s atmosphere and hydrosphere. Emphasis is placed on the integration of stable and radiogenic isotope studies in current research areas, utilizing problem sets and extensive reading of articles in scientific journals, including discussion of instrumentation and modern techniques of measurement of isotopic and chemical abundances. Instructor: Wasserburg.

Ge/Bi 244 ab. Paleobiology Seminar. 5 units; second, third terms. Critical reviews and discussion of classic investigations and current research in paleoecology, evolution, and biogeochemistry. Instructor: Kirschvink. Only part a offered 2001–02.

Ge/Bi 246. Geomicrobiology Seminar. 6 units (2-0-4); second term. Recommended prerequisite: ESE/Bi 166. Critical reviews and discussion of classic papers and current research in microbiology and geomicrobiology. As the topics will vary from year to year, it may be taken multiple times. Instructor: Newman.

Ge 248. Geodynamics. 9 units (3-2-4); first term. Recommended prerequisite: Ge 163. Analysis of dynamics behind large-scale geologic phenomena by application of continuum mechanics of mass and heat transfer; emphasis on problems of plate tectonics. Selected problems will be examined, such as the mechanics of subduction, the rise of mantle diapirs, postglacial rebound, mantle convection, convective mixing, vertical motion of plates, and the driving mechanism for plate motions. Some problems will be studied with numerical models. Instructor: Gurnis. Given in alternate years; not offered 2001–02.

Ge 260. Physics of Earth Materials. 9 units (3-2-4); first term. Prerequisite: familiarity with basic concepts of thermodynamics and mineralogy; instructor’s permission. Application of high-pressure physics to geologic problems. Topics: concepts of elastic and shock propagation in single and polycrystalline solids and in fluids, and their relation to various thermodynamic processes; phase changes, dynamic yielding, shock metamorphism, high-pressure electrical properties of minerals, and application of shock and ultrasonic equation-of-state data to earth and planetary interiors. Instructors: Ahrens and Stock. Given in alternate years; not offered 2001–02.

Ge 261. Advanced Seismology. 9 units (3-0-6); third term. Continuation of Seismology with special emphasis on particular complex problems; includes generalizations of analytical methods to handle non-planar structures and methods of interfacing numerical-analytical codes in 2- and 3-dimensions; construction of earth models using tomographic methods and synthetics; requires a class project. Instructors: Helmberger and staff.

Ge 263. Computational Geophysics. 9 units (3-0-6); third term. Computational methods and numerical algorithms in solid-earth sciences. Topics include finite-difference, finite-element, spectral-element, and adjoint methods. Sample applications are elastic wave simulation, visco-elastic and porous flow, and transport problems. Algorithms will be discussed for virtual and shared memory computers as well as loosely coupled computers, such as Beowulfs. Instructors: Tromp, Gurnis, Clayton. Given in alternate years; offered 2002–03.

Ge 264. Physics of Earthquakes. 9 units (3-0-6); third term. Prerequisite: Ge 161 or equivalent. Bridges basic theories in seismology to modern seismic data. Emphasis is on understanding the physics of earthquakes through hands-on analyses of data. Designed for students who plan to conduct research in seismology and related subjects. Students are expected to spend a total of 50 hours working on the data. Topics to be covered: modern seismic instruments, time series analysis, seismic sources and displacement fields, interpretation of broad-band (10Hz to DC) seismic data, the link between microscopic and macroscopic physics of earthquakes. Instructor: Kanamori.

Ge 265. Exploration Geophysics. 9 units (3-0-6); third term. Prerequisites: Ge 162, Ge 165 a or equivalents, or instructor’s permission. The analysis of geophysical data related to crustal imaging and processes. Topics include reflection and refraction seismology, tomography, gravity, magnetics, and electrical methods. Instructor: Clayton.

Ge 270. Continental Tectonics. 9 units (3-0-6); first term. Prerequisites: ACM 95/100 or ACM 113; Ge 11 ab, Ge 106, Ge 162, Ge 166, or Ge 161. Nature of non-plate, finite deformation processes in the evolution of the continental lithosphere using the Alpine orogen as an example. Rheological stratification; isostatic and flexural response to near-vertical loads; rifting and associated basin development; collision and strike-slip tectonics; deep crustal processes. Instructor: Wernicke.

Ge 277. Quaternary Tectonics Seminar. 6 units (1-3-2); second term. Detailed analysis of one or more active tectonic regions, including discussion of published literature, and field examination. Instructor: Sieh. Not offered 2001–02.

Ge 282 abc. Division Seminar. 1 unit; first, second, third terms. Presentation of papers by invited investigators. In charge: Staff.

Ge 297. Advanced Study. Units to be arranged.

Ge 299. Thesis Research. Original investigation, designed to give training in methods of research, to serve as theses for higher degrees, and to yield contributions to scientific knowledge.

GERMAN (see Languages)

HISTORY

Courses numbered 40 or greater are open only to students who have fulfilled the freshman humanities requirement.

Hum/H 1 ab. The History of Qing China (1644–1912) and Tokugawa Japan (1600–1868) and the Rise of Contemporary East Asia. 9 units (3-0-6). For course description, see Humanities.

Hum/H 2. American History. 9 units (3-0-6). For course description, see Humanities.

Hum/H 3 abc. European Civilization. 9 units (3-0-6). For course description, see Humanities.

Hum/H/SES 10 a. Introduction to the History of Science. 9 units (3-0-6). Offered by announcement. For course description, see Humanities. Hum/H/SES 10 a may be taken for credit toward the additional 36-unit HSS requirement by students who have already fulfilled their freshman humanities requirement.

H 40. Reading in History. Units to be determined for the individual by the division. Elective, in any term. Reading in history and related subjects, done either in connection with the regular courses or independently, but under the direction of members of the department. A brief written report will usually be required. Graded pass/fail. Not available for credit toward humanities–social science requirement.

H 97 ab. Junior Tutorial. 9 units (2-0-7); second, third terms. Prerequisite: instructor’s permission. Designed for students majoring in history, with frequent meetings between instructor and student. Course subject matter varies according to individual needs. Normally taken junior year. Instructor: Staff.

H 98 ab. Senior Tutorial. 9 units (2-0-7); first, second terms. Prerequisite: instructor’s permission. Designed for students majoring in history, with frequent meetings between instructor and student. Normally taken senior year. Instructor: Staff.
H 99 abc. Research Tutorial. 9 units (1-0-8). Prerequisite: instructor’s permission. Students will work with the instructor in the preparation of a research paper, which will form the basis of an oral examination. Instructor: Staff.

H 108 a. The Early Middle Ages. 9 units (3-0-6); second term. This course is designed to introduce students to European history between 1000 and 1400. It will provide a topical as well as chronological examination of the economic, social, political, and religious evolution of western Europe during this period, with a focus on France, Italy, England, and Germany. The course emphasizes the reading, analysis, and discussion of primary sources. Instructor: Brown.

H 108 b. The High Middle Ages. 9 units (3-0-6); third term. This course is designed to introduce students to European history between 1000 and 1400. It will provide a topical as well as chronological examination of the economic, social, political, and religious evolution of western Europe during this period, with a focus on France, Italy, England, and Germany. The course emphasizes the reading, analysis, and discussion of primary sources. Instructor: Brown.

H 110. Early Modern Europe. 9 units (3-0-6). Topics in the social, economic, political, and cultural history of Europe up to the 19th century. Topics may include the Renaissance, religious change, revolutions and warfare, and early industrialization. Not offered 2001–02.

H 115 abc. British History. 9 units (3-0-6); first, second, third terms. The political and cultural development of Great Britain from the early modern period to the 20th century. H 115 a covers the Reformation and the making of a Protestant state (1500–1700). H 115 b examines the Enlightenment and British responses to revolutions in France and America (1700–1830). H 115 c is devoted to the Victorian and Edwardian eras (1830–1918). H 115 a is not a prerequisite for H 115 b; neither it nor H 115 b is a prerequisite for H 115 c. Not offered 2001–02.

H 124. Population and Family History. 9 units (3-0-6); third term. Four aspects of population and family history in China and Europe: demographic, establishing the parameters of birth, marriage, and death; economic, treating the family as a unit of production as well as consumption; social, analyzing the evolving structure of various kin groupings—lineage, clan, household, and family; cultural, identifying and interpreting the symbolic forms and meanings of the “family.” Not offered 2001–02.

H/Hum 130 ab. Cinema and Society. 9 units (2-2-5). A two-term course that covers the history of world cinema from the 1890s to today. Focus will be on technological innovation, film language, stylistic change, and historical importance of film as it has developed in Europe, Hollywood, and the Third World. First term will cover from the origins of film through the 1940s, with emphasis on works from Hollywood, Germany, the Soviet Union, France, and Italy. Second term will cover from World War II to the present, and will include sections on Asia, East Europe, the Third World, and American independents. Students will view at least one feature film a week. Though the course is designed as a sequence, students may take a single term. Instructor: Rosenstone.

H/Hum 131. History on Film. 9 units (2-2-5). Offered by announcement. An investigation into the variety of ways history has been and can be represented on the screen. Some terms the focus will be a specific historical period or nation; other terms the focus will be the nature of film as a medium for history and biography. The class will include weekly screenings of films as well as weekly discussion sections. Instructor: Rosenstone.

H 133. History of Ancient China, 2000 B.C.-1200 A.D. 9 units (3-0-6). A systematic analysis of the growth and character of China from its early origins to the eve of the Mongol invasion. The characteristic development and unique features of pre-imperial and imperial China, including the periods of the first empire, disunion, and the second empire, will be examined in the context of how China developed into an enduring political and social entity. Not offered 2001–02.

H 134. History of Late Imperial China, 1200-1800. 9 units (3-0-6); third term. An exploration of several major problems, including the growth of autocracy, population development, social mobility, and the Ming-Qing dynasty transition in the history of China, from the formation of the Mongol empire to the eve of the Opium War. Not offered 2001–02.

H 136. Family, Friendship, and Love in Chinese Culture. 9 units (3-0-6). The nature of human relations in China. The purpose of the class is twofold: first, to introduce a number of selected texts on family, friendship, and love in Chinese culture; second, to provide a broad conceptual framework on self and society in traditional and contemporary China. Classes are organized around specific themes. Readings include anthropological, historical, and literary texts. Not offered 2001–02.

H 139. Native America. 9 units (3-0-6); third term. This course explores Native American history from contact to present. Emphasis upon demographic change, cultural accommodation and exchange, violence, and conquest. Course readings will include primary source material, Native American cultural and literary texts, various bureaucratic and official documentation of Indian wars and settlement contacts. Course will also explore changing dynamics of Native American incorporation into Anglo American legal tradition, ca. 1800–present. Not offered 2001–02.

H 140. History of Los Angeles. 9 units (3-0-6). A course that examines the 200-year history of Los Angeles through fiction, film, scholarship, and photography. Not offered 2001–02.
H 141. The 20th-Century American City. 9 units (3-0-6). A survey course that examines the history of modern American urban development. Emphasis will be placed upon the social history of 20th-century American cities. Not offered 2001–02.

H 142. History of California. 9 units (3–0–6); third term. This course examines the history of California from the 16th century through the 20th century. Attention will be paid to demographic patterns of Native American and other peoples, exploration, colonization, extractive industries, and the political development of the state. Not offered 2001–02.

H 143. Western Environmental History. 9 units (3–0–6); first term. This course examines the history of the American West through the prism of environmental history. From discussion of Native American peoples and their interaction with the California environment through the demographic expansion of Anglo America in the 19th century and the environmental history of the 20th century, the course ranges broadly across time and California space. Not offered 2001–02.

H 144. Topics in the History of American Immigration. 9 units (3–0–6). A course that examines the history of American immigration from the 18th through the 20th centuries. This course will explore the impact of immigration upon American politics, culture, and law. Not offered 2001–02.

H 145. Irish America. 9 units (3–0–6); second term. Examination of trans-Atlantic migration, demographic, and political change, 1800–present. Course will explore dynamics of Irish American political traditions, influence of Irish republicanism on American politics, influence of American Civil War upon Irish American thought and culture, and rise of Irish voting blocs in the 20th century. Not offered 2001–02.

H/PS 148 ab. The Supreme Court in U.S. History. 9 units (3–0–6); second, third terms. The development of the Supreme Court, its doctrines, personalities, and role in U.S. history through analyses of selected cases. The first half of the course, which is a prerequisite for the second half, but may also be taken by itself, will deal with such topics as federalism, economic regulation, political rights, and free speech. The second half will cover such issues as the rights of the accused, equal protection, and privacy. Instructor: Kousser.

H 150 ab. African American History. 9 units (3–0–6). This two-part course will explore the history of African Americans from 1600 to the present. Generally part a of the course will cover the African diaspora through Reconstruction; part b will cover the period since 1877. The first term is not a prerequisite for the second term. Not offered 2001–02.

H 153 ab. America Since World War II. 9 units (3-0-6). Topics in the recent social, cultural, and political history of the United States. First term is not a prerequisite for second term. Not offered 2001–02.

H/SS 154 ab. Race Relations in History and Social Science. 9 units (3-0-6); second, third terms. Prerequisite: H/SS 154 a. Approaches to racial and ethnic relations from both history and several of the social sciences (political science, sociology, social psychology, and economics) will be examined. The focus will be on the United States, but the experiences of other countries may be analyzed for comparative purposes. Why do people form distinctive groups, and why are some boundaries more permanent and impermeable than others? How have ethnic relations in the U.S. changed over time? Has the country entered a new, “colorblind” era of race relations? Not offered 2001–02.

SES/H 156. The History of Modern Science. 9 units (3–0–6). For course description, see Science, Ethics, and Society.

SES/H 158. The Scientific Revolution. 9 units (3–0–6). For course description, see Science, Ethics, and Society.

SES/H 160 ab. History of the Modern Physical Sciences. 9 units (3–0–6). For course description, see Science, Ethics, and Society.

SES/H 165. History of Technology in the United States. 9 units (3–0–6). For course description, see Science, Ethics, and Society.

SES/H 166. The History of Environmentalism. 9 units (3–0–6). For course description, see Science, Ethics, and Society.

SES/H 169. Selected Topics in Science, Ethics, and Society. 9 units (3–0–6). For course description, see Science, Ethics, and Society.

H 201. Reading and Research for Graduate Students. Units to be determined for the individual by the division.
HUMANITIES

All courses numbered 1 through 20 are freshman humanities courses. Courses numbered above 99 are open only to students who have fulfilled the freshman humanities requirement.

Hum/H 1 ab. The History of Qing China (1644–1912) and Tokugawa Japan (1600–1868) and the Rise of Contemporary East Asia. 9 units (3-0-6). Offered by announcement. Late imperial values, institutions, and behaviors and their evolution in the 19th and 20th centuries. Hum/H 1 a will deal largely with China, and Hum/H 1 b with Japan. The readings will consist of selected thematic texts as well as a chronological textbook. Each quarter is independent of the other, and students will normally take only one of the two quarters. Instructor: Lee.

Hum/H 2. American History. 9 units (3-0-6). Offered by announcement. Among the major events, trends, and problems of our country’s history are the American Revolution, the framing and development of the Constitution, wars, slavery and emancipation, ethnic and gender relations, immigration, urbanization, westward conquest, economic fluctuations, changes in the sizes and functions of governments, foreign relations, class conflicts, domestic violence, and social and political movements. Although no one course can treat all of these themes, each freshman American history course will deal with two or more of them. How have American historians approached them? What arguments and evidence have scholars offered for their interpretations and how can we choose between them? In a word, what can we know about our heritage? Instructors: Deverell, Kousser.

Hum/H 3 abc. European Civilization. 9 units (3-0-6). Offered by announcement. This course will be divided into three quarters, each of which will focus on a coherent period in the history of European civilization. Each quarter is independent of the others, and students will normally take only one of the three quarters.

a. The Classical and Medieval Worlds. Will survey the evolution of Mediterranean and European civilization from antiquity through the end of the Middle Ages. It will emphasize the reading and discussion of primary sources, especially but not exclusively literary works, against the backdrop of the broad historical narrative of the periods. The readings will present students with the essential characteristics of various ancient and medieval societies and give them access to their cultural assumptions and perceptions of change. Instructors: Brown, Hoffman, Pigman.

b. Early Modern Europe. Will survey the evolution of European civilization from the 14th century to the early 19th century. The topics covered will depend on the individual instructor, but they will include some of the major changes that transformed western civilization in the early modern period, such as the Renaissance, the Reformation, the rise of sovereign states and the concomitant military revolution, the Scientific Revolution and the Enlightenment, and the French and Industrial revolutions. Readings will include major works from the period, as well as studies by modern historians. Instructors: Brown, Hoffman, Pigman.

c. Modern Europe. Will introduce students to major aspects of the politics and culture of modernity that have profoundly transformed western society and consciousness from the French Revolution to the contemporary era. A variety of historical, literary, and artistic works will be used to illuminate major social, intellectual, and cultural movements. The focus will be on significant and wide-ranging historical change (e.g., the industrial revolution, imperialism, socialism, fascism); on cultural innovation (e.g., modernism, impressionism, cubism); and on the work of significant thinkers. Instructors: Barkan, Rosenstone.

Hum/Lit 5. Major British Authors. 9 units (3-0-6). Offered by announcement. This course will introduce students to the three most important genres of English literature—poetry, drama, and prose fiction—by studying major authors from different periods. Sometimes the course will cover a wide range of authors, while at others it will concentrate on a few. Authors might include Chaucer, Shakespeare, Milton, Austen, George Eliot, or Joyce. Instructor: Literature staff.

Hum/Lit 6. Major American Authors. 9 units (3-0-6). Offered by announcement. This course will study major American authors from the 18th through 20th centuries, and students will be introduced to basic concepts of literary analysis. Authors may include Benjamin Franklin, Nathaniel Hawthorne, Emily Dickinson, Tennessee Williams, William Faulkner, Edith Wharton, and Toni Morrison. Students will be exposed to a variety of genres, including the novel, drama, and poetry. Instructor: Literature staff.

Hum/Pl 8. Right and Wrong. 9 units (3-0-6). Offered by announcement. This course addresses the question, “Where do moral ideas come from and how should they guide our conduct?” by exploring selections from the great works of moral and political philosophy—Aristotle’s *Nicomachean Ethics*, Plato’s *Republic*, Hobbes’s *Leviathan*, Locke’s *Second Treatise on Government*, Mill’s *Utilitarianism*, Rousseau’s *The Social Contract*, Kant’s *Groundwork for the Metaphysics of Morals*, Rawls’s *A Theory of Justice*—as well as a variety of more modern texts and commentaries. Throughout, an attempt will be made to acquaint students with the basic elements of western moral and political tradition: notions about human rights, democracy, and the fundamental moral equality of all human beings. This historical approach will then provide a background for the issues that frame contemporary discussions of moral and political ideas. Instructor: Philosophy staff.

Hum/Pl 9. Knowledge and Reality. 9 units (3-0-6). Offered by announcement. The theme of this course is the scope and limitations of rational belief and knowledge. Students will examine the nature of reality, the nature of the self, the nature of knowledge, and how we learn about the natural world. Students will be introduced to these issues through selections from some of the world’s greatest philosophical works, including Descartes’ *Meditations*, Pascal’s *Pensées*, Hume’s
Enquiry Concerning Human Understanding, Berkeley’s Principles of Human Knowledge, and Kant’s Prolegomena to any Future Metaphysics. A variety of more contemporary readings will also be assigned.

Instructor: Philosophy staff.

Hum/H/SES 10 a. Introduction to the History of Science. 9 units (3-0-6). Offered by announcement. Major topics to be addressed include: What are the origins of modern Western science, when did it emerge as distinct from philosophy and other cultural and intellectual productions, and what are its distinguishing features? When and how did observation, experiment, quantification, and precision enter the practice of science? What were some of the major turning points in the history of science? What is the changing role of science and technology? Using primary and secondary sources, students will take up significant topics in the history of science, from ancient Greek science to the 20th-century revolution in physics, biology, and technology. Hum/H/SES 10a may be taken for credit toward the additional 36-unit HSS requirement by students who have already fulfilled their freshman humanities requirement. Instructors: History staff.

Hum/H/SES 10 b. Introduction to Philosophy of Science. 9 units (3-0-6). Questions to be addressed include: What are scientific explanations? What are laws of nature? What are the methods used by scientists to evaluate their theories? Does science aim at providing true theories of the world? What factors theoretical, personal, or political contribute to theoretical changes? Is science wholly rational and objective? What kinds of ethical issues may be raised by current science and/or technology? Students will approach these questions through study of the works of great 20th century philosophers of science such as Carnap, Popper, Kuhn, and Feyerabend. Hum/Pl/SES 10 b may be taken for credit toward the additional 36-unit HSS requirement by students who have already fulfilled their freshman humanities requirement. Instructor: Philosophy staff.

Hum 32. Humanities on Film. 3 units (1-1-1). Offered by announcement. A mini-course centered around a series of films (usually five) screened as part of the Caltech Film Program. Students will be required to attend prefilm lectures and postfilm discussions, to do some reading, and to produce a short paper. Not offered 2001–02.

Hum 119. Selected Topics in Humanities. 9 units (3-0-6). Offered by announcement. Instructors: Staff, visitors.

H/Hum 130 ab. Cinema and Society. 9 units (2-2-5). For course description, see History.

H/Hum 131. History on Film. 9 units (2-2-5). For course description, see History.

Hum 133. Topics in Film History. 9 units (2-2-5). Offered by announcement. Will focus each quarter on one kind of motion picture—either a film genre, or films made by an individual director, or from a single nation or region of the world or particular historical era. Included are weekly screenings, readings on film, a weekly discussion meeting, and a term paper. Not offered 2001–02.

Hum 141 a. Offensive Literature. 9 units (3-0-6). Offered by announcement. A survey of literature deemed at various historical periods to have been seditious, blasphemous, obscene, or libelous. Not offered 2001–02.

INDEPENDENT STUDIES PROGRAM

Students who have chosen to enter the Independent Studies Program (ISP) instead of a formulated undergraduate option may enroll in special ISP courses. These courses are designed to accommodate individual programs of study or special research that fall outside ordinary course offerings. The student and the instructor first prepare a written course contract specifying the work to be accomplished and the time schedule for reports on progress and for work completed. The units of credit and form of grading are decided by mutual agreement between the instructor, the student, and his or her advisory committee. See page 202 for complete details.

JAPANESE (see Languages)

JET PROPULSION

Ae/JP 103 abc. Propulsion, Dynamics, and Control of Aircraft. 9 units (3-0-6). For course description, see Aeronautics.

JP 121 abc. Jet Propulsion Systems and Trajectories. 9 units (3-0-6); each term. Open to all graduate students and to seniors with permission of instructor. Prerequisite: Ae/Me 120 a. Modern aspects of rocket, turbine, electrical, and nuclear propulsion systems and the principles of their application to lifting, ballistic, and spaceflight trajectories. Combustion and burning characteristics of solid and liquid propellants, liquid-propellant fuel systems, combustion instability. Subsonic and supersonic compressors and turbines, basic gas-turbine propulsion cycle and its variations, and inlet and diffusers. Instructors: Shepherd, Polk.

JP 131. Combustion Technology. 9 units (3-0-6); third term. Prerequisite: APh 17 abc, ME 18, and ME 19. Application of fluid dynamic and chemical principles to the study of combustion processes, including the theoretical and experimental treatment of laminar and turbulent flames; the combustion of liquid droplets and solid particles; and technical aspects of gas, oil, and coal combustion. Instructor: Culick. Not offered every year.
JP 213 abc. Dynamics of Reacting Gases. 9 units (3-0-6); each term. Prerequisites: APb 17 abc, ME 18; Ac/Ph/CE/ME 101 abc or equivalent. Application of gas dynamic and chemical principles to the study of combustion processes, including theoretical and experimental treatment of laminar and turbulent flames; acoustic and detonation waves; volatilization and combustion of liquid droplets and solid particles; combustion problems of air-breathing engines and liquid-and solid-propellant rockets; flame stability; aspects of gas, oil, and coal combustion. Instructor: Culick. Not offered every year.

JP 270. Special Topics in Propulsion. 6 units (2-0-4); each term. The topics covered will vary from year to year. Instructor: Staff.

LANGUAGES

L 101. Selected Topics in Language. Units to be determined by arrangement with the instructor. Graded pass/fail. Instructor: Staff, visiting lecturers.

L 102 abc. Elementary French. 10 units (3-1-6); first, second, third terms. The course uses French in Action, a multimedia program, and emphasizes the acquisition of fundamental skills: oral ability, comprehension, writing, and reading. Students are evaluated on the basis of quizzes and compositions (1/3), midterm and final (1/3), and class participation (1/3). The course is mainly designed for students with no previous knowledge of French. Students who have had French in secondary school or college must consult with the instructor before registering. Instructor: Orcel.

L 103 abc. Intermediate French. 9 units (3-0-6); first, second, third terms. Prerequisite: L 102 abc or equivalent. The first two terms feature an extensive grammar review and group activities that promote self-expression. Op-Ed articles and a series of literary texts provide a basis for classroom discussion and vocabulary expansion. Several short written compositions are required. The third term is designed to further develop an active command of the language. A variety of 19th- and 20th-century short stories are discussed in class to improve comprehension and oral proficiency. Students are expected to do an oral presentation, to write four short compositions, and a final paper. Second and third terms are offered for advanced humanities credit. Instructors: de Bedts, Orcel.

L 104. French Cinema. 9 units (3-0-6); first term. Prerequisite: L 103 abc or equivalent. A critical survey of major directors, genres, and movements in French cinema. Particular attention is devoted to the development of film theory and criticism in France and their relation to film production. The course may also focus on problems of transposition from literature to cinema. The course includes screenings of films by Melies, Dulac, Clair, Renoir, Carné, Pagnol, Cocteau, Bresson, Tati, Truffaut, Godard, Resnais, Lelouch, Malle, Pialat, Rohmer, and Varda. Students are expected to write three 5-page critical papers. Conducted in French. Instructor: Orcel.

L 105 ab. French Literature. 9 units (3-0-6); second, third terms. Prerequisite: L 103 abc or equivalent. Close critical analysis of representative works from 19th- and 20th-century authors. The texts are examined in relation to the artistic, intellectual, and political context. Designed for the non-specialist with little or no background in French literary history. Autobiography in 20th-century France, the modern French novel, the French avant-garde, the modern French theatre and its aesthetic, and woman’s voices; 20th-century French narrative prose, are some of the topics offered previously. Film versions of the texts studied may be included. Conducted in French. Three 5-page critical papers on topics chosen by the student are required. Instructors: Orcel, de Bedts. L 105a may be repeated for credit.

L 106 abc. Elementary Japanese. 10 units (5-1-4); first, second, third terms. Emphasis on oral-aural skills, and understanding of basic grammar. Immediate introduction of the native script—hiragana, katakana—and gradual introduction to 300 to 500 characters. Instructor: Hirai.

L 107 abc. Intermediate Japanese. 10 units (5-1-4); first, second, third terms. Prerequisite: L 106 abc or equivalent. Continued instruction and practice in conversation, building up vocabulary, and understanding complex sentence patterns. The emphasis, however, will be on developing reading skills. Recognition of approximately 1000 characters. Instructor: Hirata.

L 108 abc. Advanced Japanese. 10 units (3-1-6); first, second, third terms. Prerequisite: L 107 abc or equivalent. Developing overall language skills. Literary and newspaper readings. Technical and scientific translation. Improvement of listening and speaking ability so as to communicate with Japanese people in real situations. Recognition of the 1850 “general-use characters.” Instructor: Hirata.

L 110 abc. Elementary Spanish. 10 units (3-1-6); first, second, third terms. Grammar fundamentals and their use in understanding, speaking, reading, and writing Spanish. Students who have had Spanish in secondary school or college must consult with the instructor before registering. Instructors: Garcia and staff.

L 112 abc. Intermediate Spanish. 9 units (3-0-6); first, second, third terms. Prerequisite: L 110 abc or equivalent. Grammar review, vocabulary building, practice in conversation, and introduction to relevant history, literature, and culture. Literary reading and writing are emphasized in the second and third terms. Students who have studied Spanish elsewhere must consult with the instructor before registering. Instructors: Garcia and staff.
L 114 abc. Topics in Spanish and Latin American Culture and Literature. 9 units (3-0-6). Offered by announcement. Prerequisite: L 112 abc or equivalent. First term: Spanish “classical” literature of the 16th to the 18th centuries. Second term: Latin American literature of the 16th to the 20th centuries. Third term: Contemporary topics in literature and/or film of the Hispanic world. Conducted in Spanish. Instructor: Garcia.

L 121 abc. Elementary Latin. 9 units (3-0-6). The course aims to prepare students to read classical Latin. Instructor: Staff. Not offered 2001–02.

L 130 abc. Elementary German. 10 units (3-1-5); first, second, third terms. Grammar fundamentals and their use in aural comprehension, speaking, reading, and writing. Students who have had German in secondary school or college must consult with the instructor before registering. Instructor: Washburn.

L 132 abc. Intermediate German. 9 units (3-0-6); first, second, third terms. Prerequisite: L 130 abc or equivalent. Reading of short stories and plays, grammar review, aural and oral drills and exercises, expansion of vocabulary, and practice in reading, writing, and conversational skills. Second and third quarters will emphasize written expression, technical/scientific translation, and literary readings. Students who have studied German elsewhere must consult with the instructor before registering. Instructor: Aebi.

L 140 abc. German Literature. 9 units (3-0-6). Prerequisite: L 132 abc or equivalent. The reading and discussion of works by selected 19th- and 20th-century authors. Conducted in German. Not offered 2001–02.

L/Lit 152 ab. French Literature in Translation: Classical and Modern. 9 units (3-0-6); first, second terms. First term: French classical literature of the 17th and 18th centuries; second term: reading and discussion of works by selected 19th and 20th century authors. The approach is both historical and critical. Conducted in English, but students may read the French originals. Film versions of the texts studied may be included. Instructor: de Bedts.

L/Lit 160 ab. German Literature in Translation. 9 units (3-0-6). First term: German literature of the 19th century—Biedermeier, Young Germany, Realism, and Naturalism; second term: “Tales of Hollywood,” German Exile Literature 1933–45. Instructor: Aebi.

L/Lit 162. Spanish and Latin American Literature in Translation. 9 units (3-0-6). Offered by announcement. This class is an introduction to the literary masterworks of the Hispanic tradition from the 16th to the 20th centuries. Readings and discussions are in English, but students may read Spanish originals. Instructor: Staff.

L 167 abc. Latin Literature. 9 units (3-0-6); first, second, third terms. Prerequisite: L 121 abc or equivalent. Major works of Latin literature, usually one per term. No work will be studied more than once in four years, and students may repeat the course for credit. Instructor: Staff. Not offered 2001–02.

L 170 abc. Introduction to Chinese. 10 units (4-1-5); first, second, third terms. An introductory course in standard Chinese (Mandarin) designed for students with no previous knowledge of the language. The course introduces the fundamentals of Chinese, including pronunciation, grammar, and Chinese characters, emphasizing the four basic language skills: listening, speaking, reading, and writing. By the end of the three quarter sequence, students will have acquired knowledge of basic rules of grammar and the ability to converse, read, and write on simple topics of daily life, and will have command of more than 800 Chinese compounds and 700 characters. Instructor: Staff.

L 171 abc. Elementary Chinese. 10 units (4-1-5); first, second, third terms. Prerequisite: placement exam results or instructor’s permission. A fast-paced course for students who have had prior exposure to the language. Students are introduced to the basic principles of written and oral communication. Emphasis will be placed on consolidating basic grammar, and developing the ability to use the language creatively in talking about oneself and in dealing with daily situations within a Chinese cultural context. Instructor: Staff.

L 172 abc. Intermediate Chinese. 10 units (4-1-5); first, second, third terms. Prerequisite: L 170 abc or L 171 abc or equivalent. A course designed to meet the personal interests and future professional goals of students who have had one year of elementary modern Chinese. Students will learn new vocabulary, sentence patterns, idiomatic expressions, and proverbs, as well as insights into Chinese society, culture, and customs. Instructor: Staff.

L 173 ab. Advanced Chinese. 10 units (3-1-6); first, second terms. Prerequisite: L 172 abc or equivalent. A course designed to further develop overall language proficiency through extensive reading of selected texts representing a wide variety of styles and genres, including materials from newspapers and magazines, visual materials, and a selection of works of major modern writers. Classes are conducted primarily in Chinese. Instructor: Staff.

L/Lit 174. Topics in Chinese Literature. 9 units (3-0-6). Offered by announcement. Prerequisite: instructor’s permission. Reading and discussion of representative Chinese works from the 16th century to the present, including contemporary works from China, Taiwan, and Hong Kong. Conducted in Chinese. Students are expected to examine literary works in light of their socio-political and historical contexts. Instructor: Staff.

Lit 50. Fundamentals of the Art of Poetry. 9 units (3-0-6). What is poetry? Why and how should one read it? What “weapons” does the good poem deploy in order to give pleasure? How does an inexperienced reader develop into an expert and sensitive one? To illustrate the nature, functions, and resources of poetry, a wide-ranging selection of poems will be read and discussed. Not offered 2001–02.

Lit 70. Drama from the Middle Ages to Molière. 9 units (3-0-6). A study of major dramatic works from the 15th to the mid-17th century. Students will read medieval plays like Abraham and Isaac and Everyman; British Renaissance works including Marlowe’s Doctor Faustus and two Shakespearian plays; several Spanish comedias of the Golden Age, among them the original Don Juan play; and Molière’s masterpieces: Tartuffe and The Misanthrope. Instructor: Mandel. Not offered 2001–02.

Lit 71. Drama from Molière to Wilde. 9 units (3-0-6). A study of French plays of the age of Louis XIV featuring Molière and Racine; English comedies of the 17th and 18th centuries, including Sheridan’s The Rivals; masterpieces of German drama of the Romantic age, among them Schiller’s Maria Stuart and Goethe’s Faust; The Inspector General by the Russian Nikolay Gogol; Edmond Rostand’s Cyrano de Bergerac; Oscar Wilde’s The Importance of Being Earnest, and other works as time permits. Instructor: Mandel. Not offered 2001–02.

Lit 72. Drama from Ibsen to Beckett. 9 units (3-0-6). A wide international range of plays will be studied, beginning with major texts by Ibsen and Chekhov, and concluding with Ionesco and Beckett. In between, students will read important plays by G.B. Shaw, Sean O’Casey, Pirandello, Bertolt Brecht, T.S. Eliot, Arthur Miller, and others. Instructor: Mandel. Not offered 2001–02.

Lit 85. Writing Poetry. 9 units (3-0-6). Students will develop their poetic craft by creating poems in a variety of forms. The lecturer will provide guidance and direction, supervise class discussions of students’ works, and assign outside reading as needed. Enrollment is limited and upperclass undergraduates will be given priority. Students may apply one quarter of Lit 85, 86, 87, and 88 to the final 36-unit requirement of the division, and all other courses in this series will receive Institute credit. Instructor: Staff.

Lit 86. Writing Fiction: Realism. 9 units (3-0-6). Students will develop their talents for writing short works of realistic fiction. The lecturer will provide guidance and direction, supervise class discussions of students’ works, and assign outside reading as needed. Enrollment is limited and upperclass undergraduates will be given priority. Students may apply one quarter of Lit 85, 86, 87, and 88 to the final 36-unit requirement of the division, and all other courses in this series will receive Institute credit. Instructor: Staff.
Lit 87. Writing Fiction. The Imaginary. 9 units (3-0-6). Students will develop their talents for writing imaginary short stories other than science fiction. A number of models will be proposed to them for inspiration, e.g., folk tales, tales of the supernatural, fables, stories of “magic realism,” examples of surrealism and the “absurd,” and so on. The lecturer will provide guidance and direction, supervise class discussions of students’ works, and assign outside reading as needed. Enrollment is limited and upperclass undergraduates will be given priority. Students may apply one quarter of Lit 85, 86, 87, and 88 to the final 36-unit requirement of the division, and all other courses in this series will receive Institute credit. Instructor: Staff.

Lit 88. Writing Nonfiction. 9 units (3-0-6). Students will develop their skills in handling various forms of nonfiction, such as the memoir, the critical review, the polemic, etc. The lecturer will provide guidance and direction, supervise class discussions of students’ works, and assign outside reading as needed. Enrollment is limited and upperclass undergraduates will be given priority. Students may apply one quarter of Lit 85, 86, 87, and 88 to the final 36-unit requirement of the division, and all other courses in this series will receive Institute credit. Instructor: Staff.

Lit 89. Tutorial for Literature Majors. 9 units (2-0-7). Prerequisite: instructor’s permission. An individual program of directed reading and research for literature majors in an area not covered by regular courses. Instructor: Staff.

Lit 89. Senior Tutorial for Literature Majors. 9 units (1-0-8); second term. Students will study research methods, write a research paper, and make an oral presentation. Required of students in the literature option. Instructor: Staff.

Lit 110. Chaucer. 9 units (2-0-7). Chaucer’s major works, Troilus and Criseyde, and selections from The Canterbury Tales. Not offered 2001–02.

Lit 114 ab. Shakespeare. 9 units (3-0-6). Offered by announcement. Not open to freshmen. A close study of Shakespeare’s plays with an emphasis on his language, dramatic structures, characters, and themes. Each term will concentrate on a detailed consideration of three or four of Shakespeare’s major plays. The first term is not a prerequisite for the second. Instructor: La Belle.

Lit 112 abc. The 18th-Century English Novel. 9 units (3-0-6); third term. Development of the 18th-century novel from the early novelists through the end of the century, with emphasis upon understanding the formal developments of the novel in its historical context. Major authors may include Defoe, Richardson, Fielding, Burney, Sterne, Radcliffe, Austen, Scott. Instructors: King and staff.

Lit 123. The 19th-Century English Novel. 9 units (3-0-6); first term. A survey of the 19th-century novel from Austen through Conrad, with special emphasis upon the Victorians. Major authors may include Austen, Shelley, Dickens, Eliot, Thackeray, Gaskell, Bronte, Collins, Trollope, Stoker, Hardy. Instructors: King and staff.

Lit 124. 20th-Century British Fiction. 9 units (3-0-6); third term. A survey of the 20th-century British and Irish novel, from the modernist novel to the postcolonial novel. Major authors may include Conrad, Joyce, Woolf, Forster, Lawrence, Orwell, Amis, Lessing, Rushdie. Not offered 2001–02.

Lit 125 ab. British Romantic Literature. 9 units (3-0-6); first term. A selective survey of English writing in the late 18th and early 19th centuries. Major authors may include Blake, Wordsworth, Coleridge, Byron, Keats, Percy Shelley, Mary Shelley, and Austen. Particular attention will be paid to intellectual and historical contexts and to new understandings of the role of literature in society. Not offered 2001–02.

Lit 126. Gothic Fiction. 9 units (3-0-6); second term. The literature of horror, fantasy, and the supernatural, from the late 18th century to the present day. Particular attention will be paid to gothic’s shifting cultural imperative, from its origins as a qualified reaction to Enlightenment rationalism, to the contemporary ghost story as an instrument of social and psychological exploration. Issues will include atmosphere and the gothic sense of space; gothic as a popular pathology; and the gendering of gothic narrative. Fiction by Walpole, Shelley, Bronte, Stoker, Poe, Wilde, Angela Carter, and Toni Morrison. Film versions of the gothic may be included. Instructor: Gilmartin.

Lit 127. 19th-Century English Literature and Social Change. 9 units (3-0-6). Course will explore literary responses to some of the central issues confronting English society in the 19th century: industrialization, the growth of cities, class tension, and shifting gender roles. Authors to be considered may include Shelley, Dickens, Gaskell, Eliot, Carlyle, Arnold, and Ruskin. Not offered 2001–02.

Lit 129. Austen, Brontes, Woolf. 9 units (3-0-6); second term. An introduction to four of the most important English writers of the 19th and early-20th centuries. Understanding these novelists as a tradition, we will pay particular attention to formal developments in the Novel, from the marriage plot to modernism. Jane Austen, Charlotte and Emily Bronte, and Virginia Woolf’s major works—including but not limited to Emma, Persuasion, Jane Eyre, Wuthering Heights, Mrs. Dalloway, To the Lighthouse. Not offered 2001–02.
Lit 131. Modern European Fiction. 9 units (2-0-7); third term.
French, German, and Italian novels and shorter fiction from the first half of the 20th century by authors such as Broch, Gide, Hesse, Kafka, Malraux, Thomas Mann, Musil, Proust, Schnitzler, and Svevo.
Instructor: Pigman.

Lit 132. American Literature Until the Civil War. 9 units (3-0-6); second term. Will analyze the literature of this period, from the Puritans through Melville, to determine how various writers understood their relationship to a new world of seemingly unlimited possibility. Authors covered may include: Mary Rowlandson, Benjamin Franklin, Hannah Foster, Harriet Jacobs, Emerson, Thoreau, Harriet Beecher Stowe, Hawthorne, and Melville. Not offered 2001–02.

Lit 133. 19th-Century American Women Writers. 9 units (3-0-6). This course will analyze many of the most popular novels written in the 19th century. How might we account for their success in the 19th century and their marginalization (until recently) in the 20th century? Why were so many of these texts “sentimental”? How might we understand the appeal of “sentimental” literature? What are the ideological implications of sentimentalism? Authors may include: Stowe, Warner, Cummins, Alcott, Phelps, Fern, etc. Instructor: Weinstein. Not offered 2001–02.

Lit 134. The Career of Herman Melville. 9 units (3-0-6). Will focus on Melville’s works from Typee through Billy Budd. Special emphasis will be placed on Melville’s relations to 19th-century American culture. Not offered 2001–02.

Lit 138. Twain and His Contemporaries. 9 units (3-0-6); third term. Will study the divergent theories of realism that arose in the period after the Civil War and before WW I. Authors covered may include: Howells, James, Charlotte Perkins Gilman, Twain, Sarah Orne Jewett, Jacob Riis, Stephen Crane, and W. E. B. DuBois. Not offered 2001–02.

Lit 139. Birth of a Nation. 9 units (3-0-6). American letters in the 18th century: This course will look at developing notions of national identity during the Revolutionary period and after. We shall study debates about authority in the nation, the place of gender, class, and race in the birth of the nation, and the relation between nationhood and literary narrative. Authors may include Jefferson, Franklin, Paine, Equiano, Rowson, Foster, William Hill Brown, and Charles Brockden Brown. Not offered 2001–02.

Lit 140. The Modern American Novel. 9 units (3-0-6). Examines the development of the American novel from approximately 1917–1940. We will focus on the post-World War I literature of estrangement and exile, the Harlem Renaissance, and the proletarian fiction of the Depression. Authors covered may include Willa Cather, F. Scott Fitzgerald, Ernest Hemingway, Nelson Algren, Zora Neale Hurston, and Richard Wright. Not offered 2001–02.

Lit 141. James and Wharton. 9 units (3-0-6); third term. Covers selected novels, short fiction, and non-fiction writings of friends and expatriots Henry James and Edith Wharton. Will consider formal questions of style and genre as well as the literature’s preoccupation with describing and defining American modernity, despite the authors’ shared ambivalence toward their native country. We will read as many as, but no more than, five novels. Texts covered may include The Portrait of a Lady, Daisy Miller, The Ambassadors, selections from The Decoration of Houses, The House of Mirth, The Custom of the Country, and the Age of Innocence. Instructor: Jurca.

Lit 147. American Assimilation Narratives. 9 units (3-0-6). Will focus on 20th-century novels, short stories, and autobiographies that address the meaning and value of assimilation to American culture. Authors covered may include Abraham Cahan, Langston Hughes, Maxine Hong Kingston, Richard Rodriguez, Frank Chin, and Toni Morrison. Not offered 2001–02.

Lit 148. Postwar Fiction and Film. 9 units (3-0-6); first term. A study of postwar American culture through novels, short stories, and Hollywood films that will concentrate on the topics of social and economic reconversion, the rise of the “organization,” suburbanization, and the Cold War. Authors covered may include J.D. Salinger, Phillip K. Dick, Laura Hobson, Jack Kerouac, and Norman Mailer. Film screenings may include Mildred Pierce, Rebel Without a Cause, The Man in the Gray Flannel Suit, Invasion of the Body Snatchers, and The Manchurian Candidate. Instructor: Jurca.

Lit 149. Colonial Encounters. 9 units (3-0-6). The literature and history of contact between Western European culture and those it defines as other, from Christopher Columbus to the present day. Attention to religion, race, and gender, and to European self-deﬁnitions in terms of other cultures. There will be readings also in non-European responses to colonization and empire. Authors may include Columbus, Cortés, Shakespeare, Rousseau, Kipling, Conrad, Aimé Césaire, David Henry Hwang, and Toni Morrison; films by Spike Lee and others. Not offered 2001–02.

L/Lit 152 ab. French Literature in Translation: Classical and Modern. 9 units (3-0-6). For course description, see Languages.

L/Lit 160 ab. German Literature in Translation. 9 units (3-0-6). For course description, see Languages.

L/Lit 162. Spanish and Latin American Literature in Translation. 9 units (3-0-6). For course description, see Languages.

L/Lit 174. Topics in Chinese Literature. 9 units (3-0-6). For course description, see Languages.

Lit 180. Special Topics in Literature. 9 units (3-0-6). See registrar’s announcement for details. Instructor: Staff.
MATERIALS SCIENCE

Additional information concerning these courses can be found at http://www.caltech.edu/~matsci/classes.html.

MS 15 ab. Fundamentals of Materials Science. 9 units (3-0-6); first, second terms. An introduction to the structure and properties of materials, and the processing routes utilized to optimize properties. All major classes of materials are covered, including metals, ceramics, electronic materials, composites, and polymers. In the first term, emphasis is on the relationship between chemical bonding, crystal structure, microstructure, and properties. Thermodynamics and phase equilibria are also discussed in this term. In the second term, generic processing and manufacturing methods are presented for each class of materials. The emphasis is on the basic materials science behind each processing method. Kinetics of phase transformation are also covered in the second term. Instructors: Haile (first term); Üstündag (second term).

MS 90. Materials Science Laboratory. 9 units (1-6-2); third term. An introductory laboratory in relationships between the structure and properties of materials. Experiments involve materials processing and characterization by X-ray diffraction, scanning electron microscopy, and optical microscopy. Students will learn techniques for measuring mechanical and electrical properties of materials, as well as how to optimize these properties through microstructural and chemical control. Independent projects may be performed depending on the student’s interests and abilities. Not offered 2001-02.

MS 100. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of students working toward the M.S. degree or of qualified undergraduate students. Graded pass/fail for research and reading.

MS 105. Phase Transformations. 9 units (3-0-6); third term. Prerequisites: APh 105 b or ChE/Ch 164, or instructor’s permission. Thermodynamics and kinetics of phase transformations. Phase diagrams for decomposition and ordering. Nucleation, spinodal decomposition, microstructural morphologies. Role of strain energy in solid-solid phase transformations. Thermomechanical processing of selected materials. Instructor: Johnson.

MS 110 abc. Materials Research Lectures. 1 unit (1-0-0); first, second, third terms. A seminar course designed to introduce advanced undergraduates and graduate students to modern research in materials science. Instructors: Üstündag, Kornfield, Atwater.

MS 124. Mechanical Behavior of Materials. 9 units (3-0-6); third term. Prerequisite: AM 65 or instructor’s permission. Mechanical behavior of structural materials with emphasis on micromechanics of deformation in three generic regimes: elasticity, plasticity, and fracture. A materials science approach is followed to understand and model the mechanical behavior that combines continuum mechanics, thermodynamics, kinetics, and microstructure. Some topics include elastic properties of materials, permanent deformation mechanisms at different temperatures (e.g., via dislocation motion and creep), fracture in ductile and brittle materials, and prediction of composite properties as a function of component morphology. Specific classes of materials that are studied: metals, ceramics, polymers, composites, and glasses. Instructor: Üstündag.

MS 130. Diffraction and Structure. 9 units (3-0-6); second term. Prerequisite: graduate standing or instructor’s permission. Content is identical to MS 132 but without the laboratory exercises. Instructor: Fultz.

MS 131. Structure and Bonding in Materials. 9 units (3-0-6); first term. Prerequisites: graduate standing or introductory quantum mechanics. Atomic structure, hybridization, molecular orbital theory, dependence of chemical bonding on atom configurations. Covalency, ionicity, electronegativity. Madelung energy. Effects of translational periodicity on electron states in solids. Band structures of group IV semiconductors; transition metals and ferromagnetism. Structural features of materials such as point defects, dislocations, disclinations, and surfaces. Structures of defects calculated with the embedded atom method. Instructor: Fultz.

MS 132. Diffraction and Structure of Materials. 12 units (3-3-6); second term. Prerequisite: MS 131 or instructor’s permission. Principles of electron and X-ray diffraction, with applications for characterizing materials. Topics include scattering and absorption of electrons and X-rays by atoms. The transmission electron microscope (TEM) and the X-ray diffractometer. Kinematical theory of diffraction: effects of strain, size, disorder, and temperature. Crystal defects and their characterization. A weekly laboratory will complement the lectures. Instructors: Fultz and Ahn.

APh/MS 140. Ion Beam Modification and Analysis of Materials. 6 units (2-0-4). For course description, see Applied Physics.
APh/MS 141 bc. Microscopic Imaging, Diffraction, and Spectroscopy Laboratory. 9 units. For course description, see Applied Physics.

MS 142. Application of Diffraction Techniques in Materials Science. 9 units (2-3-4); third term. Prerequisites: MS 132 or instructor’s permission. Applications of X-ray and neutron diffraction methods to the structural characterization of materials. Emphasis is on the analysis of polycrystalline materials but some discussion of single crystal methods is also presented. Techniques include quantitative phase analysis, crystalline size measurement, lattice parameter refinement, internal stress measurement, quantification of preferred orientation (texture) in materials, Rietveld refinement, and determination of structural features from small angle scattering. Homework assignments will focus on analysis of diffraction data. Samples of interest to students for their thesis research may be examined where appropriate. Instructors: Haile and Üstündag.

MS 143. Electrochemical Energy Storage and Conversion. 9 units (3-0-6); first term. Electrochemical thermodynamics and kinetics, with emphasis on processes in electrode materials and electrolytes used in batteries, fuel cells, and supercapacitors. Electroanalytical characterization techniques. Electrode materials for energy storage: mixed (ion and electron) conductors, intercalation materials. Theoretical and practical energy density, rate capability and energy vs. power characteristics. Factors affecting electrode performance, diagnostic techniques, and failure mechanisms. Applications include batteries (primary, secondary, and advanced), fuel cells (ceramic, molten salts, and polymer electrolyte systems), supercapacitors (aqueous, organic, and solid-state systems). Safety and environmental issues. Instructor: Yazami.

MS 200. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of advanced graduate students.

Ae/AM/MS/ME 213 abc. Mechanics and Materials Aspects of Fracture. 9 units (3-0-6). For course description, see Aeronautics.

MS 250 abc. Advanced Theory and Computation of the Properties of Materials. 9 units (3-0-6); first, second, third terms. Prerequisites: Ch 120 or Ch 121 or MS 131, or instructor’s permission. First-principles techniques use fundamental physics and chemistry to predict and understand the behavior of materials, and are complementary to experimental studies. This course will consist of three parts: (a) lectures on methods and their applications, starting with fundamentals and working up to state-of-the-art techniques; (b) discussion seminars on the development of first-principles methods and current state-of-the-art studies from the literature; (c) computer laboratories to learn to use and develop computational methods, and critically analyze results of codes for computing materials properties. The emphasis will be on periodic bulk systems, but methods to study defects, surfaces, and interfaces will also be covered. Materials to be studied include those important at high pressures, geophysics, and technology, including electrically active materials such as ferroelectrics and naturally occurring minerals. A range of methods based on density functional theory will be studied for solving the electronic problem. For studying finite temperature properties, molecular dynamics, and Monte Carlo techniques using ab initio models and effective Hamiltonians will be included. Frontier issues will also be discussed, including how to treat systems with important electron correlation and path integral methods. Not offered 2001-02.

MS 300. Thesis Research.

MATHEMATICS

Ma 1 abc. Calculus of One and Several Variables and Linear Algebra. 9 units (4-0-5); first, second, third terms. Prerequisites: high school algebra, trigonometry, and calculus. Special section of Ma 1 a, 12 units (5-0-7). Review of calculus. Complex numbers, Taylor polynomials, infinite series. Comprehensive presentation of linear algebra. Derivatives of vector functions, multiple integrals, line and path integrals, theorems of Green and Stokes. Ma 1 b, c is divided into two tracks: analytic and practical. Students will be given information helping them to choose a track at the end of the fall term. There will be a special section or sections of Ma 1 a for those students who, because of their background, require more calculus than is provided in the regular Ma 1 a sequence. These students will not learn series in Ma 1 a and will be required to take Ma 1 d. Instructors: Ramakrishnan, Aschbacher, Kechris, Wales, Marsden.

Ma 1 d. Series. 5 units (2-0-3); second term only. Prerequisite: special section of Ma 1 a. This is a course intended for those students in the special calculus-intensive sections of Ma 1 a who did not have complex numbers, Taylor polynomials, and infinite series during Ma 1 a. It may not be taken by students who have passed the regular Ma 1 a. Instructor: Staff.

Ma 2 ab. Linear Algebra, Statistics, and Differential Equations. 9 units (4-0-5); first, second terms. Prerequisite: Ma 1 abc. Linear algebra, basic statistics, ordinary differential equations. Instructors: Lorden, Wilson, Makarov, Flach. [Note: This is the last year that the course will be taught with this content. Due to a reorganization of the math core, next year this course’s content will be changed to probability, statistics, and ordinary differential equations.]

Ma 2 d. Probability and Statistics. 9 units (4-0-5); first term only. This course is intended for students who have advance-placed out of the rest of the math core (Ma 1 abc and Ma 2 ab) but have not shown mastery of probability and statistics. The first half of the course will cover the material in the probability half of Ma 1 a, while the second half will be the statistics part of Ma 2 a taken in the lectures of Ma 2 a. Instructor: Staff.
Ma 4. *Introduction to Mathematical Chaos*. 9 units (3-0-6); third term. An introduction to the mathematics of “chaos.” Period doubling universality, and related topics; interval maps, symbolic itineraries, stable/unstable manifold theorem, strange attractors, iteration of complex analytic maps, applications to multidimensional dynamics systems and real-world problems. Possibly some additional topics, such as Sarkovskii’s theorem, absolutely continuous invariant measures, sensitivity to initial conditions, and the horseshoe map. Instructor: Farag.

Ma 5 abc. *Introduction to Abstract Algebra*. 9 units (3-0-6); first, second, third terms. Freshmen must have permission of the instructor to register. Introduction to groups, rings, fields, and modules. The first term is devoted to groups and includes treatments of semidirect products and Sylow’s theorem. The second term discusses rings and modules and includes a proof that principal ideal domains have unique factorization and the classification of finitely generated modules over principal ideal domains. The third term covers field theory and Galois theory, plus some special topics if time permits. Instructors: Baranovsky.

Ma/CS 6 abc. *Introduction to Discrete Mathematics*. 9 units (3-0-6); first, second, third terms. Prerequisite: for Ma/CS 6 c, Ma/CS 6 a or Ma 5 a or instructor’s permission. First term: a survey emphasizing graph theory, algorithms, and applications of algebraic structures. Graphs: paths, trees, circuits, breadth-first and depth-first search, colorings, matchings. Enumeration techniques; formal power series; combinatorial interpretations. Topics from coding and cryptography, including Hamming codes and RSA. Second term: directed graphs; networks; combinatorial optimization; linear programming. Permutation groups; counting nonisomorphic structures. Topics from extremal graph and set theory, and partially ordered sets. Third term: elements of computability theory and computational complexity. Discussion of the P=NP problem, syntax and semantics of propositional and first-order logic. Introduction to the Gödel completeness and incompleteness theorems. Instructors: Wilson, Kechris.

Ma 7. *Number Theory for Beginners*. 9 units (4-0-5); third term. Some of the fundamental ideas, techniques, and open problems of basic number theory will be introduced. Examples will be stressed. Topics: Euclidean algorithm, primes, Diophantine equations including $a^n + b^n = c^n$ and $a^2 - db^2 = \pm 1$, constructible numbers, composition of binary quadratic forms, and congruences. Instructor: Ramakrishnan. Satisfies the menu requirement of the Caltech core curriculum.

Ma 8. *Problem Solving in Calculus*. 3 units (3-0-0); first term. Prerequisite: simultaneous registration in Ma 1 a. A three-hour per week hands-on class for those students in Ma 1 needing extra practice in problem solving in calculus. Instructor: Staff.

Ma 10. *Oral Presentation*. 3 units (2-0-1); first term. Open for credit to anyone. Freshmen must have instructor’s permission to enroll. In this course, students will receive training and practice in presenting mathematical material before an audience. In particular, students will present materi-

Ma 12. *Chance*. 9 units (4-0-5); second term. This course will explore the use and misuse of notions of probability and statistics in popular culture and in science. The course will be structured around case studies chosen from mass media and from the scientific literature. Not offered 2001–02.

Ma 17. *How to Solve It*. 4 units (2-0-2); first term. There are many problems in elementary mathematics that require ingenuity for their solution. This is a seminar-type course on problem solving in areas of mathematics where little theoretical knowledge is required. Students will work on problems taken from diverse areas of mathematics; there is no prerequisite and the course is open to freshmen. Graded pass/fail. Instructor: Staff.

Ma 92 abc. *Senior Thesis*. 9 units (0-0-9); first, second, third terms. Prerequisite: to register, the student must obtain permission of the Mathematics Undergraduate Representative, Richard Wilson. Open only to senior mathematics majors who are qualified to pursue independent reading and research. This research must be supervised by a faculty member. The research must begin in the first term of the senior year and will normally follow up on an earlier SURF or independent reading project. Two short presentations to a Thesis Committee are required: the first at the end of the first term and the second at the midterm week of the third term. A draft of the written thesis must be completed and distributed to the committee one week before the second presentation. Graded pass/fail in the first and second terms; a letter grade will be given in the third term.

Ma 98. *Independent Reading*. 3–6 units by arrangement. Occasionally a reading course will be offered after student consultation with a potential supervisor. Topics, hours, and units by arrangement. Graded pass/fail.

Ma 108 abc. *Classical Analysis*. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 2 or equivalent, or instructor’s permission. May be taken concurrently with Ma 109. First term: structure of the real numbers, topology of metric spaces, a rigorous approach to differentiation in \mathbb{R}^n. Second term: brief introduction to ordinary differential equations; Lebesgue integration and an introduction to Fourier analysis. Third term: the theory of functions of one complex variable. Instructor: Grinshpan.

Ma 109 abc. *Introduction to Geometry and Topology*. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 2 or equivalent, and Ma 108 must be taken previously or concurrently. First term: aspects of point set topology, and an introduction to geometric and algebraic methods in topology. Second term: the differential geometry of curves and sur-

Ma 112 ab. Statistics. 9 units (3-0-6); first, second terms. Prerequisite: Ma 1 a probability and Ma 2 a statistics or equivalent. The first term covers general methods of testing hypotheses and constructing confidence sets, including regression analysis, analysis of variance, and nonparametric methods. The second term covers permutation methods and the bootstrap, point estimation, Bayes methods, and multistage sampling. Instructor: Lorden. Ma 112 b not offered 2001–02.

Ma 116 abc. Mathematical Logic and Axiomatic Set Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 or equivalent, or instructor's permission. Propositional logic, predicate logic, formal proofs, Gödel completeness theorem, the method of resolution, elements of model theory. Computability, undecidability, Gödel incompleteness theorems. Axiomatic set theory, ordinals, transfinite induction and recursion, iterations and fixed points, cardinals, axiom of choice. Instructor: Clemens.

Ma/CS 117 abc. Computability Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 or equivalent, or instructor's permission. Various approaches to computability theory, e.g., Turing machines, recursive functions, Markov algorithms; proof of their equivalence. Church's thesis. Theory of computable functions and effectively enumerable sets. Decision problems. Undecidable problems: word problems for groups, solvability of Diophantine equations (Hilbert's 10th problem). Relations with mathematical logic and the Gödel incompleteness theorems. Decidable problems, from number theory, algebra, combinatorics, and logic. Complexity of decision procedures. Inherently complex problems of exponential and superexponential difficulty. Feasible (polynomial time) computations. Polynomial deterministic vs. nondeterministic algorithms, NP complete problems and the $P = NP$ question. Not offered 2001–02.

Ma 118 a. Topics in Mathematical Logic. 9 units (3-0-6); first term. Prerequisite: Ma 116 or Ma 117 or equivalent. Topics to be chosen from model theory and its applications, infinitary logic and admissible sets, ordinary and generalized recursion theory, consistency and independence results in set theory, large cardinals, descriptive set theory. Contents vary from year to year so that students may take the course in successive years. Not offered 2001–02.

Ma 120 abc. Abstract Algebra. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 or equivalent. Basic theory of groups, rings, modules, and fields, including free groups; Sylow's theorem; solvable and nilpotent groups; factorization in commutative rings; integral extensions; Wedderburn theorems; Jacobson radical; semisimple, projective, and injective modules; tensor products; chain conditions; Galois theory; cyclotomic extensions; separability; transcendental extensions. Instructors: Aschbacher, Pollack.

Ma 121 abc. Combinatorial Analysis. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5. A survey of modern combinatorial mathematics, starting with an introduction to graph theory and extremal problems. Flows in networks with combinatorial designs, and codes. Algebraic graph theory, graph embedding, and coloring. Instructor: Dong.

Ma 122 ab. Topics in Group Theory. 9 units (3-0-6); first, second terms. Prerequisite: Ma 5 or instructor's permission. Modern theory of finite permutation groups: Structure of primitive groups, maximal subgroups of the symmetric and classical groups, subgroups of Lie type. Not offered 2001–02.

Ma 123. Classification of Simple Lie Algebras. 9 units (3-0-6); first term. Prerequisite: Ma 5 or equivalent. This course is an introduction to Lie algebras and the classification of the simple Lie algebras over the complex numbers. This will include Lie's theorem, Engel's theorem, the solvable radical, and the Cartan Killing trace form. The classification of simple Lie algebras proceeds in terms of the associated reflection groups and a classification of them in terms of their Dynkin diagrams. Instructor: Wales.

EE/Ma 126 ab. Information Theory. 9 units (3-0-6). For course description, see Electrical Engineering.

EE/Ma 127 abc. Error-Correcting Codes. 9 units (3-0-6). For course description, see Electrical Engineering.
ogy and calculation of homology groups, exact sequences. Fibrations, higher homotopy groups and exact sequences of fibrations, structure of differentiable manifolds, degree theory, De Rham cohomology, elements of Morse theory. Geometry of Riemannian manifolds, covariant derivatives, geodesics, curvature, relations between curvature and topology. Instructors: Belegradek, Bromberg.

Ma 157 ab. Geometry and Topology of Manifolds. 9 units (3-0-6); first, second terms. Prerequisite: Ma 151 or equivalent. The relationship between the hyperbolic geometry of two- and three-dimensional manifolds and their underlying topology. Course content varies widely from year to year so that students may take the course in subsequent years. Instructor: Hersonsky.

Ma 160 abc. Number Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5. In this course, the basic structures and results of algebraic number theory will be systematically introduced. Topics covered will include the theory of ideals/divisors in Dedekind domains, Dirichlet unit theorem and the class group, \(p \)-adic fields, ramification, abelian extensions of local and global fields. Instructors: Pollack, Goins.

Note: The courses labeled Ma 191 are one-shot courses reflecting the interests of faculty, visitors, and students. Other Ma 191 titles may be announced.

Ma 191 a. Orbit Equivalence Theory. 9 units (3-0-6); first term. This course will be an introduction to an area of ergodic theory concerned with the structure of the equivalence relation induced by the orbits of an action of a countable group with invariant or quasi-invariant measure. Originating in the interplay between ergodic theory and von Neumann algebras, this subject has seen some remarkable developments over the last 40 years. These include, for example, the Glimm-Effros smooth/nonsmooth dichotomy, the Dye-Krieger classification of hyperfinite equivalence relations, amenability and the Ornstein-Weiss and Connes-Feldman-Weiss theorems, the rigidity theorems of Zimmer, the property (T) of Kazhdan, and, most recently, work of Gaboriau on costs of groups and equivalence relations. Our goal is to give a general survey of the subject and cover some of these topics in detail. The treatment will be as elementary as possible, with the only prerequisite being some basic knowledge of measure theory and functional analysis. Instructor: Kechris.

Ma 191 b. Inverse Spectral Theory. 9 units (3-0-6); first term. The course will discuss the moment problem, inverse spectral theory for one-dimensional Schrödinger operators, and the connections between them. May be taken for credit in multiple years. Not offered 2001–02.

Ma 147 a. Topics in Mathematical Physics. 9 units (3-0-6); first term. The course will discuss the moment problem, inverse spectral theory for one-dimensional Schrödinger operators, and the connections between them. May be taken for credit in multiple years. Not offered 2001–02.

Ma 148 a. Topics in Mathematical Physics. 9 units (3-0-6); first term. The course will discuss the moment problem, inverse spectral theory for one-dimensional Schrödinger operators, and the connections between them. May be taken for credit in multiple years. Not offered 2001–02.
Ma 191 c. Conformal Maps and Probability. 9 units (3-0-6); first term. An introduction to stochastic Loewner’s equation, critical lattice models, and conformal invariance of scaling limits. Instructor: Makarov.

Ma 191 d. Riemann-Hilbert Approach to Orthogonal Polynomials and Random Matrices. 9 units (3-0-6); second term. The course is an introduction to the Riemann-Hilbert problems and their connection to spectral analysis of Jacobi operators, orthogonal polynomials, continued fractions, elements of random matrix theory, and equilibrium measures. Instructor: Kupin.

Ma 191 e. Quotients in Symplectic and Algebraic Geometry. 9 units (3-0-6); second term. The course will introduce the Marsden-Weinstein method of constructing quotient spaces in symplectic geometry, as well as its algebraic counterpart, the geometric invariant theory. Both methods allow one to construct various spaces parameterizing families of geometric objects (such as curves, vector bundles, etc.). The topics to be covered will include Hamiltonian actions, moment maps, linearizations of actions in algebraic geometry, stable and semistable points, the Hilbert-Mumford criterion, and dependence on the choice of linearization. Various geometric examples will be considered in detail. Instructor: Baranovsky.

Ma 191 f. Modular Forms Over Number Fields. 9 units (3-0-6); first term. Basic properties and the problem of their construction will be discussed, followed by applications to elliptic curves and Betti numbers. The prerequisites are a good course in algebra like Ma 120, some exposure to number theory as in Ma 160, and a rudimentary knowledge of measures and topology. Instructor: Ramakrishnan.

Ma 191 g. Gauge Theory in Geometry, Topology, and Physics. 9 units (3-0-6); third term. Prerequisite: Ma 109 or equivalent. A rapid review of differential geometry, higher homotopy theory, and Lie groups, followed by an introduction to principal bundles, gauge fields, and instantons, and ending with an exposition of the standard model of particle physics. Emphasis will be on the concepts and the interconnections more than the intricacies of the proofs. This is a graduate course but should be accessible to advanced undergraduates. Graded pass/fail. Instructor: Farag.

Ma 191 h. Nonlinear PDEs and the Navier-Stokes System of Fluid Mechanics. 9 units (3-0-6); third term. Prerequisite: Ma 110 ab. Introduction to the Navier-Stokes system; steady-state case for Navier-Stokes and Stokes systems; density, trace, and embedding theorems; properties of some important operators; existence and uniqueness results; some properties of the universal attractor, dimension results. Graded pass/fail. Instructor: Farag.

Ma 191 i. Harmonic Analysis. 9 units (3-0-6); third term. Prerequisite: Ma 108. This course will cover Calderon-Zygmund theory, the uncertainty principle, Fourier multipliers with singularities along curves, the restriction problem for the Fourier transform, as well as its relation to the Kakeya problem. Instructor: Schlag.

Ma 290. Reading. Hours and units by arrangement. Occasionally, advanced work is given through a reading course under the direction of an instructor.

Note: The following research courses and seminars, intended for advanced graduate students, are offered according to demand. They cover selected topics of current interest. The courses offered, and the topics covered, will be announced at the beginning of each term.

Ma 316 abc. Seminar in Mathematical Logic. Instructor: Kečkriš.

Ma 345 abc. Seminar in Analysis. Instructors: Makarov, Staff.

Ma 348 abc. Seminar in Mathematical Physics. Instructor: Simon.

Ma 390. Research. Units by arrangement.

Ma 392. Research Conference. Three terms.

See also the list of courses in Applied and Computational Mathematics.

MECHANICAL ENGINEERING

Additional advanced courses in the field of mechanical engineering may be found listed in other engineering options such as applied mechanics, applied physics, jet propulsion, and materials science.

ME 18 ab. Thermodynamics. 9 units (3-0-6); first, second terms. An introduction to classical thermodynamics with engineering applications. The first quarter includes: first and second laws; closed and open systems; properties of a pure substance; availability and irreversibility; generalized thermodynamic relations. Second quarter emphasizes applications: gas and vapor power cycles; propulsion; mixtures; combustion and thermochemistry; chemical equilibrium. Instructor: Shepherd.

ME 19 abc. Fluid Mechanics and Gasdynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 2, Pb 1 abc. Basic equations of fluid mechanics, theorems of energy, linear and angular momentum, potential flow, elements of airfoil theory. Flow of real fluids, similarity
parameters, flow in closed ducts. Boundary-layer theory in laminar and
turbulent flow. Introduction to compressible flow. Flow and wave phe-
nomena in open channels. Additional topics may include those related
to energy production and conversion, and heat transfer phenomena, at
the instructor's discretion. Instructor: Staff.

ME 20. Heat Transfer. 9 units (3-0-6); third term. Prerequisites:
ME 18 ab, ME 19 ab. An introduction to heat transfer. Steady-state and
transient conduction, including numerical solutions. Forced and natural
convective-heat transfer. Heat exchangers. Radiative heat transfer
and solar energy. Instructor: Goodwin.

ME 70. Introduction to the Kinematics of Mechanical Systems.
9 units (3-0-6); second term. Introduction to the study of planar, rota-
tional, and spatial rigid body motions with applications to linkages and
mechanisms. Topics include dimensional synthesis of planar linkages;
theory of gears and cams; and screw theory and its application to
mechanism analysis. Instructor: Staff.

ME 71. Introduction to Engineering Design. 9 units (3-5-1); third
term. Prerequisites: AM 35 ab recommended. Enrollment is limited and will
be based on responses to a questionnaire available in the registrar's office
during registration. Not offered on a pass/fail basis. Introduction to mechani-
cal engineering design, fabrication, and visual communication.
Concepts are taught through a series of short design projects and
design competitions emphasizing physical concepts. Many class pro-
jects will involve substantial use of the shop facilities, and construction of
working prototypes. Instructor: Burdick.

ME 72. Engineering Design Laboratory. 12 units (3-8-1); first term.
Prerequisites: AM 35 abc, ME 71, or equivalent and instructor’s permission.
Enrollment is limited and will be based on responses to a questionnaire avail-
able in the registrar’s office during registration. Not offered on a pass/fail basis.
The design process in engineering, stressing the creative aspects,
especially problem definition, and concept generation, as well as visual
thinking and graphical communication. Techniques in analysis of engi-
neering systems learned previously will be reviewed and applied. An
design contest will be held, and will include the design, fabrication, and operation of a device to compete with similar devices designed by other students. These laboratory units of ME 72 can be
used to fulfill a portion of the laboratory requirement in the
Engineering and Applied Sciences division. Instructor: Antonsson.

ME 73. Machine Component Design. 9 units (3-4-2); second term.
Prerequisites: AM 35 abc, ME 72, or instructor’s permission. Basic machine
components, including: bearings, seals, shafts, gears, belts, chains, couplings, linkages, and cams. Analysis and synthesis of these devices, as
well as their use in the design of larger engineering systems, will be
examined. The laboratory section makes use of contemporary mechanical
hardware to provide students with “hands-on” experience with the
components discussed in class. Not offered 2001-02.
and mechanics. Topics in kinematic analysis will include screw theory, rotational representations, matrix groups, and Lie algebras. Applications include robot kinematics, mobility in mechanisms, and kinematics of open and closed chain mechanisms. Additional topics in robotics include path planning for robot manipulators, dynamics and control, and assembly. Course work will include laboratory demonstrations using simple robot manipulators. Instructor: Burdick.

ME 119 abc. Heat Transfer and Thermodynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: ME 18, ME 19, ME 20, ACM 95/100 or equivalent, AE/APh/CE/ME 101 abc (may be taken concurrently). The first term covers the fundamentals of classical and statistical thermodynamics. Topics include: basic postulates, thermodynamic potentials, work and heat, chemical equilibrium, phase transitions, and the thermodynamic properties of solids, liquids, and gases. The second and third terms focus on heat, mass, and momentum transfer. Topics include: transport properties, conservation equations, conduction heat transfer in solids, convective heat, mass, and momentum transport in laminar and turbulent flows, phase change processes, thermal radiation, and selected engineering applications. Instructor: Goodwin, Hunt.

Ae/ME 120 ab. Combustion Fundamentals. 9 units (3-0-6). For course description, see Aeronautics.

ME 131. Advanced Robotics: Manipulation and Sensing. 9 units (3-6-0); third term. Prerequisite: ME 115 ab. The course focuses on current topics in robotics research in the area of robotic manipulation and sensing. Past topics have included advanced manipulator kinematics, grasping and dexterous manipulation using multifingered hands, and advanced obstacle avoidance and motion planning algorithms. The lectures will be divided between a review of the appropriate analytical techniques and a survey of the current research literature. Course work will focus on an independent research project chosen by the student. Instructor: Burdick. Not offered 2001-02.

ME 132. Advanced Robotics: Navigation and Vision. 9 units (3-6-0); third term. Prerequisite: ME 115 ab. The course focuses on current topics in robotics research in the area of autonomous navigation and vision. Topics will include mobile robots, multilegged walking machines, use of vision in navigation systems. The lectures will be divided between a review of the appropriate analytical techniques and a survey of the current research literature. Course work will focus on an independent research project chosen by the student. Instructor: Burdick. Not offered 2001-02.

Ae/GE/ME 160 abc. Continuum Mechanics of Fluids and Solids. 9 units (3-0-6). For course description, see Aeronautics.

AM/ME 165 ab. Elasticity. 9 units (3-0-6). For course description, see Applied Mechanics.

ME 170. Introduction to Mechanical CAD. 4 units (1-0-3); third term. An introduction to the use of one or more mechanical computer-aided design (CAD) packages via a series of weekly instructional exercises. Instructor: Antonsson.

ME 171. Computer-Aided Engineering Design. 9 units (3-0-6); second term. Prerequisites: ACM 95/100 abc, AM 35 abc, ME 72, CS 1, or equivalent, working knowledge of the C computer programming language. Methods and algorithms for design of engineering systems using computer techniques. Topics include the design process; interactive computer graphics; curves and surfaces (including cubic and B-splines); solid modeling (including constructive solid geometry and boundary models); kinematic and dynamic mechanism simulation; single and multivariable optimization; optimal design, and symbolic manipulation. Assessment of CAD as an aid to the design process. Instructor: Antonsson.

ME 175. Fuzzy Sets in Engineering. 9 units (3-0-6); second term. Prerequisites: ACM 95/100 abc, working knowledge of the C computer programming language. The relatively new mathematics of fuzzy sets has recently been used to represent and manipulate vague and imprecise information in engineering. This course will present the basics of fuzzy sets and fuzzy mathematics and explore applications in the areas of data representation; function representation; filters and triggers; engineering design and optimization, including (fuzzy) set-based concurrent engineering. Instructor: Staff.

ME 200. Advanced Work in Mechanical Engineering. The faculty in mechanical engineering will arrange special courses on problems to meet the needs of graduate students. Graded pass/fail; a written report is required for each term of work.

ME 206 ab. Acoustic Waves in Fluids. 9 units (3-0-6); first, second terms. Prerequisites: ACM 95/100 abc, AM 125 abc (may be taken concurrently), or equivalent. Recommended prerequisite: AE/APh/CE/ME 101 abc or equivalent. This course stresses the fundamentals of acoustic wave motion in gases, especially the interactions of acoustic waves with fluids and solid boundaries, and the generation of acoustic waves by turbulence. Analogies with electromagnetics, water waves, geophysics, and other fields will be discussed. Emphasis will be given to various analyti-
MUSIC

These courses are open only to students who have fulfilled the freshman humanities requirement.

Mu 10. Selected Topics in Music. Offered by announcement. Units to be determined by arrangement with instructor. Instructor: Staff, visiting lecturers.

EE/Mu 17 abc. Projects in Music and Science. Units to be individually arranged, up to a maximum of 12. For course description, see Electrical Engineering.

Mu 21. Understanding Music. 9 units (3–0–6); first term. The Listening Experience I. How to listen to and what to listen for in classical and other musical expressions. Listening, analysis, and discussion of musical forms, genres, and styles. Course is intended for musicians as well as nonmusicians and is strongly recommended as an introduction to other music courses. Instructor: Neenan.

Mu 22. Form and Style in Music. 9 units (3–0–6). Prerequisite: Mu 27 or entrance exam. Study of tonal harmony and intermediate music theory; techniques of chord progression, modulation, and melody writing according to common practice; ear training, continued. Not offered 2001–02.

Mu 23. Major Figures. 9 units (3–0–6); third term. A major personality in the history of music (i.e., Bach, Mozart, Beethoven) will be studied in depth. Course to be coordinated with major off-campus concerts, commemorations, and other events. Specific course content to be announced prior to registration. Not offered 2001–02.

Mu 27. Fundamentals of Music Theory and Elementary Ear Training. 9 units (3–0–6). Basic vocabulary and concepts of music theory (rhythm and pitch notation, intervals, scales, function of key signatures, etc.); development of aural perception via elementary rhythmic and melodic dictation, and sight-singing exercises. Instructor: Neenan.

Mu 28. Harmony I. 9 units (3–0–6). Prerequisite: Mu 27 or entrance exam. Study of tonal harmony and intermediate music theory; techniques of chord progression, modulation, and melody writing according to common practice; ear training, continued. Not offered 2001–02.

Mu 29. Harmony II. 9 units (3–0–6). Prerequisite: Mu 28 or entrance exam. More advanced concepts of music theory, including chromatic harmony, and 20th-century procedures relating to selected popular music styles; ear training, continued. Not offered 2001–02.
Mu 31. Music of Courts and Cathedrals. 9 units (3-0-6). Explores the music of the Middle Ages and Renaissance, including that of the great medieval monasteries, cathedrals, and chapels. Will include study of the music and dances from courts, towns, and countryside by trouvères, troubadours, and other entertainers. Not offered 2001-02.

Mu 32. Monteverdi to Bach: Music of the Baroque. 9 units (3-0-6). Survey of musical forms and composers during the period 1600–1750. To include masterworks of Monteverdi, Purcell, Vivaldi, Handel, Bach, and others. Not offered 2001-02.

Mu 34. Music of the Early Romantics. 9 units (3-0-6); first term. Romanticism in music during the early 19th century. Examines a wealth of music from late Beethoven to Schubert, Berlioz, Chopin, Mendelssohn, Schumann, and Liszt. Instructor: Neenan.

Mu 35. Music of the Late Romantics. 9 units (3-0-6); second term. An exploration of the music of the late 19th century. Included will be nationalist composers: Dvorak, Mussorgsky, and Grieg; major symphonists: Brahms, Bruckner, and Mahler; and opera composers: Verdi, Wagner, and Puccini. Instructor: Neenan.

Mu 36. Music of Our Time. 9 units (3-0-6); third term. The diversity of music in the 20th century will be explored. Included will be music of composers from Stravinsky, Schoenberg, and Bartok to John Adams and Phillip Glass. Course will include music for film, electronically generated music, and a field trip to an electronic music studio. Instructor: Neenan.

PERFORMANCE AND ACTIVITIES

Courses under this heading cover the instructional content of a range of extracurricular activities and work in the fine arts and elsewhere. These courses will appear on the student's transcript, and will be graded pass/fail only. The units count toward the total unit requirement for graduation, but they do not count toward the 108-unit requirement in humanities and social sciences.

PA 15 abc. Student Publications. 3 units (1-0-2); first, second, third terms. The elementary principles of newspaper writing and editing, with special attention to student publications at the Institute. Instructor: Staff.

PA 20 abc. Debate. 3 units (1-0-2); first, second, third terms. Study and discussion of the annual intercollegiate debate topic. Instructor: Staff.

PA 30 abc. Women's Glee Club. 3 units (0-3-0); first, second, third terms. Performance of women's choral repertoire in all style periods, from the Renaissance to the present. Includes performances with orchestra and with the Men's Glee Club (singing mixed-voice repertoire). Includes opportunities for individual instruction. No previous experience required. Three hours a week. Instructor: LaVertu.

PA 31 abc. Chamber Music. 3 units (0-3-0); first, second, third terms. Study and performance of music for mixed ensembles of three to seven members and for piano four-hands. Literature ranges from the Baroque to contemporary eras. Open to students who play string, woodwind, brass instruments, or piano. After auditioning, pianists will be placed in either section by the instructors. Section 1: Mixed ensembles. Instructor: D. Bing. Section 2: Piano four-hands. Instructor: Gross.

PA 32 abc. Symphony Orchestra. 3 units (0-3-0); first, second, third terms. Study and performance of music written for full symphony orchestra and chamber orchestra. The orchestra performs both the standard symphonic repertoire and contemporary music. Two and a half hours of rehearsal per week. Instructor: Gross.

PA 33 abc. Concert Band. 3 units (0-3-0); first, second, third terms. Study and performance of music written for the classical wind ensemble. Emphasis is placed on the traditional literature, but the study of contemporary music is an important part of the curriculum. Instructor: W. Bing.

PA 34 abc. Jazz Band. 3 units (0-3-0); first, second, third terms. Study and performance of all styles of jazz music, from Duke Ellington to Pat Metheny. Jazz improvisation is also stressed. Instructor: W. Bing.

PA 35 abc. Guitar. 3 units (0-3-0); first, second, third terms. Offered on three levels: beginning (no previous experience required), intermediate, and advanced. Instruction emphasizes a strong classical technique, including an exploration of various styles of guitar—classical, flamenco, folk, and popular. Instructor: Denning.

PA 36 abc. Men's Glee Club. 3 units (0-3-0); first, second, third terms. Performance of repertoire from the Renaissance to the present day for men's voices in all styles. Opportunity for performance with orchestra and for mixed voices. No prerequisite or previous experience necessary. Three hours of rehearsal a week. Individual instruction. Instructor: Caldwell.

PA 37 abc. Chamber Singers. 3 units (0-3-0); first, second, third terms. A sixteen-voice SATB auditioned ensemble, the Chamber Singers provide costumed entertainments for the Athenaeum and community in December, participate with orchestra in the annual All-Mozart Concert in April, and present a musical theatre review in June. One and a half hours of rehearsal per week. Instructor: Caldwell.
PA 40 abc. Theater Arts. 3 units (2-0-1); first, second, third terms.
Instruction in all phases of theatrical production, culminating in multiple performances for the public. A hands-on, practical approach includes workshops in stage combat, costume construction, scenic arts, occasional informal encounters with professional actors, designers, and directors, as well as a few relevant field trips offered as possible. Understanding of dramatic structure, respect for production values, and problem solving are stressed. Material of academic value is drawn from 3,000 years of worldwide dramatic literature. Instructor: Marneus.

PA 50 abc. Health Advocates. 3 units (1-1-1); first, second, third terms.
A course designed to involve students with health care and education, develop familiarity with common college health problems, and provide peer health services on and off campus. First term: CPR and First Aid certification and basic anatomy and physiology. Second and third terms: lectures and discussions on current student and community health problems, symptoms, and treatment. Each student will be expected to devote one hour per week to a supervised clinical internship at the Health Center. Instructor: Staff.

PA 61 abc. Silkscreen and Airbrush. 3 units (0-3-0); first, second, third terms.
Instruction in silkscreen and airbrush techniques, using a variety of media including T-shirts. Instructor: Barry.

PA 62 abc. Drawing and Painting. 3 units (0-3-0); first, second, third terms.
Instruction in techniques of drawing and painting, utilizing models, architecture, and still-life as subjects. Instructor: Barry.

PA 63 abc. Ceramics. 3 units (0-3-0); first, second, third terms.
Instruction in the techniques of creating ceramics, including slab roller and potter’s wheel, and glazing methods. Instructor: Freed.

PHILOSOPHY

Courses numbered 30 or greater are open only to students who have fulfilled the freshman humanities requirement.

Hum/Pl 8. Right and Wrong. 9 units (3-0-6). For course description, see Humanities.

Hum/Pl 9. Knowledge and Reality. 9 units (3-0-6). For course description, see Humanities.

Hum/Pl/SES 10 b. Introduction to the Philosophy of Science. 9 units (3-0-6). Offered by announcement. For course description, see Humanities. Hum/Pl/SES 10 b may be taken for credit toward the additional 36-unit HSS requirement by students who have already fulfilled their freshman humanities requirement.

PI 30. Reading in Philosophy. Units to be determined by the instructor. Elective in any term. Reading in philosophy, done either in connection with the regular courses or independently of any course, but under the direction of members of the department. One or more short papers may be required. Graded pass/fail. Not available for credit toward humanities–social science requirement.

PI 102. Selected Topics in Philosophy. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. Instructor: Staff, visiting lecturers.

SES/Pl 120. Paradoxes. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 121. Foundations of Probability and Inductive Inference. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 122. Philosophy of Science. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 123. Causation and Explanation. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 124. Biomedical Ethics. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 125. Introduction to Philosophy of Biology. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 126. The Ethics of Risk Management. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 127. Ethics in Research. 4 units (2-0-2) or 9 units (2-0-7). For course description, see Science, Ethics, and Society.

SES/Pl 128. The Ethics of Risk Management. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 129. Introduction to Philosophy of Mind and Psychology. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 132. Philosophy and Biology. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 133. Philosophy of Physics. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 134. Current Issues in Philosophical Psychology. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

PI 150. History of Early Modern Philosophy. 9 units (3-0-6). Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. A study of important figures and ideas in the empiricist and rationalist traditions in the period from Descartes through Kant.
Material covered will vary depending on the decision of the instructor, but will include readings from some of the following: Descartes, Spinoza, Leibniz, Kant, Hobbes, Locke, Berkeley, and Hume. Instructors: Cowie, Murphy.

SES/Pl 169. Selected Topics in Science, Ethics, and Society. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

SES/Pl 185. Moral Philosophy. 9 units (3-0-6). For course description, see Science, Ethics, and Society.

PHYSICAL EDUCATION

PE 1. Student Designed Fitness. 3 units. Independent fitness program as arranged with instructor, three times a week. Proposals must be submitted in writing during first week of each term. Instructors: D'Auria, Madsen.

PE 3. Scuba, Beginning. 3 units. Prerequisite: PE 2. Open Water Scuba Diving will involve classroom instruction on diving physics, physiology, water safety, equipment, and oceanography. There will be confined water training (pool), and open water training consisting of two dives from a local beach and two dives from a boat. A third trip will be to conduct snorkeling. Students must pass a difficult swim test (see instructor for men's and women's qualifying standards) prior to enrollment. Instructor: Dodd.

PE 5. Fitness Training for Life. 3 units. Sets up and implements individually based fitness training programs for each student while concurrently teaching the modern fundamentals of a healthy lifestyle. Not offered 2001–02.

PE 9. Soccer. 3 units. Fundamental instruction on shooting, passing, trapping, dribbling, penalty kicks, offensive plays, defensive strategies, and goal keeping. Class includes competitive play using small field and full field scrimmages. Instructor: Madsen.

PE 10. Aerobic Dance. 3 units. Each class includes a thorough warm-up, a cardiovascular workout phase that also includes a variety of conditioning exercises designed to tone and strengthen various muscle groups, and a relaxation cool-down and stretch, all done to music. Instructor: Staff.

PE 12. Baseball Skills, Intermediate/Advanced. 3 units. Baseball skills—including infield/outfield, pitcher/catcher, and batting drills—taught, leading to competitive play. Students must have experience in hard ball. Instructor reserves the right to exclude/include students who don't fit criteria. Instructor: D’Auria.

PE 20. Fencing, Beginning and Intermediate/Advanced. 3 units. Introduction to Fencing to include basic techniques of attack, defense, and counter-offense. Lecture topics include fencing history, strategy, scouting and analysis of opponents, and gamesmanship. Intermediate/Advanced covers foil theory and techniques, group drillwork, and video analysis. Instructor: Clovis.

PE 23. Track and Field, Beginning. 3 units. Features instruction on ten different track events, allowing the student an opportunity to attempt a variety of skills to include: shot put, discus, javelin, sprints, hurdles, long jump, high jump, middle and long distance running, and the relays. Class emphasis placed on learning new skills safely with time devoted to warm-up and stretching, as well as weight training for specific events. Instructor: Levesque.

PE 24. Yoga, Beginning. 3 units. Hatha Yoga is a system of physical postures designed to stretch and strengthen the body, calm the nervous system, and center the mind. It is a non-competitive activity designed to reduce stress for improved health of body and mind while increasing flexibility, strength, and stamina, and reducing the chance of athletic injury. Instructor: Staff.

PE 27. Ultimate Frisbee. 3 units. Instruction will center on developing student's knowledge of techniques, rules, strategy, etiquette, and safety regulations of the game. Students will develop the ability to perform all skills necessary to play the game confidently on a recreational basis. Instructors: Landesman, Boortz.

PE 30. Golf; Beginning, Intermediate, and Advanced. 3 units. Beginning class covers fundamentals of the game, including rules, terminology, etiquette, basic grip, set-up, swing, and club selection for each shot. The following shots will be covered: full swing (irons and woods), chip, pitch, sand, and putting. Intermediate class will focus on swing development of specialty shots and on course play management. Advanced instruction covers course management and mental aspects of performance. Instructor: Staff.
PE 35. Diving, Beginning/Intermediate. 3 units. Teaches the fundamentals of springboard diving to include basic approach, and five standard dives. Intermediate class includes instruction in the back somersault, forward somersault, forward somersault full twist, and reverse somersault. Instructor: Dodd.

PE 36. Swimming, Beginning/Intermediate and Advanced. 3 units. Instruction in all basic swimming strokes, including freestyle, elementary backstroke, racing backstroke, breaststroke, sidestroke, and butterfly. Advanced class focuses on proper technique of the four competitive strokes using video and drills along with instruction on training methods and proper workout patterns. Instructors: D’Auria, Levesque.

PE 38. Water Polo. 3 units. Basic recreational water polo with instruction of individual skills and team strategies. A swimming background is encouraged. Instructor: Dodd.

PE 44. Karate (Shotokan), Beginning and Intermediate/Advanced. 3 units. Fundamental self-defense techniques including form practice and realistic sparring. Emphasis on improving muscle tone, stamina, balance, and coordination, with additional requirement of memorizing one or more simple kata (forms). Instructor: Staff.

PE 46. Karate (Tang Soo Do), Beginning and Intermediate/Advanced. 3 units. Korean martial art focusing on self-defense and enhancement of physical and mental health. Practical and traditional techniques such as kicks, blocks, hyungs (forms) are taught. Intermediate/Advanced level incorporates technique combinations, sparring skills, jumping and spinning kicks, and history and philosophy. Instructor: Staff.

PE 48. T’ai-Chi Ch’uan, Beginning and Intermediate/Advanced. 3 units. Chinese movement art emphasizing relaxation and calm awareness through slow, flowing, meditative movement using only the minimum of strength needed to accomplish the action. Instructor: Staff.

PE 50. Badminton, Beginning/Intermediate. 3 units. Basic skills will be taught, including grips, services, overhead and underhand strokes, and footwork. Rules, terminology, and etiquette are covered. Intermediate skills such as drives, service returns, forehand and backhand smash returns, attacking clears, and sliced drop shots are taught. Singles and doubles play along with drill work throughout the term. Instructor: Staff.

PE 54. Racquetball, Beginning and Intermediate/Advanced. 3 units. Fundamentals of the game will be emphasized, including rules, scoring, strategy, and winning shots. All types of serves will be covered, as well as a variety of shots to include kill, pinch-off, passing, ceiling, and off-the-backwall. Singles and doubles games will be played. Intermediate/Advanced course will review all fundamentals with a refinement of winning shots and serves and daily games. Instructors: D’Auria, Levesque.

PE 56. Squash; Beginning, Intermediate, Advanced. 3 units. Learn by playing as the basic rules and strokes are taught. Fundamentals to include proper grip, stroke, stance, and positioning, along with serve and return of serve. Intermediate and Advanced classes will concentrate on skill development with the inclusion of forehand and backhand drives, lobs, volleys, and drops, with an emphasis on court movement, shot selection, and tactics. Instructor: Staff.

PE 60. Tennis; Beginning, Beginning/Intermediate, Intermediate, and Advanced. 3 units. Stroke fundamentals, singles and doubles play, plus rules, terminology, and etiquette are covered in all classes. Beginning class emphasizes groundstrokes, volleys, serve, and grips. Beginning/Intermediate class is for those players caught between levels and will concentrate on strategy, drills, and match play. Intermediate level focuses on improving technique, footwork, and coordination, with instruction on approach shots, volleys, overheads, and lobs. Advanced course fine tunes each individual’s skills while targeting weaknesses. Instructors: D’Auria, Nilsen, and staff.

PE 70. Weight Training, Beginning/Intermediate. 3 units. Active participation in a strength and conditioning program designed for individual skill level and desired effect. Course will enlighten students to various methods, terminology, and techniques in the areas of isokinetic strength and cardiovascular fitness training. Instructors: D’Auria, Victor, Madsen.

PE 77. Volleyball; Beginning, Intermediate, and Advanced. 3 units. Fundamental instruction on drills, strategies, and rules, with game-playing opportunity. Basics of serve, pass, set, spike, defense, and court position will be taught. Intermediate level focuses on skill development to a more competitive standard and features multiple offenses and understanding officiating. Advanced class emphasizes specialization of all skills, court position, and multiple offenses and defenses. Instructor: Staff.

PE 82. Rock Climbing, Beginning and Intermediate. 3 units. Basic skills will be covered to utilize each student’s strength and endurance while learning to climb safely. Use of climbing rope and other equipment for belaying, rappelling, and emergency ascent will be taught. Skills will be demonstrated and practiced on climbing wall and then later at off-campus climbing site. Intermediate level will include ascents on prussiks or jumars, with more off-campus climbing. Instructor: Staff.
PHYSICS

Ph 1 abc. Classical Mechanics and Electromagnetism. 9 units (4-0-5); first, second, third terms. The first year of a two-year course in introductory classical and modern physics. Topics: Newtonian mechanics in Ph 1 a; electricity and magnetism, and special relativity, in Ph 1 b, c. Emphasis on physical insight and problem solving. Ph 1 b, c is divided into two tracks: the Practical Track emphasizing practical electricity with take-home lab kits, and the Analytic Track, which has no lab component but teaches and uses methods of multivariable calculus. Students will be given information helping them to choose a track at the end of fall quarter. Lecturers: Goodstein, McKewon, Politzer. Section leaders: Barish, Blain, Blandford, Cohen, Eisenstein, Frautschi, Harrison, Gates, Newman, Phillips, Pine, Porter, Soifer, Roukes.

Ph 2 ab. Statistical Physics, Waves, and Quantum Mechanics. 9 units (4-0-5); first, second terms. Prerequisites: Ph 1 abc, Ma 1 abc, or equivalents. The second year of a five-term introductory course in classical and modern physics. Topics to be covered include statistical physics and classical waves first term, introductory quantum mechanics second term. Lecturers: Hughes, Lange.

* Students may transfer from Ph 12 b to Ph 2 b any time during the quarter, before the last day for dropping courses. The final grade will be based on the combined record in the two courses.

Ph 3. Physics Laboratory. 6 units; first, second, third terms. Prerequisite: Ph 1 a or instructor's permission. One three-hour laboratory session per week, an individual conference with the instructor, prelab preparation, and analysis of experimental results outside the laboratory period. This introductory course emphasizes quantitative measurements, the treatment of measurement errors, and graphical analysis. A variety of experimental techniques will be employed: studies of d.c. meters, the oscilloscope, the Maxwell top, electrical and mechanical resonant systems, and radioactivity. The content of each term is identical and only one term may be taken for credit. Freshmen/sophomores graded pass/fail; upper-class students receive letter grades, except with instructors’ permission. Instructors: Rice, Sannibale, Zmuidzinas.

Ph 5. Physics Laboratory. 9 units; first term. Prerequisites: Ph 1 abc, Ph 3, or equivalents. A laboratory course dealing with “operational” electronics with emphasis on analog electronics. The following topics are studied: RC circuits, electrical oscillations, operational amplifiers, diodes, and transistors. Combining diodes, transistors, and operational amplifiers; computer data acquisitions. The course culminates in a two-week project of the student’s choosing. Instructors: Rice, Sannibale, Zmuidzinas.
Ph 6. Physics Laboratory. 9 units; second term. Prerequisites: Ph 1 abc, Ph 2 b or Ph 12 b (or taken concurrently), and Ph 3 or equivalent. Experiments in electromagnetic phenomena such as electromagnetic induction, properties of magnetic materials, and high-frequency circuits. Mobility of ions in gases; precise measurement of the value of e/m of the electron. Instructors: Rice, Sannibale, Zmuidzinas.

Ph 7. Physics Laboratory. 9 units; third term. Prerequisite: Ph 6 or equivalent. Experiments in atomic and nuclear physics, including studies of the Balmer series of hydrogen and deuterium, the decay of radioactive nuclei, absorption of X rays and gamma rays, ratios of abundances of isotopes, and the Stern-Gerlach experiment. Instructors: Rice, Sannibale, Zmuidzinas.

Ph 10. Frontiers in Physics. 3 units (2-0-1); first term. Open for credit to freshmen and sophomores. Weekly seminar by a member of the physics department or a visitor, to discuss his or her research at an introductory level; the other class meetings will be used to explore background material related to seminar topics and to answer questions that arise. The course will also help students find faculty sponsors for individual research projects. Graded pass/fail. Instructor: Barish.

Ph 11 abc. Research Tutorial. 6 units (2-0-4); second and third terms of freshman year and first term of sophomore year. A small number of students will be offered the opportunity to enroll in this tutorial, the purpose of which is to demonstrate how research ideas arise, and are evaluated and tested, and how those ideas that survive are developed. This is accomplished by doing individual, original projects. There will be weekly group meetings and individual tutorial meetings with the instructor. Support for summer research at Caltech between the freshman and sophomore years will be automatic for those students making satisfactory progress. Graded pass/fail. Instructor: Tombrello.

Ph 12 abc. Waves, Quantum Physics, and Statistical Mechanics.* 9 units (4-0-5); first, second, third terms. Prerequisites: Ph 1 abc, Ma 1 abc, or equivalents. A one-year course primarily for students intending further work in the physics option. Topics include classical waves; wave mechanics, interpretation of the quantum wave-function, one-dimensional bound states, scattering, and tunneling; thermodynamics, introductory kinetic theory, and quantum statistics. May be taken to fulfill the Institute Ph 2 requirement. Instructors: Lange, Cross, Preskill.

* Students may transfer from Ph 12 b to Ph 2 b any time during the quarter, before the last day for dropping courses. The final grade will be based on the combined record in the two courses.

Ph 20, 21, 22. Freshman/Sophomore Computational Physics Laboratory. A series of courses on the application of computational techniques to simulate or solve simple physical systems, with the intent of aiding both physics understanding and programming ability. Instructors: Prince, Mach.

20. 6 units (0-6-0); first, second, third terms. Prerequisite: CS 1 or equivalent experience in programming. Introduction to scientific computing with applications to physics. Use of simple numerical algorithms and symbolic manipulation packages for solution of physical problems. Numerical integration and numerical solution of differential equations of motion. Simulation of orbital mechanics.

21. 6 units (0-6-0); second, third terms. Prerequisite: Ph 20 or equivalent experience with programming and simple numerical techniques. Introduction to numerical algorithms for scientific computing. Root-finding, Runge-Kutta methods, Monte Carlo techniques, numerical solution of partial differential equations, minimization techniques such as neural networks. Applications to problems in classical mechanics and discrete-element electromagnetism.

22. 6 units (0-6-0); third term. Prerequisite: Ph 20 or equivalent experience with programming and simple numerical techniques. Introduction to scientific computing on parallel computers. Introduction to parallel computing and multi-processing. Message passing on networked workstations. Algorithm decomposition and parallelization. Numerical solution of N-body systems on multi-processor computers. Additional information regarding this course can be found at http://www.pma.caltech.edu/~physlab/.

Ph 70. Oral Presentation. 3 units; second, third terms; limited enrollment. A seminar on physics topics of contemporary interest, with emphasis on organization and communication. Intended to provide guidance and practice in the effective oral presentation of scientific material. Instructor: Hitlin.

Ph 76. Atomic/Laser Physics Laboratory. 9 units; first, second, third terms; limited enrollment. Prerequisites: Ph 6 or APb 24, and Ph 7. A one-term course in which students undertake a series of laboratory experiments in atomic and laser physics. Topics include tunable diode lasers, saturated-absorption spectroscopy, Fabry-Perot cavities, laser frequency modulation, resonant atomic index-of-refraction, and laser frequency stabilization. Instructors: Libbrecht, Black.

Ph 77 ab. Advanced Physics Laboratory. 9 units; first, second, third terms. Prerequisites: Ph 6 and Ph 7. A two-term laboratory course open to junior and senior physics majors to familiarize students with equipment and procedures used in the research laboratory. Experiments illustrate fundamental physical phenomena in atomic, low-temperature, nuclear, and particle physics, such as NMR, critical fields in superconductors, positron annihilation, and muon lifetime. Instructors: Black, Libbrecht.

Ph 78 abc. Senior Thesis Experimental. 9 units; first, second, third terms. Prerequisite: to register for this course the student must obtain approval of the chair of the Physics Undergraduate Committee (Steven Frautschi). Open only to senior physics majors. This research must be supervised by a faculty member, your thesis adviser. Laboratory work is
required for this course. Two fifteen-minute presentations to the Physics Undergraduate Committee are required, one at the end of the first term and the second at the midterm week of the third term. The written thesis must be completed and distributed to the committee one week before the second presentation. Not offered on pass/fail basis. See note below.

Ph 79 abc. Senior Thesis Theoretical. 9 units; first, second, third terms. Prerequisite: to register for this course the student must obtain approval of the chair of the Physics Undergraduate Committee (Steven Franzblau). Open only to senior physics majors. This research must be supervised by a faculty member; your thesis adviser. Two fifteen-minute presentations to the Physics Undergraduate Committee are required, one at the end of the first term and the second at the midterm week of the third term. The written thesis must be completed and distributed to the committee one week before the second presentation. Not offered on pass/fail basis. See note below.

Note: Students wishing assistance in finding an adviser and/or a topic for a senior thesis are invited to consult with the chair of the Physics Undergraduate Committee, or any other member of this committee. A grade will not be assigned in Ph 78 or Ph 79 until the end of the third term. P grades will be given the first two terms, and then changed at the end of the course to the appropriate letter grade.

Ph 101. Order of Magnitude Physics. 9 units (3-0-6); third term. Emphasis will be on using basic physics to understand complicated systems. Examples will be selected from properties of materials, geophysics, weather, planetary science, astrophysics, cosmology, biomechanics, etc. Not offered 2001–02.

Ph 103 ab. Topics in Contemporary Physics. 9 units (3–0–6); second, third terms. Prerequisite: instructor’s permission. A series of introductory one-term, independent courses. Students may register for any particular term or terms.

a. **Atomic and Molecular Spectroscopy.** Second term. This course will review the basic spectroscopy of atoms and molecules, with applications to astrophysics, the terrestrial atmosphere, and the laboratory. Species to be discussed include hydrogen and simple multiclectron atoms such as carbon, diatomic and polyatomic molecules, and some solids. Mechanisms and effects determining linewidths and lineshapes will be discussed for laboratory, atmospheric, and astrophysical conditions. Instructor: Phillips.

Ph/EE 103 b. Neuroscience for Physicists and Engineers. Third term. A reading and discussion course on topics ranging from the function of single neurons to methods for studying multineural activity in synapses; electrical recording; vision; positron and NMR topography; and neural modeling. Enrollment limited to 15, with preference given to physics seniors. Instructor: Pine.

Ph 105. Analog Electronics for Physicists. 9 units; first term. Prerequisites: Ph 1 abc, Ph 3, or equivalents (the take-home lab of Ph 1 bc may be substituted for Ph 3). A laboratory course dealing with “operational” electronics with emphasis on analog electronics. The following topics are studied: RC circuits, electrical oscillations, operational amplifiers, diodes, and transistors. Combining diodes, transistors, and operational amplifiers; computer data acquisition. The course culminates in a two-week project of the student’s choosing. Instructors: Rice, Sannibale, Zmuidzinas.

Ph 106 abc. Topics in Classical Physics. 9 units (3–0–6); first, second, third terms. Prerequisites: Ph 2 ab or Ph 12 abc, Ma 2. An intermediate course in the application of basic principles of classical physics to a wide variety of subjects. Roughly half of the year will be devoted to mechanics, and half to electromagnetism. Topics include Lagrangian and Hamiltonian formulations of mechanics, small oscillations and normal modes, boundary-value problems, multipole expansions, and various applications of electromagnetic theory. Instructors: Gubser, Peck.

Ph/EE 118. Low-Noise Electronic Measurement. 9 units (3–0–6); first term. Prerequisite: Ph 105 or equivalent. An introduction to ultralow-noise electrical measurements, both for dc and ac applications, as applied to experimental research. Topics include physical noise processes, signal transduction, and models of small signal amplification; as well as modulation, ordinary detection, synchronous and lock-in detection, and signal sampling techniques, including digitization, digital signal transforms, and correlations. Current approaches providing state-of-the-art sensitivity will be reviewed; topics may include normal and superconductive tunneling devices, SQUIDS, single electron transistors, transition-edge sensors, tunnel junction detectors, and various micro- and nanomechanical detectors. Instructor: Roukes.

Ph 125 abc. Quantum Mechanics. 9 units (3–0–6); first, second, third terms. Prerequisites: Ma 2 ab, Ph 12 abc or Ph 2 ab, or equivalents. A one-year course in quantum mechanics and its applications, for students who have completed Ph 12 or Ph 2. Wave mechanics in 3-D, scattering theory, Hilbert spaces, matrix mechanics, angular momentum, symmetries, spin-1/2 systems, approximation methods, identical particles, and selected topics in atomic, solid-state, nuclear, and particle physics. Instructor: Mabuchi.

Ph 127 abc. Statistical Physics. 9 units (3–0–6); first, second, third terms. Prerequisites: Ph 12 c or equivalent, and a basic understanding of quantum and classical mechanics. A course in the fundamental ideas and applications of classical and quantum statistical mechanics. Topics to be covered include the statistical basis of thermodynamics; ideal classical and quantum gases (Bose and Fermi); lattice vibrations and phonons; weak interaction expansions; phase transitions; and fluctuations and dynamics. If given as a three-quarter sequence, the third term will include a selection from more advanced topics such as renormalization
group theory; strongly interacting quantum systems; applications to biological systems; and others. Instructor: Cross. In 2001–02, offered as a two-term course in the second and third terms.

Ph 129 abc. Mathematical Methods of Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 106 abc and ACM 95/100 abc or Ma 108 abc, or equivalents. Mathematical methods and their application in physics. First term includes analytic and numerical methods for solving differential equations, integral equations, and transforms, and other applications of real analysis. Second term focuses on probability and statistics in physics. Third term covers group theoretic methods in physics. The three terms can be taken independently. Instructor: Oguri.

Ph 130 abc. Condensed Matter Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 125 abc or equivalent; statistical physics at level of APh 105 or Ph 127 also useful but not required. The first two terms will provide an intensive focus upon fundamental concepts of condensed matter physics and their experimental underpinnings: simple models of the properties of solids; crystal lattices, symmetries, and binding; phonons, specific heat, and dispersion relations; electronic states in metals, semiconductors, and insulators; transport and scattering processes; basic principles of magnetism. Other topics introduced may include disorder and localization; optical properties of solids; physics of surfaces, interfaces, and heterostructures; mesoscopic systems. Not offered 2001–02.

Ph 135 abc. Applications of Quantum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 125 abc or equivalent. Applications of quantum mechanics to topics in contemporary physics. Typically one term in each of three distinct areas. In 2001–02, elementary particle physics, quantum optics, and nuclear physics will be offered first, second, and third terms, respectively. Terms may be taken separately. Instructors: Weinstein, Kimble, Hughes.

Ph 136 abc. Applications of Classical Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 106 abc or equivalent. Applications of classical physics to topics of interest in contemporary “macroscopic” physics. Continuum physics and classical field theory; elasticity and hydrodynamics; plasma physics; magnetohydrodynamics; thermodynamics and statistical mechanics; gravitation theory, including general relativity and cosmology; modern optics. Content will vary from year to year, depending on the instructor. An attempt will be made to organize the material so that the terms may be taken independently. Not offered 2001–02.

Ay/Ph 145. Data Analysis and Numerical Astrophysics. 9 units (3-0-6). For course description, see Astronomy.

Ph 161 ab. Introduction to Complex Systems. 9 units (3-0-6); second, third terms. Prerequisites: Ph 136 or ACM 95/100 or Ph 129 provide a useful but not essential background. An introduction to nonequilibrium physics, using systems from physics, fluid dynamics, chemistry, and biology as examples. The first term will study dissipative chaos. The emphasis of the second term will be the formation of spatial structures (sometimes called “dissipative structures” or “pattern formation”). Some familiarity with solutions to partial differential equations will be assumed, and computer assignments should be expected in the first term. Typically offered in alternate years. Not offered 2001–02.

Ph 171. Reading and Independent Study. Units in accordance with work accomplished. Occasionally, advanced work involving reading, special problems, or independent study is carried out under the supervision of an instructor. Approval of the instructor and of the student’s departmental adviser or registration representative must be obtained before registering. Graded pass/fail.

Ph 172. Research in Experimental Physics. Units in accordance with work accomplished. Approval of the student’s research supervisor and departmental adviser or registration representative must be obtained before registering. Graded pass/fail.

Ph 173. Research in Theoretical Physics. Units in accordance with work accomplished. Approval of the student’s research supervisor and departmental adviser or registration representative must be obtained before registering. Graded pass/fail.

CNS/Ph 175. Artificial Life. 9 units (3-0-6). For course description, see Computation and Neural Systems.

CNS/Bi/Ph/CS 187. Neural Computation. 9 units (3-0-6). For course description, see Computation and Neural Systems.

Ph 203 abc. Nuclear Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 125 or equivalent. An introduction and overview of modern topics in nuclear physics, including models and structure of the proton and neutron, the electroweak interaction of nucleons and nuclei, and nuclear/neutrino astrophysics. Instructor: Filippone.

Ph 205 abc. Relativistic Quantum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 125. Topics: the Dirac equation, second quantization, quantum electrodynamics, scattering theory, Feynman diagrams, non-Abelian gauge theories, Higgs symmetry-breaking, the Weinberg-Salam model, and renormalization. Instructor: Wise.
Ph 209 abc. Classical Electromagnetism. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 106. Electromagnetic fields in vacuum and in matter; boundary-value problems and Green’s functions; retarded potentials; wave propagation; wave-guides and cavities; radiation, dispersion, and absorption; and special relativity. Not offered 2001–02.

Ay/Ph 212. Topics in Astronomy: Cosmology and Large-Scale Structures. 9 units (3-0-6). For course description, see Astronomy.

Ph/CS 219 abc. Quantum Computation. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 129 abc or equivalent. The theory of quantum information and quantum computation. Overview of classical information theory, compression of quantum information, transmission of quantum information through noisy channels, quantum error-correcting codes, quantum cryptography and teleportation. Overview of classical complexity theory, quantum complexity, efficient quantum algorithms, fault-tolerant quantum computation, physical implementations of quantum computation. Not offered 2001–02.

Ph 220 ab. Special Topics in Condensed Matter Physics. 9 units (3-0-6); first, second terms. Prerequisites: Ph 127 and Ph 135 or equivalents, plus a basic knowledge of quantum field theory and simple renormalization group analysis, or instructor’s permission. This course will cover special topics of central importance in modern condensed matter physics. The topics for the first term will include Fermi-liquid theory, non-Fermi liquids, Luttinger liquids, integer and fractional quantum Hall effects, and topological defects in gauge-field theories. Second term, emphasis will be on special topics in superconductivity and superfluidity, including high-temperature superconductivity, heavy-Fermion superconductivity, and dual description of the superconductor-to-normal metal/superfluid-to-normal fluid transitions in three dimensions. Not offered 2001–02.

Ph/Ay 221 abc. Cosmology and Particle Astrophysics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 106 and Ph 125, or equivalents. An introduction to current research in cosmology and particle astrophysics. First quarter will focus on basics of the Friedman-Robertson-Walker metric, aspects of physical cosmology, and gravitational lensing. Second quarter will include the early universe and particle astrophysics (e.g., inflation, phase transitions, neutrino astrophysics, particle dark matter, and baryogenesis). Third quarter will focus on cosmological perturbation theory, structure formation, and the cosmic microwave background. Not offered 2001–02.

Ph/Ph 223 abc. Advanced Topics in Condensed Matter Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 130 or equivalent, or instructor’s permission. Content includes advanced topics in theoretical and experimental condensed matter physics, emphasizing the application of formal methods such as quantum field theory and group theory to diverse experimental phenomena in both the solid and liquid state. Topics to be covered include second quantization and many-body techniques; group theory and its application to electronic band structures, phonon spectroscopy and optical properties of metals and semiconductors; microscopic and phenomenological theories of superconductivity; and magnetism. Instructor: Yeh.

Ph 224 abc. Space Physics and Astronomy. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 125, Ph 106, or equivalent. Instrumental and observational aspects of space physics and astronomy, including high-energy astrophysics (X-ray, gamma-ray, and cosmic-ray astrophysics), and infrared/sub-mm space astronomy. Analysis of astronomical and technical aspects of current and future space physics and astronomy missions. Not offered 2001–02.

Ph 225 ab. Quantum Optics. 9 units (3-0-6). Prerequisite: Ph 125 or equivalent; the quantum optics term of Ph 135 or instructor’s permission. An introduction to experimental and theoretical quantum optics with emphasis on modern topics related to quantum measurement and to dissipative quantum dynamics. The course will include discussions of the classical and quantum theories of coherence, as well as of the interaction of the radiation field with simple atomic systems. Not offered 2001–02.

Ph 228 ab. Topics in Mathematical Physics. 9 units (3-0-6). Prerequisite: instructor’s permission. Content changes from year to year. Not offered 2001–02.

Ph 229 abc. Advanced Mathematical Methods of Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 129 abc or equivalent. Advanced topics in geometry and topology that are widely used in modern theoretical physics. Emphasis will be on understanding and applications more than on rigor and proofs. First term will cover basic concepts in topology and manifold theory. Second term will include Riemannian geometry, fiber bundles, characteristic classes, and index theorems. Third term will include anomalies in gauge-field theories and the theory of Riemann surfaces, with emphasis on applications to string theory. Not offered 2001–02.

Ph 230 abc. Elementary Particle Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 205 abc or equivalent. Advanced methods in quantum field theory. First term: Introduction to supersymmetry, including the minimal supersymmetric extension of the standard model, supersymmetric grand unified theories, extended supersymmetry, supergravity, and supersymmetric theories in higher dimensions. Second and third terms: Nonperturbative phenomena in nonabelian gauge field theories, including quark confinement, chiral symmetry breaking, anomalies, instantons, the 1/N expansion, lattice gauge theories, and topological solitons. Not offered 2001–02.

Ph 231 abc. High-Energy Physics. 9 units (3-0-6); second, third terms. Prerequisite: Ph 125 or equivalent. An introduction to elementary particle physics, stressing experimental phenomenology, theoretical interpretations of this phenomenology, and experimental techniques.
Classification of elementary particles using invariance principles, evidence for fundamental constituents, and examination of the experimental basis for currently interesting ideas, such as quantum chromodynamics, the “standard model” of weak and electromagnetic interactions, and supersymmetric and unified theories. Not offered 2001–02.

Ph 234 abc. Topics in Theoretical Physics. 9 units (3–0–6); first, second, third terms. Prerequisite: Ph 205 or equivalent. The course covers the standard model for strong, weak, and electromagnetic interactions based on the gauge group SU(3) x SU(2) x U(1). Techniques such as the renormalization group and chiral perturbation theory will be used to make comparisons with experiments. Problems and extensions such as grand unification, low-energy supersymmetry, and axions will be discussed. Not offered 2001–02.

Ph 235 ab. Introduction to Supersymmetry and String Theory. 9 units (3–0–6); first, second, third terms. Prerequisite: Ph 205.
First Term: Introduction to supersymmetry. After explaining the basic concepts of supersymmetry, the emphasis will be on formulating and analyzing the minimal supersymmetric extension of the standard model and supersymmetric grand unified theories. There will also be brief introductions to supersymmetric theories in higher dimensions, theories with extended supersymmetry, and supergravity. Second Term: Introduction to superstring theory. Topics to be discussed include relativistic strings and their quantization, perturbative string theory, low energy effective supergravity theories, p-brane solutions and p-brane world volume theories, compactification of extra dimensions, M theory and F theory, dualities relating various superstring and M theory configurations, problems and prospects. Instructor: Schwarz.

Ph 236 abc. Relativity. 9 units (3–0–6); first, second, third terms. Prerequisite: a mastery of special relativity at the level of Goldstein’s Classical Mechanics, or of Jackson’s Classical Electrodynamics. A systematic exposition of Einstein’s general theory of relativity, with emphasis on applications to astrophysical and cosmological problems. Not offered 2001–02.

Ph 237 ab. Gravitational Waves. 9 units (3–0–6); second, third terms. Prerequisite: Ph 106. The theory of gravitational waves: their generation, propagation, and interaction with detectors. Astrophysical sources of gravitational waves: the big bang, early-universe phenomena, binary stars, black holes, supernovae, and neutron stars. Gravitational-wave detectors: their design, noise, data analysis, and underlying physics, with emphasis on LIGO and LISA but also detectors based on resonant masses, doppler tracking of spacecraft, pulsar timing, and the polarization of the cosmic microwave background. Instructors: Thorne, guest lecturers.
PS 121. Congressional Policy Formation and Legislative Process. 9 units (3-0-6). Decision making in legislative bodies, with emphasis on the American Congress. An investigation into the impact of Congressional structure and practices on the policies adopted by the federal government. Instructor: Katz.

PS 122. Problems of Representation. 9 units (3-0-6). Prerequisite: PS 12. Considers the theoretical foundations of democratic governments and modern problems of representation, including alternative approaches and solutions to representing minorities. Not offered 2001–02.

PS 123. Fiscal Federalism. 9 units (3-0-6). In the United States, as in many other countries, taxes are collected and benefits are provided by federal, state, and local governments. Because politicians like to take credit for benefits but avoid blame for taxes, fiscal relations between levels of government are an ongoing source of controversy and confusion. Course covers the major budgetary problems that currently face state, local, and federal governments. Specific topics will include intergovernmental revenue flows, the municipal bond market, and policy mandates. Grades only. Not offered 2001–02.

PS/SS 125. Political Economy of Development. 9 units (3-0-6). Prerequisite: PS 12 or SS 13. The role of political institutions in economic development and the interplay between economic development and political change. The course applies tools drawn from economics and political science to examples from history and from current-day developing countries. Instructor: Hoffman.

PS 132. Formal Theories in Political Science. 9 units (3-0-6). Prerequisite: PS 12 or equivalent. Axiomatic structure and behavioral interpretations of game theoretic and social choice models and models of political processes based on them. Instructor: Ordeshook.

PS/SS 139. Comparative Politics. 9 units (3-0-6). Prerequisite: PS 12 or SS 13. The politics of non-American political systems. Areas of study: the politics of nondemocratic states, including the Communist nations; the politics of developing societies; the politics of the Western European democracies. Emphasis on the effect of distinctive institutions on the performance of government and the content of public policy. Instructor: Ordeshook.

PS 141. A History of Budgetary Politics in the U.S. 9 units (3-0-6). Offered by announcement. This course will examine budgetary conflict at key junctures in U.S. history. Topics include the struggle to establish a viable fiscal system in the early days of the Republic, the ante bellum tariff, the “pension politics” of the post-Civil War era, the growth of the American welfare state, and the battle over tax and entitlement reform in the 1980s and 1990s. Instructor: Kiewiet.

H/PS 148 ab. The Supreme Court in U.S. History. 9 units (3-0-6). For course description, see History.

Ec/PS 160 abc. Laboratory Experiments in the Social Sciences. 9 units (3-3-3). For course description, see Economics.

PS/Ec 172. Noncooperative Games in Social Sciences. 9 units (3-0-6); first term. Prerequisite: PS 12 or equivalent. Axiomatic structure and behavioral interpretations of game theory models in social science. Axiomatic utility theory and general noncooperative games. Instructor: Costa-Gomes.

PS/Ec 173. Cooperation and Social Behavior. 9 units (3-0-6). Prerequisite: PS/Ec 172 or instructor’s permission. Game theoretic and evolutionary approaches to modeling various types of cooperative, altruistic, and social behavior. Emphasis on economic and political applications. Instructor: Dutta.

PSYCHOLOGY

Psy 15. Social Psychology. 9 units (3-0-6); offered by announcement. The study of how people think about other people and behave toward or around others. Topics include attribution, social cognition, motivation and incentives, social influence, liking, stereotyping, deception, fairness and altruism, and conformity. Not offered 2001–02.

Psy 20. Introduction to Cognitive Psychology. 9 units (3-0-6); third term. This course will develop basic concepts in how humans process different kinds of information such as visual, auditory, and symbolic. These concepts will then be used to explore topics such as visual perception, attention and automaticity, working and long-term memory, imagery, knowledge representation, language acquisition and comprehension, judgement and choice, reasoning and decision making, problem solving, and group differences. Instructor: Camerer.

Psy 101. Selected Topics in Psychology. Units to be determined by arrangement with the instructor. Offered by announcement. Instructor: Staff.

Psy 115. Cognitive Psychology. 9 units (3-0-6). Prerequisite: Ma 112 or instructor's permission. The study of how people think and behave. An introduction to the methods psychologists use to understand cognition, and the knowledge these methods have created: behaviorism (its rise and eclipse), memory, perception, learning, induction, categorization, intelligence, decision making and judgment, and evolutionary psychology. Not offered 2001–02.

Psy 125. Reading and Research in Psychology. Same as Psy 25, but for graduate credit. Not available for credit toward humanities–social science requirement.

Psy 130. Introduction to Human Memory. 9 units (3-0-6). The course offers an overview of experimental findings and theoretical issues in the study of human memory. Topics include iconic and echoic memory, working memory, spatial memory, implicit learning and memory; forgetting: facts vs. skills, memory for faces; retrieval: recall vs. recognition, context-dependent memory, semantic memory, spreading activation models and connectionist networks, memory and emotion, infantile amnesia, memory development, and amnesia. Not offered 2001–02.

SCIENCE, ETHICS, AND SOCIETY/HISTORY AND PHILOSOPHY OF SCIENCE

Hum/H/SES 10 a. Introduction to the History of Science. 9 units (3-0-6). Offered by announcement. For course description, see Humanities. Hum/H/SES 10 a may be taken for credit toward the additional 36-unit HSS requirement by students who have already fulfilled their freshman Humanities requirement.

Hum/Pl/SES 10 b. Introduction to the Philosophy of Science. 9 units (3-0-6). Offered by announcement. For course description, see Humanities. Hum/Pl/SES 10 b may be taken for credit toward the additional 36-unit HSS requirement by students who have already fulfilled their freshman Humanities requirement.

SES 102 abc. Senior Seminar. 9 units (2-0-7). The first two quarters consist of directed tutorial study and research to develop further the student's area of concentration in the option and to prepare the student for the writing of a research paper. Work in the tutorial will comprise intensive reading in the relevant literature and the beginnings of work on the paper. In the third quarter, students will present and discuss the results of their research and successive drafts of their papers in a seminar for discussion and criticism. Open to students in the SES option and the SES graduate minor, and to others by special permission. Instructor: Staff.

SES 103. Public Lecture Series. 1 unit (1-0-0). Lectures offered under the rubric Science, Ethics, and Public Policy, featuring speakers from outside and inside Caltech, that introduce students to a broad variety of SES-related topics past and present. The seminar is held roughly four times per quarter. Not available for credit toward humanities–social science requirement. Instructors: Guest lecturers.

SES/Pl 120. Paradoxes. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor's permission. A survey of some of the great paradoxes in philosophical literature, from Zeno's paradox of the fifth century B.C. to some paradoxes of probability of the last year or two. Discussion topics include vagueness and the paradox of the heap, paradoxes of rationality (the St. Petersburg and Allais paradoxes, Newcomb's problem, and the prisoner's dilemma), some paradoxes of confirmation (the raven and grue paradoxes), the unexpected examination, and paradoxes of set theory and truth (notably Russell's paradox and the Liar). Instructor: Hájek.

SES/Pl 121. Foundations of Probability and Inductive Inference. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor's permission. Philosophical and conceptual issues arising from probability theory. Topics covered may include the psychological literature on common fallacies in probabilistic reasoning; comparative probability; Kolmogorov's axiomatization of probability, and an exploration of both defenses and criticisms thereof; the classical, analogical, logical, frequentist, propensity, and various subjectivist interpretations of probability; calibration; conditional probability as the primitive of probability theory; proposals for supplementing the probability calculus with certain further principles. Instructor: Staff.

SES/Pl 122. Philosophy of Science. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor's permission. An introduction to fundamental philosophical problems concerning the nature of science. Topics may include the character of scientific explanation, criteria for the confirmation and falsification of scientific theories, the relationship between theory and observation, philosophical accounts of the concept of “law of nature,” causation, chance, realism about unobservable entities, the objectivity of science, and issues having to do with the ways in which scientific knowledge changes over time. Instructor: Staff.

SES/Pl 123. Causation and Explanation. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor's permission. An examination of theories of causation and explanation in philosophy and neighboring disciplines. Topics discussed may include probabilistic and counterfactual treatments of
causation, the role of statistical evidence and experimentation in causal inference, and the deductive-nomological model of explanation. The treatment of these topics by important figures from the history of philosophy such as Aristotle, Descartes, and Hume may also be considered. Instructors: Woodward, Hitchcock.

SES/Pl 125. Introduction to Philosophy of Biology. 9 units (3-0-6). Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. Philosophical and conceptual issues relating to the biological sciences. Topics covered may include: the logical structure of evolutionary theory, units of selection, optimization theory, the nature of species, reductionism, teleological and functional reasoning, and ethical issues arising from contemporary biological research. Not offered 2001-02.

SES/Pl 126. Biomedical Ethics. 9 units (3-0-6). Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. Ethical and public policy issues arising from the biological sciences, biotechnology, and medical practice. Topics covered may include ethical and conceptual issues arising in the following areas: clinical decision making and patient autonomy, right to die and euthanasia, human genetics and genetic engineering, reproductive technology and abortion, health insurance and the allocation of medical resources. Not offered 2001-02.

SES/Pl 127. Ethics in Research. 4 units (2-0-2) or 9 units (2-0-7); third term. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. Course will address a number of ethical and philosophical issues arising in scientific research. Among the topics discussed will be the following: fraud and misconduct in science; various theories of the scientific method; the realities of science as practiced in laboratories and the pressures facing scientists in the real world; ethical issues raised by collaborative research; reward and credit in science; responsibilities of mentors, referees, and editors in the conduct of research; the role of government regulation and supervision in dealing with scientific misconduct; the role of the university; and changes in ethical standards due to advancing technology. Undergraduates wishing to take the course for advanced humanities credit should register for 9 units (a term paper will be required). Students who register for 4 units may do so on a pass/fail basis only. Instructors: Woodward, D. Goodstein.

SES/Pl 128. The Ethics of Risk Management. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. When are we ethically justified in exposing people to financial or medical hazards? The course will ask whether ethics can provide guidelines for dealing with risk and uncertainty. We will consider several applications: public policies concerning health hazards (Where, if at all, should we build an additional toxic waste facility?); engineering ethics (What are the standards of safe practice and negligence in designing new technology?); economic risk management (How, if at all, should risky businesses, such as financial institutions, be regulated?). Instructor: Staff.

SES/Pl 131. Introduction to Philosophy of Mind and Psychology. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. An introduction to the mind-body problem. The course surveys attempts, from the time of Descartes to the present, to understand the nature of the mind and its relation to the body and brain. Topics to be addressed may include dualism, behaviorism, functionalism, computationalism, neuropathology, consciousness and qualia, scientific psychology vs. “folk” psychology, the nature of emotion, knowledge of other minds. Instructors: Cowie, Murphy.

SES/Pl 132. Philosophy and Biology. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. This course will examine the impact of recent advances in biological sciences for studies of the mind, behavior, and society. Topics may include evolutionary psychology, the relation between evolution and development, the impact of molecular genetics on the theory of evolution, mathematical modeling of evolution and artificial evolution, philosophical and social issues raised by modern molecular biology. Instructors: Cowie, Woodward, Quartz, Murphy.

SES/Pl 133. Philosophy of Physics. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. Philosophical and conceptual issues arising from physical theory. Topics covered may include the nature and existence of space and time, the relationship between mathematical models and physical reality, entropy and the direction of time, the nature of simultaneity, the possibility of time travel, determinism and indeterminism, and the interpretation of quantum measurement. Instructor: Hitchcock.

SES/Pl 135. Current Issues in Philosophical Psychology. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. An in-depth examination of one or more issues at the intersection of contemporary philosophy and the brain and behavioral sciences. Topics may include the development of theory of mind and self-representation, theories of representation and neural coding, the nature of rationality, the nature and causes of psychopathology, learning and innateness, the modularity of mind. Instructors: Cowie, Murphy, Quartz.

SES/H 156. The History of Modern Science. 9 units (3-0-6); third term. Selected topics in the development of the physical and biological sciences since the 17th century. Not offered 2001-02.
SES/H 158. The Scientific Revolution. 9 units (3-0-6); second term.
The birth of modern Western science from 1400 to 1700. The course examines the intellectual revolution brought about by the contributions of Copernicus, Galileo, Descartes, Kepler, Newton, and Harvey, and their relation to major political, social, and economic developments. Instructor: J. Goodstein.

SES/H 160 ab. History of the Modern Physical Sciences. 9 units (3-0-6); second, third terms. An exploration of the most significant scientific developments in the physical sciences from the late 19th century to the present. The first part of the course examines the emergence of new theories of radiation, the structure of matter, relativity, and quantum theory. The second part examines quantum mechanics, the developments in nuclear physics, atomic weapons, particle physics, and the organization of modern science. Scientific, historical, and philosophical texts will be used. (The two courses may be offered in alternate years.) Instructors: Barkan, Kennefick.

SES/H 162. Social Studies of Science. 9 units (3-0-6). A comparative, multidisciplinary course that examines the practice of science in a variety of locales, using methods from the history, sociology, and anthropology of scientific knowledge. Topics covered include the high-energy particle laboratory as compared with a biological one; Western as compared to non-Western scientific reasoning; the use of visualization techniques in science from their inception to virtual reality; gender in science; and other topics. Not offered 2001–02.

SES/H 165. History of Technology in the United States. 9 units (3-0-6). An examination of technological innovation from 19th-century craft and mechanical technologies through the science-based varieties of the 20th century. Attention will also be given to the rise of the industrial research laboratory, technology in American life and culture, and the relationship of technological development to the activities of government, particularly the military. Not offered 2001–02.

SES/H 166. The History of Environmentalism. 9 units (3-0-6). An examination of attitudes and ideas toward nature in American culture since the early 19th century and of the development of the environmental movement in the United States, including its recent globalization. Emphasis will be given to issues of preservation and conservation, pollution and public health, and conflicts of race, class, and economic interest in environmental policies and practices. Not offered 2001–02.

SES/H 169. Selected Topics in Science, Ethics, and Society. 9 units (3-0-6). Offered by announcement. Instructors: Staff, visiting lecturers.

SES/H 169. Selected Topics in Science, Ethics, and Society. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. Instructors: Staff, visiting lecturers.

SES/Pl 185. Moral Philosophy. 9 units (3-0-6). Prerequisite: Hum/Pl 8 or Hum/Pl 9 or Hum/Pl/SES 10 b or instructor’s permission. A survey of topics in moral philosophy. The emphasis will be on meta-ethical issues, although some normative questions may be addressed. Meta-ethical topics that may be covered include the fact/value distinction; the nature of right and wrong (consequentialism, deontological theories, rights-based ethical theories, virtue ethics); the status of moral judgments (cognitivism vs. non-cognitivism, realism vs. irreality); morality and psychology; moral relativism; moral skepticism; morality and self-interest; the nature of justice. The implications of these theories for various practical moral problems may also be considered. Not offered 2001–02.

SOCIAL SCIENCE

SS 13. The Application of Social Scientific Methods to Problems in History. 9 units (3-0-6); first term. The application of theory from economics, political science, and demography to historical subjects, with an emphasis on questions of institutional change. The historical topics covered will depend upon the instructor. Instructor: Davis.

EC/SS 20. Oral Presentation. 3 units (2-0-1). For course description, see Economics.

SS 98. Reading in Social Science. Units to be determined for the individual by the department. Elective, in any term. Reading in social science and related subjects, done either in connection with the regular courses or independently of any course, but under the direction of members of the department. A brief written report will usually be required. Graded pass/fail. Not available for credit toward humanities-social science requirement.

SS 101. Selected Topics in Social Science. 9 units (3-0-6). Offered by announcement. Not available for social science credit unless specifically approved by social science faculty. Instructors: Staff, visiting lecturers.

PS/SS 125. Political Economy of Development. 9 units (3-0-6). For course description, see Political Science.

Ec/SS 128. Economic and Financial Development in the 19th and 20th Centuries. 9 units (3-0-6). For course description, see Economics.

Ec/SS 129. Economic History of the United States. 9 units (3-0-6). For course description, see Economics.
SS 210 abc. Foundations of Political Economy. 9 units (3-0-6). Prerequisites: SS 202 c, SS 205 b. Mathematical theories of individual and social choice applied to problems of welfare economics and political decision making as well as to the construction of political economic processes consistent with stipulated ethical postulates, political platform formulation, the theory of political coalitions, and decision making in political organizations. Instructors: McKelvey, Camerer, Sen.

SS 211 abc. Advanced Economic Theory. 9 units (3-0-6). May be repeated for credit. Advanced work in a specialized area of economic theory, with topics varying from year to year according to the interests of students. Instructors: Border, Wilkie, Costa-Gomes.

SS 212 abc. Application of Microeconomic Theory. 9 units (3-0-6). May be repeated for credit. A working seminar in which the tools of microeconomic theory are applied to the explanation of events and the evaluation of policy. Instructors: Jackson, MacLeod, Postlewaite.

SS 213 abc. Financial Economics. 9 units (3-0-6). First term: introduction to theoretical financial economics at the graduate level. Course covers leading financial models such as the capital asset pricing model and arbitrage pricing theory in depth. Second term: theory of asset pricing in a dynamic context. Considers both the discrete and continuous time cases. Third term: theory and tests of asset pricing (including option pricing and term structure). Theory and tests of market microstructure. Theory of international finance. Instructor: Bossaerts.

SS 216. Interdisciplinary Studies in Law and Social Policy. 9 units (3-0-6); second term. A policy problem or problems involving the legal system will be studied, using concepts from at least one social science discipline. Each offering will be taught by a law professor, alone or in conjunction with a member of the social science faculty. The topic will differ from term to term, so the course may be taken more than once. Selected undergraduates may enroll in this course with the permission of the instructor. Not offered 2001–02.

SS 222 abc. Econometrics. 9 units (3-0-6). Introduction to the use of multivariate and nonlinear methods in the social sciences. Instructors: Sherman, Grether, Dubin.

SS 223 abc. Advanced Topics in Econometric Theory. 9 units (3-0-6). Prerequisite: SS 222 abc; may be repeated for credit. A course in quantitative methods for second- and third-year social science graduate students. Instructors: Sherman, Grether.

SS 229 abc. Theoretical and Quantitative Dimensions of Historical Development. 9 units (3-0-6). May be repeated for credit. Introduction to modern quantitative history. The tools of economic and political theory applied to problems of economic, social, and political development in a historical context. Second and third terms will be graded together. A pass/fail will be assigned in the second term and then changed to the appropriate grade at the end of the third term. Instructors: Davis, Hoffman, staff.

SS 231 abc. American Politics. 9 units (3-0-6). A three-term course in American politics and political behavior. While drawing from contemporary materials, the course will emphasize the historical background of American political institutions. Instructors: Kiewiet, Katz, Alvarez.

SS 232 abc. Historical and Comparative Perspectives in Political Analysis. 9 units (3-0-6). Prerequisite: SS 203. Provides a knowledge and understanding of developments in both the American past and in other parts of the world. Instructors: Ordeshook, Katz.

SS 260. Experimental Methods of Political Economy. 9 units (3-0-6). Survey of laboratory experimental research related to the broad field of political economy. Topics: the behavior of markets, organizations, committee processes, and election processes. Emphasis on experimental methods and techniques. Students will design and conduct experiments. Instructor: Plott.

SS 280. Modern Topics in Social Science. 9 units (3-0-6); first term. This course will teach students about the major modern contributions of social science in fields outside their areas of specialization. It will cover a series of basic topics by reading and discussing the central papers or books that characterize what is known about each topic area. Different sections of the course will be offered in different social sciences (e.g., economics and political science). Instructor: Staff.

SS 300. Research in Social Science. Units to be arranged.
Trustees, Administration, Faculty

OFFICERS

Benjamin M. Rosen, Chairman
Walter L. Weisman, Vice Chairman

David Baltimore, President
Steven E. Koonin, Provost

Christopher F. Brennen
Vice President for Student Affairs

Charles Elachi
Vice President and Director, Jet Propulsion Laboratory

Albert G. Horvath
Vice President for Business and Finance

William A. Jenkins
Executive Vice President for Administration

J. Ernest Nunnally
Vice President for Institute Relations

Mary L. Webster
Secretary

Harry M. Yohalem
General Counsel

BOARD OF TRUSTEES

Trustees
(with date of first election)

George L. Argyros (1992)
Chairman and CEO
Arnel and Affiliates

David Baltimore (1997)
President
California Institute of Technology

Donald R. Beall (1990)
Chairman of the Executive Committee
Retired Chairman and CEO
Rockwell International Corporation

Gordon M. Binder (1995)
Managing Director
Coastview Capital

Mike R. Bowlin (1995)
Chairman and CEO (Retired)
ARCO

Donald L. Bren (1983)
Chairman of the Board
The Irvine Company

Eli Broad (1993)
Chairman
SunAmerica Inc.

Harry M. Conger (1985)
Chairman & CEO, Emeritus
Homestake Mining Company

William H. Davidow (1996)
General Partner
Mohr Davidow Ventures

Lounette M. Dyer (1998)
Chairman
Silk Route Technology

Thomas E. Everhart (1998)
President Emeritus
California Institute of Technology

Chairman and CEO
Ionics, Inc.

William T. Gross (1994)
Chairman and Founder
idealab!

David D. Ho (1997)
Director
The Aaron Diamond AIDS Research Center

Bobby R. Inman (1989)
Private Investor

Louise Kirkbride (1995)
President
Broad Daylight, Inc.

Kent Kresa (1994)
Chairman, President, and CEO
Northrop Grumman Corporation

Edward M. Lambert (1996)
Managing Director
Meridian Ventures, Inc.

David Li Lee (2000)
Managing General Partner
Clarity Partners, L.P.

York Liao (1997)
Executive Director
Varistraxx Limited

Alexander Lidow (1998)
Chief Executive Officer
International Rectifier Corporation

Ronald K. Linde (1989)
Independent Investor and Chairman of the Board
The Ronald and Maxine Linde Foundation

Shirley M. Malcom (1999)
Director, Education and Human Resources Programs
American Association for the Advancement of Science
Senior Trustees
(with date of first election and date of election as Senior Trustee)

Robert Anderson (1975, 1992)
Chairman Emeritus
Rockwell International Corporation

President
Atkins Company

Harold Brown (1969, 1999)
President Emeritus
Consultant
Center for Strategic and International Studies (CSIS)

Walter Burke (1975, 1994)
Treasurer
Sherman Fairchild Foundation, Inc.

Jewel Plummer Cobb (1990, 1996)
President Emerita
California State University, Fullerton

Retired Chairman
Seafirst Bank

Camilla C. Frost (1977, 1997)
Trustee of the Chandler Trust
and a Director and Secretary-Treasurer
Chadis Securities Company

Chairman Emeritus
Southern California Edison Company

Shirley M. Hufstedler (1975, 1997)
Senior Of Counsel
Morison & Foerster

President and CEO (Retired)
Atlantic Richfield Co.

Ralph Landau (1982, 1988)
Co-Chairman
General Motors Corporation

Gordon E. Moore (1983, 2001)
Chairman Emeritus
Intel Corporation

Private Investor

Harry Wetzel (1979, 1992)
Chairman and CEO (Retired)
The Garrett Corporation

Life Trustees
(with date of first election and date of election as Life Trustee)

Chairman and CEO (Retired)
Atlantic Richfield Company

Chairman Emeritus and Director
Bechtel Group, Inc.

Arnold O. Beckman (1953, 1974)
Chairman Emeritus
Founder Chairman
Beckman Instruments, Inc.

Chairman (Retired)
The World Bank

Ruben F. Mettler (1969, 1995)
Chairman Emeritus
Retired Chairman and CEO
TRW Inc.

Rudolph A. Peterson (1967, 1985)
President and CEO (Retired)
Bank of America Corporation

Simpson Ramo (1964, 1985)
Co-Founder & Director Emeritus
TRW Inc.

Principal
Arthur Rock and Company

Nonprofit Consultant

Gordon E. Moore (1983, 2001)
Chairman Emeritus
Intel Corporation

Private Investor

Charles H. Townes (1979, 1987)
Nobel Laureate and
Professor in the Graduate School
Department of Physics
University of California, Berkeley

Lew R. Wasserman (1971, 1987)
Chairman Emeritus
Universal Studios Inc.

Albert D. Wheelon (1987, 2001)
Trustee Elected Committees, 2001

Audit Committee—S.R. Petersen, Chair; D. Baltimore, J.P. Cobb, R.L. Linde, B.M. Rosen; Consulting Member: D. Stanfill; Advisory Members: A.G. Horvath, W.A. Jenkins, S.E. Koonin, B.M. Meltzer, H.M. Yohalem

David Baltimore
President

Steven E. Koonin
Provost

Christopher E. Brennen
Vice President for Student Affairs

Hall P. Daily
Assistant Vice President and Director of Government and Community Relations

Charles Elachi
Vice President and Director, Jet Propulsion Laboratory

David L. Goodstein
Vice Provost

Allbert G. Horvath
Vice President for Business and Finance

William A. Jenkins
Executive Vice President for Administration

Daniel L. Meiron
Associate Provost for Information and Information Technology

Jerry E. Nunnally
Vice President for Institute Relations

Robert L. O’Rourke
Associate Vice President for Institute Relations

Thomas W. Schmitt
Assistant Vice President for Human Resources

Mary L. Webster
Secretary, Board of Trustees

Harry M. Yohalem
General Counsel

Elliot M. Meyerowitz
Biology

David A. Tirrell
Chemistry and Chemical Engineering

Richard M. Murray
Engineering and Applied Science

Edward M. Stolper
Geological and Planetary Sciences

John O. Ledyard
Humanities and Social Sciences

Thomas A. Tombrello
Physics, Mathematics and Astronomy

Christopher E. Brennen
Vice President for Student Affairs

Sharyn Slavin Miller
Assistant Vice President for Student Affairs

Stanley J. Borodinsky
Administrator for Student Affairs

Debra L. Tuttle
Director of Student Information Systems

Jean-Paul Revel
Dean of Students

Barbara C. Green
Associate Dean of Students

Kim D. West
Director of Residence Life

Susan L. Friedman, Assistant
Director of Residence Life for Faculty Involvement and Student Programs

Candace Rypisi
Director of the Women’s Center

Student Affairs

Kevin P. Austin
Associate Dean for Health and Counseling Services and Director of Counseling Services

Susan Conner, Assistant Director/Training Director

Jeanette Butler, Staff Psychologist

Elizabeth Shon, Staff Psychologist

Deborah Southerland, Staff Psychologist

Stuart Miller, Director of Health Services

Jerry Houser
Director of Career Development

Amy Seidel Malak, Associate Director of Career Development

Candace Rypisi
Director of the Women’s Center
Administrative Committees

Animal Care and Use [fills the role of Caltech's Institutional Animal Care and Use Committee—IAUCU] (Reports to the Vice Provost)—J.H. Strauss, Chair; F.C. Anson, J. Baer, E. Helms, R.C. Pool, E.M. Schuman, R.P. Seligman*, B. Wold

Athletic Facilities (Reports to the Vice President for Student Affairs)—H.D. Politzer, Chair; E.H. Davison, T.D. Downes*, C. Fohlin, M.R. Hoffmann*, M. Hunt, W.J. Irwin*, Fok-Yan Thomas Leung (representing graduate students), Jason Wong (representing undergraduate students)

Biosafety [fills the role of Caltech's Institutional Biosafety Committee—IBC] (Reports to the Vice President for Business and Finance)—E. Rothenberg, Chair; J. Baer, W. Dietrick, J.D. Femino, R.C. Pool*, C. Scislowicz*, R.P. Seligman*

Diversity and Minority Affairs (Reports to the President)—W. Deverell, Chair; S. Borrego, C. Boxe, C.E. Brennen, E. Bueno, M. Feldblum*, D. Figueroa, B.C. Green, J. Harris, D. Howard, B. Hutchinson, P. Kia, R. Prado, A. Valdivia, A. White

Institute Administrative Council (IACC)—S.E. Koonin, Chair; D. Baltimore, J.O. Ledyard, E.M. Meyerowitz, R.M. Murray, E.M. Stolper, D.A. Tirrell, T.A. Tombrello

Institute of Medicine (IOM) (Reports to the Provost)—R.A. Rosenstone, Chair; F.C. Culpik, W.F. Deverell, S.A. Ell, J.D. Roberts, C.S. Smith, S.A. Walker

Postdoctoral Scholars (Reports to the Provost)—D.L. Goodstein, Chair; T.J. Ahrens (alternate), F.C. Anson, S.E. Borbon, K.M. Chandey (alternate), R.W. Clayton, M.C. Cross, D.A. Dougherty (alternate), W.G. Dunphy (alternate), Y.T. Hou, J.M. Kouser, R.D. McKeen, G.W. Pigman (alternate), E. Rothenberg

Radiation Safety (Reports to the Vice President for Business and Finance)—D.S. Burnett, Chair; H. Isaia, W.L. Johnson, R.W. Kavanagh, A. Kumagai, C.S. Parker, C. Scislowicz*

* indicates ex officio members
FACULTY OFFICERS AND COMMITTEES 2001-02

Officers
Chair: M. Bronner-Fraser
Vice Chair: M.L. Hunt
Secretary: E.S. Munger

Faculty Board

Term expires June 30, 2002
F.H. Arnold
J.L. Beauchamp
P.L. Bossaerts
M.R. Hoffmann
A.J. Rosakis
D.B. Wales

Term expires June 30, 2003
P. Bjorkman
W.F. Deverell
D.A. Dougherty
D. Psaltis
K.E. Sieh

Term expires June 30, 2004
E. K. Antonsson
J.G. Cohen
D.G. Goodwin
A.E. Lange
E.M. Schuman
J. Tromp

Steering Committee

Core Curriculum Steering Committee
Term expires June 30, 2002
M. Bronner-Fraser, A.S. Kechris

Term expires June 30, 2003
J.L. Kirschvink, N.S. Lewis, D.I. Meiron

Curriculum
Term expires June 30, 2002
K. Bhattacharya, R.P. Sherman

Term expires June 30, 2003
W.C. Brown, M. Ortiz, R.M. Wilson, K. Zinn

Term expires June 30, 2004
J.F. Brady, J.G. Hering

Freshman Admissions
Term expires June 30, 2002

Term expires June 30, 2003

Term expires June 30, 2004

C. Liebau*

Graduate Study
Cb., P.W. Sternberg, Option Representatives

D.R. Kiewiet*

Health
Term expires June 30, 2003
P.L. Bossaerts, N.G. Makarov

Term expires June 30, 2004
P. Bjorkman
W.F. Deverell
D.A. Dougherty
D. Psaltis
K.E. Sieh

Term expires June 30, 2002
E. K. Antonsson
J.G. Cohen
D.G. Goodwin
A.E. Lange
E.M. Schuman
J. Tromp

Athletics and Physical Education
Term expires June 30, 2002
T. Ahrens

Term expires June 30, 2003
H.B. Gray, R.H. Grubbs, A.P. Ingersoll

Term expires June 30, 2004
M. Bronner-Fraser

T. Downes*, H.D. Politzer*

Convocations
Term expires June 30, 2003
C. Koch, C. Weinstein

Term expires June 30, 2004
K.C. Border

D.R. Kiewiet*, J-P. Revel*

* ex officio

Academic Freedom and Tenure Committee
Term expires June 30, 2002
Ch., J.E. Bercaw, Vice Cb., D.S. Cohen, D.L. Barkan

Term expires June 30, 2003
J.K. Barton, D.J. Stevenson, K. S. Thorne

Academic Policies
Term expires June 30, 2002
Cb., S.J. Willie

Term expires June 30, 2004
B.T. Fultz, Z-G. Wang

Educational Outreach
Term expires June 30, 2002
J.R. Goodstein*, J-P. Revel*

Graduate Study
Cb., P.W. Sternberg, Option Representatives

D.R. Kiewiet*

Health
Term expires June 30, 2003
P.L. Bossaerts, N.G. Makarov

Term expires June 30, 2004
P. Bjorkman
W.F. Deverell
D.A. Dougherty
D. Psaltis
K.E. Sieh

Term expires June 30, 2002
E. K. Antonsson
J.G. Cohen
D.G. Goodwin
A.E. Lange
E.M. Schuman
J. Tromp

Steering Committee

Core Curriculum Steering Committee
Term expires June 30, 2002
M. Bronner-Fraser, A.S. Kechris

Term expires June 30, 2003
J.L. Kirschvink, N.S. Lewis, D.I. Meiron

Curriculum
Term expires June 30, 2002
K. Bhattacharya, R.P. Sherman

Term expires June 30, 2003
W.C. Brown, M. Ortiz, R.M. Wilson, K. Zinn

Term expires June 30, 2004
J.F. Brady, J.G. Hering

Foreign Students and Scholars
Term expires June 30, 2002
Ch., E. Üstündag, D.C. Lis

Term expires June 30, 2003
A. King, H.A. Lester

Term expires June 30, 2004
H. Engelhardt

P. Kia*

* ex officio
STAFF OF INSTRUCTION
AND RESEARCH

Division of Biology

Elliott M. Meyerowitz, Chair
Pamela Bjorkman, Executive Officer for Biology
Erin M. Schuman, Executive Officer for Neurobiology

Professors Emeriti

Seymour Benzer, Ph.D., D.Sc., Crafoord Laureate
James G. Boswell Professor of Neuroscience (active)
Charles J. Brokaw, Ph.D., Biology
Norman Davidson, Ph.D., Norman Chandler Professor of Chemical Biology
John J. Hopfield, Ph.D., Roscoe G. Dickinson Professor of Chemistry and Biology
Ray D. Owen, Ph.D., Distinguished Carnegie Senior Research Associate in Biology, Emeritus
Edward B. Lewis, Ph.D., Nobel Laureate
Thomas Hunt Morgan Professor of Biology (active)
Mary B. Kennedy, Ph.D., Biology

Joint appointment with Carnegie Institution of Washington

Professors

John N. Abelson, Ph.D.
George Beadle Professor of Biology
John M. Allman, Ph.D.
Frank P. Hixon Professor of Neurobiology

Richard A. Andersen, Ph.D.
James G. Boswell Professor of Neuroscience
David J. Anderson, Ph.D.
Biology

Giuseppe Attardi, M.D.
Grace C. Steele Professor of Molecular Biology
David Baltimore, Ph.D., Nobel Laureate
Biology
Pamela Bjorkman, Ph.D.
Biology

James M. Bower, Ph.D.
Biology

Marianne Bronner-Fraser, Ph.D.
Albert Billings Ruddock Professor of Biology

Marianne Bronner-Fraser, Ph.D.
Biology

William J. Dreyer, Ph.D.
Biology

William G. Dunphy, Ph.D.
Biology

Scott E. Fraser, Ph.D.
Anna L. Rosen Professor of Biology

Christof Koch, Ph.D.
The Lois and Victor Troendle Professor of Cognitive and Behavioral Biology and Professor of Computation and Neural Systems

Masakazu Konishi, Ph.D.
Bing Professor of Behavioral Biology

Gilles J. Laurent, Ph.D., D.V.M.
Biology and Computation and Neural Systems

Henry A. Lester, Ph.D.
Bren Professor of Biology

Elliot M. Meyerowitz, Ph.D.
Biology

Paul H. Patterson, Ph.D.
Biology

Jean-Paul Revel, Ph.D.
Albert Billings Ruddock Professor of Biology

Ellen Rothenberg, Ph.D.
Biology

Mervin L. Simon, Ph.D.
Anne P. and Benjamin F. Ingbar Professor of Biological Sciences
Members of the Beckman Institute

Russell E. Jacobs, Ph.D.
Jerry E. Solomon, Ph.D.

Members of the Professional Staff

Eugene Akutagawa, B.S.
Janet F. Baer, D.V.M.
Gary Belford, Ph.D.
L. Elizabeth Bertani, Ph.D.
Martin E. Budd, Ph.D.
Rochelle A. Diamond, B.A.
Gary M. Hathaway, Ph.D.
Suzanna J. Horvath, Ph.D.
Cesar G. Labarca, Ph.D.
Ben Murray, Ph.D.
Ker-hwa (Susan) Tung Oo, M.S.
Shirley Pease, B.Sc.
Piotr J. Polaczek, Ph.D.
Andrew J. Ransick, Ph.D.
Hiroaki Shizuya, M.D., Ph.D.
Bea (Natalie) Trifunac, Ph.D.
Jie Zhou, Ph.D.

Senior Research Fellows

Sara Aghlren, Ph.D.
Cesar Arenas-Mena, Ph.D.
Clare Baker, Ph.D.
Fei Chen, Ph.D.
David Crotty, Ph.D.
Pamela Eversole-Circ, Ph.D.
Iain D.C. Fraser, Ph.D.
Yong-Tae Kwon, Ph.D.
Carol LaBonne, Ph.D.
Rusty Lansford, Ph.D.
Angelique Y. Louie, Ph.D.
Yuichi Michikawa, Ph.D.
Carolyn K. Ohno, Ph.D.
Yannan Ouyang, Ph.D.
Jose Luis Pena, M.D.
Mark A. Stopfer, Ph.D.
Janice C. Telfer, Ph.D.
Jeong Kyo Yoon, Ph.D.
Choi-Hwa Yuh, Ph.D.

Faculty Associates

Alice S. Huang, Ph.D.
Eric Mjolsness, Ph.D.

Moore Distinguished Scholar

Wolfgang Baumeister

Visiting Professor

Joseph Bogen, M.D.

Visiting Associates

Eric T. Ahrens, Ph.D.
James F. Amatruda, M.D., Ph.D.
Ina Arnone, Ph.D.
Emil Bogenmann, Ph.D.
Hamid Bolouri, Ph.D.
William G. Bradley Jr., M.D., Ph.D.
Peng-Sheng Chen, M.D.
Igor Fineman, M.D.
James P. Folsom, Ph.D.
Kazuo Funabiki, M.D., Ph.D.
Andrew K. Groves, Ph.D.
Christine Guthrie, Ph.D.
Leroy Hood, M.D., Ph.D., D.Sc., D.h.c.
Parsa Kazemi-Esfarjani, Ph.D.
Division of Chemistry and Chemical Engineering

David A. Tirrell, Chair
John E. Bercaw, Executive Officer for Chemistry
Mark E. Davis, Executive Officer for Chemical Engineering
Carl S. Parker, Executive Officer for Biochemistry and Molecular Biophysics

Professors Emeriti

John D. Baldeschwieler, Ph.D.
J. Stanley Johnson Professor and Professor of Chemistry, Emeritus
Norman R. Davidson, Ph.D.
Norman Chandler Professor of Chemical Biology, Emeritus
John J. Hopfield, Ph.D.
Roxor G. Dickinson Professor of Chemistry and Biology, Emeritus
John D. Roberts, Ph.D.
Dr. rer. Nat., Sc.D., D.Sc.h.c.
Institute Professor of Chemistry, Emeritus
Nicholas W. Tichoeg, Ph.D.
Chemical Engineering

Senior Research Associates Emeriti

Joseph B. Koepfli, Ph.D.
Chemistry
Richard E. Marsh, Ph.D.
Chemistry
Sten O. Samson, Fil. Dr.
Chemistry
William P. Schaefer, Ph.D.
Chemistry

Professors

Fred C. Anson, Ph.D., D.h.c.
Elizabeth W. Gilloon Professor of Chemistry
Frances H. Arnold, Ph.D.
Dick and Barbara Dickinson Professor of Chemical Engineering and Biochemistry
Lecturers

Kathryn Bikle, M.A. Chemistry
Michael W. Day, Ph.D. Chemistry
Eric S. Wagner, Ph.D. Chemical Engineering

Senior Research Fellow

John S. Baskin, Ph.D. Chemistry

Faculty Associate

Visiting Assistant Professor

John P. Marino¹, Ph.D. Chemistry

¹In residence 2000–01

Visiting Associates

Robert Bau, Ph.D. Chemistry
Richard J. Bing, M.D., D.h.c., M.D. h.c. Chemistry
Joseph Casanova, Ph.D. Chemistry
Sukbok Chang, Ph.D. Chemistry
Ara Chutjian, Ph.D. Chemistry
M. Michael Glovsky, Ph.D. Chemistry
Michael G. Hill, Ph.D. Chemistry
James E. Howard, Ph.D. Chemistry
Keiko Kanamori, Ph.D. Chemistry
Young-Back Kim, Ph.D. Chemical Engineering
Yoshitaka Kimura, Ph.D. Chemistry
Seth R. Marder, Ph.D. Chemistry

Members of the Beckman Institute

Siddharth Dasgupta, Ph.D. Michael S. Freund, Ph.D. Jay R. Winkler, Ph.D.

Members of the Professional Staff

Thomas R. Dunn, A.A. Chemistry
Suresh Gupta, M.S. Chemical Engineering
Lawrence R. Henling, M.S. Chemistry
Boguslaw Kuszta, Ph.D. Chemical Engineering
Jay A. Labinger, Ph.D. Chemistry
Robert W. K. Lee, Ph.D. Chemistry
Jane G. Raymond, Ph.D. Chemistry

Associate Professors

Konstantinos P. Giapis, Ph.D. Chemical Engineering
David W.C. MacMillan, Ph.D. Chemistry
Stephen I. Mayo, Ph.D. Biology and Chemistry
Mitchio Okumura, Ph.D. Chemical Physics
Zhen-Gang Wang, Ph.D. Chemical Engineering
Daniel P. Weitekamp, Ph.D. Chemical Physics

Assistant Professors

Anand Asthagiri, Ph.D. Chemical Engineering
Linda C. Hsieh-Wilson, Ph.D. Chemistry
Jonas C. Peters, Ph.D. Chemistry
Richard W. Roberts, Ph.D. Chemistry
Brian M. Stoltz, Ph.D. Chemistry

Hidenori Okuzaki, Ph.D. Chemical Engineering
Adrian Ponce, Ph.D. Chemistry
Eugene Roberts, Ph.D. Chemistry
Brian D. Ross, D. Phil. Chemistry
Hiroyuki Shinto, Ph.D. Chemical Engineering
Santosh K. Srivastava, Ph.D. Chemistry
Eric D. A. Stemp, Ph.D. Chemistry
Sandor Trajmar, Ph.D. Chemistry
Joan S. Valentine, Ph.D. Chemistry
Adrianus C.T. van Duin, Ph.D. Chemistry
Xin Xu, Ph.D. Chemistry
Davit Zargarian, Ph.D. Chemistry

Visiting Assistant Professor

John P. Marino¹, Ph.D. Chemistry

¹In residence 2000–01

B. Vincent McKoy, Ph.D. Theoretical Chemistry
Carl S. Parker, Ph.D. Biochemistry
Douglas C. Rees, Ph.D.¹ Chemistry
John H. Richards, Ph.D. Organic Chemistry and Biochemistry
John H. Seinfeld, Ph.D., D.Sc.h.c. László E. Lovász Professor and Professor of Chemical Engineering
David A. Tirrell, Ph.D., D.h.c. Ross McCallum–William H. Corcoran Professor and Professor of Chemistry and Chemical Engineering
Ahmed H. Zewail, Ph.D., D.Sc.h.c., D.h.c., D.Univ.h.c., H.D.A.Sc., H.D.Sc., Nobel Laureate Linus Pauling Professor of Chemical Physics and Professor of Physics

Joint appointment with Howard Hughes Medical Institute

Jacqueline K. Barton, Ph.D., D.Sc.h.c., D.L.h.c. Arthur and Marian Hanisch Memorial Professor and Professor of Chemistry
Jesse L. Beauchamp, Ph.D. Mary and Charles Ferkel Professor of Chemistry
John E. Bercaw, Ph.D. Centennial Professor of Chemistry
Geoffrey A. Blake, Ph.D. Cosmochemistry and Planetary Science and Chemistry
John F. Brady, Ph.D. Chevron Professor of Chemical Engineering
Judith L. Campbell, Ph.D. Chemistry and Biology
Sunney I. Chan, Ph.D. George Grant Hoag Professor of Physical Biology
Mark E. Davis, Ph.D. Warren and Katharine Schlinger Professor of Chemical Engineering
Peter B. Dervan, Ph.D., D.Sc.h.c. Bren Professor of Chemistry
Dennis A. Dougherty, Ph.D. Chemistry
Richard C. Flagan, Ph.D. Irna and Ross McCallum Professor of Chemical Engineering
George R. Gavala, Ph.D. Chemical Engineering
William A. Goddard III, Ph.D. Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics
Harry B. Gray, Ph.D., D.Sc.h.c.; Laurea, h.c.; Fil.Dr.h.c.; D.L.h.c. Arnold O. Beckman Professor of Chemistry
Robert H. Grubbs, Ph.D. Victor and Elizabeth Atkins Professor of Chemistry
Julia A. Kornfield, Ph.D. Chemical Engineering
Aron Kuppermann, Ph.D. Chemical Physics
Nathan S. Lewis, Ph.D. Chemistry
Rudolph A. Marcus, Ph.D., D.Sc.h.c., Fil.Dr.h.c., D.h.c., Nobel Laureate Arthur Amos Noyes Professor of Chemistry

Associate Professors

Konstantinos P. Giapis, Ph.D. Chemical Engineering
David W.C. MacMillan, Ph.D. Chemistry
Stephen I. Mayo, Ph.D. Biology and Chemistry
Mitchio Okumura, Ph.D. Chemical Physics
Zhen-Gang Wang, Ph.D. Chemical Engineering
Daniel P. Weitekamp, Ph.D. Chemical Physics

Assistant Professors

Anand Asthagiri, Ph.D. Chemical Engineering
Linda C. Hsieh-Wilson, Ph.D. Chemistry
Jonas C. Peters, Ph.D. Chemistry
Richard W. Roberts, Ph.D. Chemistry
Brian M. Stoltz, Ph.D. Chemistry

Hidenori Okuzaki, Ph.D. Chemical Engineering
Adrian Ponce, Ph.D. Chemistry
Eugene Roberts, Ph.D. Chemistry
Brian D. Ross, D. Phil. Chemistry
Hiroyuki Shinto, Ph.D. Chemical Engineering
Santosh K. Srivastava, Ph.D. Chemistry
Eric D. A. Stemp, Ph.D. Chemistry
Sandor Trajmar, Ph.D. Chemistry
Joan S. Valentine, Ph.D. Chemistry
Adrianus C.T. van Duin, Ph.D. Chemistry
Xin Xu, Ph.D. Chemistry
Davit Zargarian, Ph.D. Chemistry

Siddharth Dasgupta, Ph.D. Michael S. Freund, Ph.D. Jay R. Winkler, Ph.D.

Members of the Beckman Institute

Siddharth Dasgupta, Ph.D. Michael S. Freund, Ph.D. Jay R. Winkler, Ph.D.

Members of the Professional Staff

Thomas R. Dunn, A.A. Chemistry
Suresh Gupta, M.S. Chemical Engineering
Lawrence R. Henling, M.S. Chemistry
Boguslaw Kuszta, Ph.D. Chemical Engineering
Jay A. Labinger, Ph.D. Chemistry
Robert W. K. Lee, Ph.D. Chemistry
Jane G. Raymond, Ph.D. Chemistry

Assistant Professors

Anand Asthagiri, Ph.D. Chemical Engineering
Linda C. Hsieh-Wilson, Ph.D. Chemistry
Jonas C. Peters, Ph.D. Chemistry
Richard W. Roberts, Ph.D. Chemistry
Brian M. Stoltz, Ph.D. Chemistry

Hidenori Okuzaki, Ph.D. Chemical Engineering
Adrian Ponce, Ph.D. Chemistry
Eugene Roberts, Ph.D. Chemistry
Brian D. Ross, D. Phil. Chemistry
Hiroyuki Shinto, Ph.D. Chemical Engineering
Santosh K. Srivastava, Ph.D. Chemistry
Eric D. A. Stemp, Ph.D. Chemistry
Sandor Trajmar, Ph.D. Chemistry
Joan S. Valentine, Ph.D. Chemistry
Adrianus C.T. van Duin, Ph.D. Chemistry
Xin Xu, Ph.D. Chemistry
Davit Zargarian, Ph.D. Chemistry

B. Vincent McKoy, Ph.D. Theoretical Chemistry
Carl S. Parker, Ph.D. Biochemistry
Douglas C. Rees, Ph.D.¹ Chemistry
John H. Richards, Ph.D. Organic Chemistry and Biochemistry
John H. Seinfeld, Ph.D., D.Sc.h.c. László E. Lovász Professor and Professor of Chemical Engineering
David A. Tirrell, Ph.D., D.h.c. Ross McCallum–William H. Corcoran Professor and Professor of Chemistry and Chemical Engineering
Ahmed H. Zewail, Ph.D., D.Sc.h.c., D.h.c., D.Univ.h.c., H.D.A.Sc., H.D.Sc., Nobel Laureate Linus Pauling Professor of Chemical Physics and Professor of Physics

¹Joint appointment with Howard Hughes Medical Institute

Associate Professors

Konstantinos P. Giapis, Ph.D. Chemical Engineering
David W.C. MacMillan, Ph.D. Chemistry
Stephen I. Mayo, Ph.D. Biology and Chemistry
Mitchio Okumura, Ph.D. Chemical Physics
Zhen-Gang Wang, Ph.D. Chemical Engineering
Daniel P. Weitekamp, Ph.D. Chemical Physics

Assistant Professors

Anand Asthagiri, Ph.D. Chemical Engineering
Linda C. Hsieh-Wilson, Ph.D. Chemistry
Jonas C. Peters, Ph.D. Chemistry
Richard W. Roberts, Ph.D. Chemistry
Brian M. Stoltz, Ph.D. Chemistry

Hidenori Okuzaki, Ph.D. Chemical Engineering
Adrian Ponce, Ph.D. Chemistry
Eugene Roberts, Ph.D. Chemistry
Brian D. Ross, D. Phil. Chemistry
Hiroyuki Shinto, Ph.D. Chemical Engineering
Santosh K. Srivastava, Ph.D. Chemistry
Eric D. A. Stemp, Ph.D. Chemistry
Sandor Trajmar, Ph.D. Chemistry
Joan S. Valentine, Ph.D. Chemistry
Adrianus C.T. van Duin, Ph.D. Chemistry
Xin Xu, Ph.D. Chemistry
Davit Zargarian, Ph.D. Chemistry

Siddharth Dasgupta, Ph.D. Michael S. Freund, Ph.D. Jay R. Winkler, Ph.D.

Members of the Beckman Institute

Siddharth Dasgupta, Ph.D. Michael S. Freund, Ph.D. Jay R. Winkler, Ph.D.

Members of the Professional Staff

Thomas R. Dunn, A.A. Chemistry
Suresh Gupta, M.S. Chemical Engineering
Lawrence R. Henling, M.S. Chemistry
Boguslaw Kuszta, Ph.D. Chemical Engineering
Jay A. Labinger, Ph.D. Chemistry
Robert W. K. Lee, Ph.D. Chemistry
Jane G. Raymond, Ph.D. Chemistry

Assistant Professors

Anand Asthagiri, Ph.D. Chemical Engineering
Linda C. Hsieh-Wilson, Ph.D. Chemistry
Jonas C. Peters, Ph.D. Chemistry
Richard W. Roberts, Ph.D. Chemistry
Brian M. Stoltz, Ph.D. Chemistry

Hidenori Okuzaki, Ph.D. Chemical Engineering
Adrian Ponce, Ph.D. Chemistry
Eugene Roberts, Ph.D. Chemistry
Brian D. Ross, D. Phil. Chemistry
Hiroyuki Shinto, Ph.D. Chemical Engineering
Santosh K. Srivastava, Ph.D. Chemistry
Eric D. A. Stemp, Ph.D. Chemistry
Sandor Trajmar, Ph.D. Chemistry
Joan S. Valentine, Ph.D. Chemistry
Adrianus C.T. van Duin, Ph.D. Chemistry
Xin Xu, Ph.D. Chemistry
Davit Zargarian, Ph.D. Chemistry

B. Vincent McKoy, Ph.D. Theoretical Chemistry
Carl S. Parker, Ph.D. Biochemistry
Douglas C. Rees, Ph.D.¹ Chemistry
John H. Richards, Ph.D. Organic Chemistry and B
Senior Postdoctoral Scholars
Zhi Wu (David) Fang, Ph.D.
Pavel A. Frantsouzov, Ph.D.

Postdoctoral Scholars
Miguel Alcalde (Galeote), Ph.D.
Paramjit S. Arora, Ph.D.
Maria L. Auad, Ph.D.
Cliff R. Baar, Ph.D.
Andrey G. Balakin, Ph.D.
Christoph Balzack, Ph.D.
Adolfo J. Banchio, Ph.D.
Randal B. Bass, Ph.D.
Hans-Christian Becker, Ph.D.
Yardena Bobot-Raviv, Ph.D.
Thomas Büter, Ph.D.
Allen W. Burton Jr., Ph.D.
Colin G. Cameron, Ph.D.
Stuart J. Cantrill, Ph.D.
Ioana Cosmata, Ph.D.
David S. Daan, Ph.D.
Suresh Dhaniyala, Ph.D.
Christopher J. Dillon, Ph.D.
Panagiota Dimitriakopulos, Ph.D.
Shaune Edwards, Ph.D.
Oliver F. Einsle, Dr.rer.Nat.
Edgardo T. Farinas, Ph.D.
Justin P. Gallagher, Ph.D.
Ye Qin Gao, Ph.D.
Steve D. Goldberg, Ph.D.
Boyd M. Goodson, Ph.D.
Michael T. Green, Ph.D.
Fangming Gu, Ph.D.
Joseph P. Holles, Ph.D.
Osamu Imamura, Ph.D.
Seung Soon Jang, Ph.D.
Kristine K. Jensen, Ph.D.
Boom S. Kang, Ph.D.
Täichi Kano, Ph.D.
Pierre Kennespol, Ph.D.
Inger K. Kers, Ph.D.
Andreas F. M. Kilbinger, Ph.D.
Hotae Kim, Ph.D.
Hyunjin M. Kim, Ph.D.
Jinsang Kim, Ph.D.
Nam Joon Kim, Ph.D.
Seung-Goo Kim, Ph.D.
Kent W. Kirshenbaum, Ph.D.
Jeffrey A. Koehler, Ph.D.
Michael E. Koscho, Ph.D.
Carsten Könting, Ph.D.
Alexander Kros, Ph.D.
Rob G. H. Lammertink, Ph.D.
Jaesoon Lee, Ph.D.
Caroline M. Li, Ph.D.
Shi-Tai Lin, Ph.D.
Vincent P. Liptak, Ph.D.
Vladimir A. Lobastov, Ph.D.
Kasper P. Locher, Ph.D.
Jennifer A. Love, Ph.D.
Pamela L. Lum, Ph.D.
Carlos A. Martinez, Ph.D.
Yutaka Matsu, Ph.D.
Kimberly M. Mayer, Ph.D.
Michele A. McGuirt, Ph.D.
Thomas G. Minehan, Ph.D.
Valeria P. Molinero, Ph.D.
Claire Morrell, D.Phil.
Angelika A. Niemz, Ph.D.
Serguei A. Nizkorodov, Ph.D.
Bogdan Z. Olenyuk, Ph.D.
Melanie A. O’Neill, Ph.D.
Maria C. Orenza, Ph.D.
Santur Kumar Pal, Ph.D.
Matthias Pascaly, Dr.rer.Nat.
Jorge Peon-Peralta, Ph.D.
Jonna P. Petrouin, Ph.D.
Dean M. Philipp, Ph.D.
Pierre F. R. Potier, Ph.D.
Xiaoyang Qu, Ph.D.
Hanna Rapaport, Ph.D.
Theresa M. Reineke, Ph.D.
Jinon Ren, Ph.D.
Thomas A. Reninger, Ph.D.
Chong-Yu Ruan, Ph.D.
Joseph P. Sadighi, Ph.D.
Dara Salcedo, Ph.D.
Richardon Sarpog, Ph.D.
Christophe M. Saidan, Ph.D.
Benedikt Schmid, Ph.D.
Kathrin S. Schmidt, Ph.D.
Ulrich Schwanenberg, Ph.D.
Thomas J. Seiders, Ph.D.
Jeongbeok Seo, Ph.D.
Eiichi Shoji, Ph.D.
Jonathan J. Silberg, Ph.D.
Theis I. Solling, Ph.D.
Nagarajan Srivasan, Ph.D.
Alejandro H. Strachen, Ph.D.
Frederic J. Tessier, Ph.D.
Faik Aki Tezcan, Ph.D.
Eric S. Tillman, Ph.D.
Francisco D. Toste, Ph.D.
Daisuke Umeno, Ph.D.
David A. Vicic, Ph.D.
Kang-Shi (Kenny) Wang, Ph.D.
Tao Wei, Ph.D.
Philipp Weyermann, Ph.D.
Tianbing Xia, Ph.D.
Wenjing Xiao, Ph.D.
Zhiwei Yang, Ph.D.

Division of Engineering and Applied Science

Richard M. Murray, Chair
Erik K. Antonsson, Executive Officer for Mechanical Engineering
Alan H. Barr, Executive Officer for Computer Science
John F. Hall, Executive Officer for Civil Engineering and Applied Mechanics
Michael R. Hoffmann, Executive Officer for Environmental Science and Engineering
Hans G. Hornung, Director of the Graduate Aeronautical Laboratories
Yizhao Thomas Hou, Executive Officer for Electrical Engineering

Professors Emeriti
Allan J. Acosta, Ph.D.
Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering
Norman H. Brooks, Ph.D.
James Irvine Professor of Environmental and Civil Engineering
Thomas K. Caughey, Ph.D.
Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering
Francis H. Clauser, Ph.D.
Clark Blanchard Millikan Professor of Engineering
Donald E. Coles, Ph.D.
Aeronautics
Thomas E. Everhart, Ph.D., D.L., D.h.c.
Electrical Engineering and Applied Physics
Joel N. Franklin, Ph.D.
Applied Mathematics
Roy W. Gould, Ph.D.
Simon Namo Professor of Engineering
Kenneth A. Pickar, Ph.D.
J. Stanley Johnson Visiting Professor of Mechanical Engineering

Gabriel Taubin, Ph.D.
Electrical Engineering

Visiting Associates

W. French Anderson, M.D.
Applied Physics

Marc M. Baum, Ph.D.
Environmental Science and Engineering

Lloyd D. Bell II, Ph.D.
Applied Physics

Josette Bellois, Ph.D.
Aeronautics

David A. Boyd, Ph.D.
Applied Physics

James E. Broadwell, Ph.D.
Aeronautics

Gerald D. Buckberg, M.D.
Bioengineering

Ralf Busch, Ph.D.
Materials Science

Karsten Buse, Ph.D.
Electrical Engineering

Charles S. Campbell, Ph.D.
Mechanical Engineering

Octavia I. Camps, Ph.D.
Electrical Engineering

Tirong Chen, M.S.
Applied Physics

David H. Chow, Ph.D.
Applied Physics

R. Dale Conner, Ph.D.
Materials Science

Alberto M. Cuitino, Ph.D.
Aeronautics

Uwe Dallmann, Dr. Tech.
Aeronautics

Tobias Delbrück, Ph.D.
Computation and Neural Systems

Michael P. DeLisi, Ph.D.
Electrical Engineering

Mathieu Desbrun, Ph.D.
Computer Science

Fokion N. Egolfopoulos, Ph.D.
Aeronautics

Fred H. Eisen, Ph.D.
Applied Physics

Andrew Finney, Ph.D.
Control and Dynamical Systems

Behnam Hushmand, Ph.D.
Civil Engineering

Hossein Jadvar, Ph.D., M.D.
Aeronautics

Ann R. Karagözian, Ph.D.
Mechanical Engineering and Jet Propulsion

Bumman Kim, Ph.D.
Electrical Engineering

Anastasios M. Lappas, Ph.D.
Aeronautics

Yves Lassailly, Ph.D.
Electrical Engineering

David S. Lee, Ph.D.
Materials Science

Paula C. Lieber, Ph.D.
Applied Mathematics

Shi-Chii Liu, Ph.D.
Computer Science

Douglas G. MacMartin, Ph.D.
Control and Dynamical Systems

Boris Merinov, Ph.D.
Materials Science

Darius Modarres, Ph.D.
Aeronautics

John Abbott Moss, Ph.D.
Environmental Engineering Science

Mikio Oda, Ph.D.
Aeronautics

Vilupanur A. Ravi, Ph.D.
Aeronautics

Martin Regehr, Ph.D.
Materials Science

Elon S. Rimon, Ph.D.
Mechanical Engineering

James J. Rosenberg, Ph.D.
Electrical Engineering

Stanley P. Sander, Ph.D.
Planetary Science and Environmental Engineering Science

Herbert Sauro, Ph.D.
Control and Dynamical Systems

Susanne Schneider, Ph.D.
Materials Science

Robert H. Selzer, M.S.
Aeronautics

Yaakov Shevy, Ph.D.
Applied Physics

Bernd Simonett, Ph.D.
Environmental Engineering Science

G. Jeffrey Snyder, Ph.D.
Materials Science

Thomas H. Sobotka, Ph.D.
Aeronautics

Deborah Sulsky, Ph.D.
Aeronautics

Chii-Jau Tang, Ph.D.
Engineering Science

Pier K. Tang, Ph.D.
Aeronautics

Armand Tanguay, Jr., Ph.D.
Electrical Engineering

Ming-Lung Tsai, M.S.
Electrical Engineering

Satoshi Watanabe, Ph.D.
Mechanical Engineering

Kerstin Weinberg, Dr.Ing.
Aeronautics

Lung-Jieh Yang, Ph.D.
Electrical Engineering

Rachid Yazami, Ph.D.
Materials Science

Members of the Professional Staff

Michael Aivazis, Ph.D.
Center for Advanced Computing Research

Guy A. DeRose, Ph.D.
Applied Physics

Carol M. Garland, B.A.
Materials Science

Senior Postdoctoral Scholars

Maciej Brodowicz, Ph.D.
Center for Advanced Computing Research

Mark L. Brongersma, Ph.D.
Applied Physics

Bjorn Clausen, Ph.D.
Materials Science

Chad Coulliette, Ph.D.
Materials Science

Pierre-Herve Giauque, Ph.D.
Computer Science

Igor Gusakov, Ph.D.
Computer Science

Charles C. Hays, Ph.D.
Materials Science

Wang Sang Koon, Ph.D.
Control and Dynamical Systems

Jörg F. Löffler, Ph.D.
Materials Science

Jan Schroers, Ph.D.
Materials Science

Postdoctoral Scholars

Sylvie Aubry, Ph.D.
Aeronautics

William S. Barney, Ph.D.
Environmental Engineering Science

Mark T. Borisuk, Ph.D.
Control and Dynamical Systems

Sven C. R. Bossuyt, Ph.D.
Materials Science

Yann T. Carin, Ph.D.
Aeronautics

William C. Conant, Ph.D.
Environmental Engineering Science

James C. Cory, Ph.D.
Mechanical Engineering

Nathan F. Dalleska, Ph.D.
Environmental Engineering Science

Markus M. Enzelberger, Ph.D.
Applied Physics

Avishek Eyal, Ph.D.
Materials Science

Armand Tanguay, Jr., Ph.D.
Applied Physics

Jörg F. Löffler, Ph.D.
Environmental Engineering Science

James E. Broadwell, Ph.D.
Applied Physics

David H. Chow, Ph.D.
Planetary Science and Environmental Engineering Science

R. Dale Conner, Ph.D.
Materials Science

Scott C. Hsu
Applied Physics

François Jeaneret, Ph.D.
Environmental Engineering Science

Ilan D. Kelly, Ph.D.
Electrical Engineering

Andre Khodakovsky, Ph.D.
Electrical Engineering

Pieter G. Kik, Ph.D.
Materials Science

Patrick C. Le Clercq, Ph.D.
Aeronautics

Reading Associates

Marc M. Baum, Ph.D.
Environmental Science and Engineering

William S. Barney, Ph.D.
Environmental Engineering Science

Mark T. Borisuk, Ph.D.
Control and Dynamical Systems

Sven C. R. Bossuyt, Ph.D.
Materials Science

Ildo Braslavsky, Ph.D.
Applied Physics

Yann T. Carin, Ph.D.
Aeronautics

William C. Conant, Ph.D.
Environmental Engineering Science

James C. Cory, Ph.D.
Mechanical Engineering

Nathan F. Dalleska, Ph.D.
Environmental Engineering Science

Markus M. Enzelberger, Ph.D.
Applied Physics

Avishek Eyal, Ph.D.
Materials Science

Armand Tanguay, Jr., Ph.D.
Applied Physics

Jörg F. Löffler, Ph.D.
Environmental Engineering Science

James E. Broadwell, Ph.D.
Applied Physics

David H. Chow, Ph.D.
Planetary Science and Environmental Engineering Science

R. Dale Conner, Ph.D.
Materials Science

Scott C. Hsu
Applied Physics

François Jeaneret, Ph.D.
Environmental Engineering Science

Ilan D. Kelly, Ph.D.
Electrical Engineering

Andre Khodakovsky, Ph.D.
Electrical Engineering

Pieter G. Kik, Ph.D.
Materials Science

Patrick C. Le Clercq, Ph.D.
Aeronautics

Reading Associates
Assistant Professors

Jess F. Atkins, Ph.D.
Geochimetry and Global Environmental Science
Paul D. Asimow, Ph.D.
Geology and Geochemistry
Michael E. Brown, Ph.D.
Planetary Astronomy
John M. Eiler, Ph.D.
Geochemistry
Dianne K. Newman, Ph.D.
Clare Boothe Luce Assistant Professor of Geology and Environmental Engineering Science
James T. Randerson, Ph.D.
Global Environmental Science
Mark I. Richardson, Ph.D.
Planetary Science
Mark Simons, Ph.D.
Geochemistry

Faculty Associates

Mark A. Allen, Ph.D.
Planetary Science
Dimitri A. Papanastassiou, Ph.D.
Geochemistry

Moore Distinguished Scholar

Celâl Sengör, Ph.D.
Geology

Visiting Professors

Jean-Paul Montagner, Ph.D.
Geophysics
Bernard J. Wood, Ph.D.
Geology

Visiting Associates

Gillian Foulger, Ph.D.
Geophysics
Kenneth W. Hudnut, Ph.D.
Geophysics
Lucile M. Jones, Ph.D.
Geophysics
Paul Rosen, Ph.D.
Geophysics
Chandon Saikia, Ph.D.
Geophysics
Stanley F. Sander, Ph.D.
Planetary Science
J. Douglas Vule, Ph.D.
Geology
David J. Wald, Ph.D.
Geophysics

Members of the Professional Staff

Michael B. Baker, Ph.D.
Geology
John R. Beckett, Ph.D.
Geology
James H. Chen, Ph.D.
Geochemistry
Ma Chi, Ph.D.
Geochemistry
Katrin Hafner, Ph.D.
Geophysics
Katherine Hutton, Ph.D.
Geophysics
Wayne F. Miller, B.S.
Geoophysics
Sally Newman, Ph.D.
Geology

Postdoctoral Scholars

Richard Allen, Ph.D.
Texas Prize Postdoctoral Scholar
Ethan Baxter, Ph.D.
Geochemistry
Anthony Boccialetti, Ph.D.
Planetary Science
Oleg Bogdanovski, Ph.D.
Geochemistry
Matthew Britton, Ph.D.
Planetary Science
Peter Burnard, Ph.D.
Planetary Science
Kari Cooper, Ph.D.
Geochemistry
Eric Cowgill, Ph.D.
O.K. Earl Postdoctoral Scholar in Geology
Todd Ehlers, Ph.D.
Geology
Juliana Fessenden, Ph.D.
Global Environmental Science
Anke Friedrich, Ph.D.
Geology
James Hagadorn, Ph.D.
Geology
Chad Hall, Ph.D.
Geology
Andreas Kappler, Ph.D.
Geobiology
Shelley Kenner, Ph.D.
Geophysics
Yann Klinger, Ph.D.
Geology
Yuri Kunimoto, Ph.D.
Planetary Science
Natalia Krestina, Ph.D.
Geochemistry
Luc Lavier, Ph.D.
Tectonics
Anthea Lee, Ph.D.
Geology
Cint-Yü Lee, Ph.D.
Geochemistry
Heping Liu, Ph.D.
Global Environmental Science
Octavio Mancilla, Ph.D.
Geology

Jean-Luc Margot, Ph.D.
O.K. Earl Postdoctoral Scholar
Katherine McIntyre, Ph.D.
Geochemistry
Karena A. McKinney, Ph.D.
Atmospheric Chemistry
Nadine McQuarrie, Ph.D.
Tectonics
Jed Leigh Mosenfelder, Ph.D.
Geochemistry
Clement Narteau, Ph.D.
Geochemistry
David Noone, Ph.D.
Geochemistry
Seth Olsen, Ph.D.
Global Environmental Science
Thom Rahn, Ph.D.
Geochemistry
Ben Reynolds, Ph.D.
Geochemistry
Chad Saltikov, Ph.D.
Geology
Daniel Stockli, Ph.D.
Geology
Chadwick A. Trujillo, Ph.D.
Planetary Science
Maria Rosa Zapatero-Osorio, Ph.D.
Planetary Science

Visitors

G. Edward Danielson, Ph.D.
Planetary Science
Eric De Jong, Ph.D.
Planetary Science
Amy Jurewicz, Ph.D.
Geochemistry
Monica Kohler, Ph.D.
Geology
Audrey Lutringer, Ph.D.
Geochemistry
Caroline Masiello, Ph.D.
Planetary Science
Francis Nimmo, Ph.D.
Planetary Science
Dorothy S. Woolf, Ph.D.
Geochemistry

Trustees Administration Faculty

Jeroen Ritsema, Ph.D.
Geochemistry

Lecturers

Kathryn Bikle, M.A.
Geology
Charles Elachi, Ph.D.
Planetary Science

Senior Research Associates

Hermann Engelhardt, Dr.rer.Nat.
Geophysics
Egill Hauksson, Ph.D.
Geophysics

Senior Research Fellows

Martha A. House, Ph.D.
Geology
Dimitri Komatsitsch, Ph.D.
Geophysics
Arash Komeili, Ph.D.
Beckman Senior Research Fellow in Geobiology
Jeroen Ritsema, Ph.D.
Geophysics

Faculty Associates

Mark A. Allen, Ph.D.
Planetary Science
Dimitri A. Papanastassiou, Ph.D.
Geochemistry

Moore Distinguished Scholar

Celâl Sengör, Ph.D.
Geology

Visiting Professors

Jean-Paul Montagner, Ph.D.
Geophysics
Bernard J. Wood, Ph.D.
Geology

Visiting Associates

Gillian Foulger, Ph.D.
Geophysics
Kenneth W. Hudnut, Ph.D.
Geophysics
Lucile M. Jones, Ph.D.
Geophysics
Paul Rosen, Ph.D.
Geophysics
Chandon Saikia, Ph.D.
Geophysics
Stanley F. Sander, Ph.D.
Planetary Science
J. Douglas Vule, Ph.D.
Geology
David J. Wald, Ph.D.
Geophysics

Members of the Professional Staff

Michael B. Baker, Ph.D.
Geology
John R. Beckett, Ph.D.
Geology
James H. Chen, Ph.D.
Geochemistry
Ma Chi, Ph.D.
Geochemistry
Katrin Hafner, Ph.D.
Geophysics
Katherine Hutton, Ph.D.
Geophysics
Wayne F. Miller, B.S.
Geoophysics
Sally Newman, Ph.D.
Geology

Postdoctoral Scholars

Richard Allen, Ph.D.
Texas Prize Postdoctoral Scholar
Ethan Baxter, Ph.D.
Geochemistry
Anthony Boccialetti, Ph.D.
Planetary Science
Oleg Bogdanovski, Ph.D.
Geochemistry
Matthew Britton, Ph.D.
Planetary Science
Peter Burnard, Ph.D.
Planetary Science
Kari Cooper, Ph.D.
Geochemistry
Eric Cowgill, Ph.D.
O.K. Earl Postdoctoral Scholar in Geology
Todd Ehlers, Ph.D.
Geology
Juliana Fessenden, Ph.D.
Global Environmental Science
Anke Friedrich, Ph.D.
Geology
James Hagadorn, Ph.D.
Geology
Chad Hall, Ph.D.
Geology
Andreas Kappler, Ph.D.
Geobiology
Shelley Kenner, Ph.D.
Geophysics
Yann Klinger, Ph.D.
Geology
Yuri Kunimoto, Ph.D.
Planetary Science
Natalia Krestina, Ph.D.
Geochemistry
Luc Lavier, Ph.D.
Tectonics
Anthea Lee, Ph.D.
Geology
Cint-Yü Lee, Ph.D.
Geochemistry
Heping Liu, Ph.D.
Global Environmental Science
Octavio Mancilla, Ph.D.
Geology

Jean-Luc Margot, Ph.D.
O.K. Earl Postdoctoral Scholar
Katherine McIntyre, Ph.D.
Geochemistry
Karena A. McKinney, Ph.D.
Atmospheric Chemistry
Nadine McQuarrie, Ph.D.
Tectonics
Jed Leigh Mosenfelder, Ph.D.
Geochemistry
Clement Narteau, Ph.D.
Geochemistry
David Noone, Ph.D.
Geochemistry
Seth Olsen, Ph.D.
Global Environmental Science
Thom Rahn, Ph.D.
Geochemistry
Ben Reynolds, Ph.D.
Geochemistry
Chad Saltikov, Ph.D.
Geology
Daniel Stockli, Ph.D.
Geology
Chadwick A. Trujillo, Ph.D.
Planetary Science
Maria Rosa Zapatero-Osorio, Ph.D.
Planetary Science

Visitors

G. Edward Danielson, Ph.D.
Planetary Science
Eric De Jong, Ph.D.
Planetary Science
Amy Jurewicz, Ph.D.
Geochemistry
Monica Kohler, Ph.D.
Geology
Audrey Lutringer, Ph.D.
Geochemistry
Caroline Masiello, Ph.D.
Planetary Science
Francis Nimmo, Ph.D.
Planetary Science
Dorothy S. Woolf, Ph.D.
Geochemistry

Trustees Administration Faculty

Jeroen Ritsema, Ph.D.
Geochemistry

Lecturers

Kathryn Bikle, M.A.
Geology
Charles Elachi, Ph.D.
Planetary Science

Senior Research Associates

Hermann Engelhardt, Dr.rer.Nat.
Geophysics
Egill Hauksson, Ph.D.
Geophysics

Senior Research Fellows

Martha A. House, Ph.D.
Geology
Dimitri Komatsitsch, Ph.D.
Geophysics
Arash Komeili, Ph.D.
Beckman Senior Research Fellow in Geobiology
Jeroen Ritsema, Ph.D.
Geophysics
Division of the Humanities and Social Sciences

John O. Ledyard, Chair
James F. Woodward, Executive Officer for the Humanities
Thomas R. Palfrey, Executive Officer for the Social Sciences

Professors Emeriti
Louis Breger, Ph.D.
Psychoanalytic Studies
J. Kent Clark, Ph.D.
Literature
David C. Elliott, Ph.D.
History
Peter W. Fay, Ph.D.
History
Daniel J. Kevles, Ph.D.
J. O. and Juliette Koepfli Professor of the Humanities
Burton H. Klein, Ph.D.
Economics
Edwin S. Munger, Ph.D.
Geography
Martin Ridge, Ph.D.
History
Thayer Scudder, Ph.D.
Anthropology
Annette J. Smith, Ph.D.
Literature
Frederick B. Thompson, Ph.D.
Applied Philosophy and Computer Science

Associate Professors Emeriti
Heinz E. Ellersieck, Ph.D.
History
Robert D. Wayne, M.A.
German

Lecturers Emeriti
Lee E. Browne, M.S.
Education
Valentina A. Lindholm, M.A.
Russian

Senior Research Associate Emeritus
Bozena Heinz Thompson, Ph.D.
Linguistics

Professors
Kim C. Border, Ph.D.
Economics
Peter L. Bossaerts, Ph.D.
Finance
Jed Z. Buchwald, Ph.D.
Doris and Henry Dreifuss Professor of History
Colin F. Camerer, Ph.D.
Rea A. and Lela G. Axline Professor of Business Economics
Lance E. Davis, Ph.D.
Mary Stillman Harkness Professor of Social Science
Jean E. Ensminger, Ph.D.
Anthropology
David M. Grether, Ph.D.
Economics
Philip T. Hoffman, Ph.D.
History and Social Science
Matthew O. Jackson, Ph.D.
Economics
D. Roderick Kiewiet, Ph.D.
Political Science
J. Morgan Kousser, Ph.D.
History and Social Science
Jenjoy La Belle, Ph.D.
Literature
John O. Ledyard, Ph.D., D.Lit.h.c.
Economics and Social Sciences
James Z. Lee, Ph.D.
History
Oscar Mandel, Ph.D.
Literature
Richard D. McKelvey, Ph.D.
Ede and Lesa Bowerman Professor of Political Science
Peter C. Ordeeshook, Ph.D.
Political Science
Thomas R. Palfrey, Ph.D.
Economics and Political Science
George W. Pigmam III, Ph.D.
Literature
Charles R. Plott, Ph.D., D.Lit.h.c.
Edward S. Harkness Professor of Economics and Political Science
Robert A. Rosenstone, Ph.D.
History
James F. Woodward, Ph.D.
Philosophy

Associate Professors
R. Michael Alvarez, Ph.D.
Political Science
Diana L. Barkan, Ph.D.
History
Fiona Cowie, Ph.D.
Philosophy
William Deverell, Ph.D.
History
Jeffrey A. Dubin, Ph.D.
Economics
Kevin M. Gilmartin, Ph.D.
Philosophy
Christopher R. Hitchcock, Ph.D.
Philosophy
Catherine Jurca, Ph.D.
Literature
Jonathan N. Katz, Ph.D.
Political Science
Robert P. Sherman, Ph.D.
Economics and Statistics
Cindy Weinstein, Ph.D.
Literature

Assistant Professors
Warren C. Brown, Ph.D.
History
Caroline M. Fohlin, Ph.D.
Economics
Paolo Ghirardato, Ph.D.
Economics
Amy M. King, Ph.D.
Literature
Dominic P. Murphy, Ph.D.
Philosophy
Steven R. Quartz, Ph.D.
Philosophy
Simon J. Wilkie, Ph.D.
Economics

Ahmanson Postdoctoral Instructor
Katharine Norris, Ph.D.
History

Weisman Postdoctoral Instructor
Mark Colyvan, Ph.D.
Philosophy

Instructors
Andrea Loettgers, Ph.D.
History
Clementine Oliver, Ph.D.
History

Lecturers
Andreas Aebl, Ph.D.
German
Gloria Arjona, M.A.
Spanish
Wilton Barnhardt, B.A.
Creative Writing
Shelley M. Bennett, Ph.D.
Art History
George Cheron, Ph.D.
Russian
Charles de Bedts, Ph.D.
French
Joann Eisberg, Ph.D.
History

Trustees Administration Faculty
Humanities and Social Sciences
Isabel Wunsche, Ph.D.
Art History

Senior Research Fellows
Matthias Hild, Ph.D.
Philosophy
Daniel Kennefick, Ph.D.
History of Science and Physics/Astronomy
Christopher A. Lehner, Ph.D.
Humanities
Peter J. Westwick, Ph.D.
Humanities

Faculty Associates
Stuart A. Ende, Ph.D.
Literature
Miriam Feldblum, Ph.D.
Humanities
Judith R. Goodstein, Ph.D.
History

Moore Distinguished Scholars
John Brewer, Ph.D.
History
Evelyn Fox Keller, Ph.D.
History

Visiting Professors
Bhaskar Dutta, Ph.D.
Economics
W. Bentley MacLeod, Ph.D.
Economics and Law
Edward J. McCaffery, J.D.
Law
Andrew W. Postlewaite, Ph.D.
Economics
Arunava Sen, Ph.D.
Economics
Kevin M. Sharpe, Ph.D.
Andres W. Mellon Visiting Professor of History
Kim Sterelny, Ph.D.
Philosophy
John Sutherland, Ph.D.
Literature
Eric L. Talley, Ph.D.
Law
Noriko Tsuya, Ph.D.
History
William R. Zame, Ph.D.
Economics

Visiting Associate Professors
Jasmina Arifovic, Ph.D.
Economics
David G. Gutierrez, Ph.D.
History
Jesper Lutzen, Ph.D.
History

Visiting Assistant Professors
Brandice Canes-Wrone, Ph.D.
Political Science
Miguel Costa-Gomes, Ph.D.
Economics
Rachel C. Lee, Ph.D.
Literature
Jesse J. Prinz, Ph.D.
Philosophy

Visiting Associates
Marianne de Laet, Ph.D.
Humanities
Jozef Illy, Ph.D.
History
Tinne Hoff Kjeldsen, Ph.D.
History
Robert C. Ritchie, Ph.D.
History
Matthew L. Spitzer, J.D., Ph.D.
Law and Social Science

Postdoctoral Scholar
Anne Hamker, Ph.D.
Humanities

Division of Physics, Mathematics and Astronomy
Thomas A. Tombrello, Chair
Kenneth G. Libbrecht, Executive Officer for Physics
Nicholas Z. Scoville, Executive Officer for Astronomy
Barry M. Simon, Executive Officer for Mathematics
Barry C. Barish, Director, LIGO Laboratory (Laser Interferometer Gravitational-Wave Observatory)
Richard Ellis, Director, Palomar Observatory
George Helou, Executive Director of the Infrared Processing and Analysis Center
Thomas G. Phillips, Director, Caltech Submillimeter Observatory
Anneila I. Sargent, Director, Owens Valley Radio Observatory and Director, Interferometry Science Center
B. Thomas Soifer, Director, SIRTF (Space Infrared Telescope Facility) Science Center

Professors Emeriti
Tom M. Apostol, Ph.D.
Mathematics
Robert F. Bacher, Ph.D., Sc.D., LL.D.
Physics
Charles A. Barnes, Ph.D.
Physics
F. Brock Fuller, Ph.D.
Mathematics
Jesse L. Greenstein, Ph.D., D.Sc.
Lee A. DuBridge Professor of Astrophysics

Professors
Michael Aschbacher, Ph.D.
Shaler Arthur Hanisch Professor of Mathematics
Barry C. Barish, Ph.D.
Ronald and Maxine Linde Professor of Physics
Roger D. Blandford, Ph.D.
Richard Chace Tolman Professor of Theoretical Astrophysics
Judith G. Cohen, Ph.D.
Astronomy
Michael C. Cross, Ph.D.
Theoretical Physics
S. George Djorgovski, Ph.D.
Astronomy
Ronald W. P. Drever, Ph.D.
Physics
James P. Eisenstein, Ph.D.
Physics
Richard S. Ellis, D.Phil.
Astronomy
Bradley W. Filippone, Ph.D.
Physics
Matthias Flach, Ph.D.
Mathematics
Murray Gell-Mann, Ph.D., Sc.D., D.Sc., Nobel Laureate
Robert Andrews Millikan Professor of Theoretical Physics
Jesse L. Greenstein, Ph.D., D.Sc.
Lee A. DuBridge Professor of Astrophysics
Ralph W. Kavanagh, Ph.D.
Physics
Herbert B. Keller, Ph.D.
Applied Mathematics
W. A. J. Luxemburg, Ph.D.
Mathematics
Gerry Neugebauer, Ph.D.
Robert Andrews Millikan Professor of Physics
J. Beverley Oke, Ph.D.
Astronomy
Maarten Schmidt, Ph.D., Sc.D.
Francis L. Moseley Professor of Astronomy
John Todd, B.Sc.
Mathematics
Robert L. Walker, Ph.D.
Physics
Ward Whaling, Ph.D.
Physics
Harold Zirin, Ph.D.
Astronomy

Trustees Administration Faculty
Facult y Associate
I. Juliana Sackmann, Ph.D.
Physics

Visiting Professor
S. James Gates, Ph.D.
Physics

Visiting Associates
Warren G. Anderson, Ph.D.
Physics
Hans Bethe, Ph.D.
Physics
James J. Bock, Ph.D.
Physics
Vladimir B. Braginsky, Ph.D.
Physics
José Cernicharo, Ph.D.
Physics
Gary Chanan, Ph.D.
Astronomy
Gianni Conforto, Ph.D.
Physics
Curt Cutler, Ph.D.
Physics
Reinaldo De Carvalho, Ph.D.
Astronomy
Robert V. Duncan, Ph.D.
Physics
Gerald Eigen, Ph.D.
Physics
Wolfgang Fink, Ph.D.
Physics
Raymond Fuzesy
Physics
Dale E. Gary, Ph.D.
Astrophysics
Joseph Giacme, Ph.D.
Mathematics
Moshe Goldberg, Ph.D.
Mathematics
Philip R. Goode, Ph.D.
Solar Physics
Zeno Greenwood, Ph.D.
Physics
James E. Gunn, Ph.D.
Physics
Salman Habib, Ph.D.
Physics
Peter K. Haff, Ph.D.
Physics
Farshid Hajir, Ph.D.
Mathematics
P. Chris Hammel, Ph.D., Habil.
Physics
James Higdon, Ph.D.
Physics
Robert M. Housley, Ph.D.
Physics
Jean Humbert, Ph.D.
Physics
Warren Johnson, Ph.D.
Physics
Sug-Whan Kim, Ph.D.
Physics
Richard C. Lamb, Ph.D.
Physics
Jaewoo Lee, Ph.D.
Physics
Lee Lindblom, Ph.D.
Physics
Yan Liu, Ph.D.
Physics
William Loomis, Ph.D.
Physics
Peter V. Mason, Ph.D.
Physics
Steve McQuirce, Ph.D.
Physics
Martin McHugh, Ph.D.
Physics
Stanislav Mikheev, Ph.D.
Physics
Valery Mitrofanov, M.Sc.
Physics
Benoit Mours, Ph.D.
Physics
Mark Paul, Ph.D.
Physics
Ralph Pudritz, Ph.D.
Astronomy
Michael Ramsey-Musolf, Ph.D.
Physics
Paul Renteln, Ph.D.
Physics
Robert Schofield, Ph.D.
Physics
Ryoichi Seki, Ph.D.
Physics
Eugene Serabyn, Ph.D.
Physics
Mark H. Shapiro, Ph.D.
Physics
Keith Taylor, Ph.D.
Astronomy
Valentine Telegdi, Ph.D.
Physics
Peter G. Wannier, Ph.D.
Physics
Philip Wigen, Ph.D.
Physics
Peter Wilson, Ph.D.
Physics
John M. Worlock, Ph.D.
Physics
Sanichiro Yoshida, Ph.D.
Physics
Natalia Zotov, Ph.D.
Physics

Moore Distinguished Scholar
Jacobus Hendricks van Lint, Ph.D.
Mathematics

Members of the Professional Staff
Rachel Akeson, Ph.D
William E. Althouse, B.S.
Lee Armus, Ph.D.
Thomas Barlow, Ph.D.
Bruce Berriman, Ph.D.
James Kent Blackburn, Ph.D.
Robert J. Brucato, Ph.D.
Jordan Camp, Ph.D.
Robert J. Brucato, Ph.D.
Mark Coles, Ph.D.
Walter R. Cook, Ph.D.
Dennis C. Coyne, Ph.D.
Alan C. Cummings, Ph.D.
Roc Cutri, Ph.D.
Richard DeKany, Ph.D.
Riccardo De Salvo, Ph.D.
Fan Fang, Ph.D.
Kenneth Ganga, Ph.D.
Richard M. Goecklen, B.S.
Thomas D. Gottschalk, Ph.D.
Carl Grillmair, Ph.D.
Harry E. Hardebeck, Ph.D.
Thomas Jarrett, Ph.D.
Joel E. Keene, Ph.D.
Davy Kirkpatrick, Ph.D.
William Latter, Ph.D.
Albert Lazzarin, Ph.D.
Richard Leske, Ph.D.
Deborah Levine, Ph.D.
Phillip E. Lindquist, Eng.
Roger Linfield, Ph.D.
Carol Lonsdale, Ph.D.
Steven Lord, Ph.D.
Nanyao Lu, Ph.D.
William Mahoney, Ph.D.
Kenneth Marsh, Ph.D.
Keith Matthews, M.S.

Senior Postdoctoral Scholars
Aaron Barth, Ph.D.
Astronomy
Ravinder Bhatia, Ph.D.
Physics
Abraham Boogert, Ph.D.
Physics
Arnold I. Boothroyd, Ph.D.
Physics
Andreas Brandhuber, Ph.D.
Physics
Robert J. Brunner, Ph.D.
Astronomy
Eyal Buks, Ph.D.
Physics
John Carpenter, Ph.D.
Astronomy
Scott Chapman, Ph.D.
Physics
Brajesh Choudhary, Ph.D.
Physics
Christina M. Cohen, Ph.D.
Physics
C. Darren Dowell, Ph.D.
Physics
Luming Duan, Ph.D.
Astronomy
Eiichi Egami, Ph.D.
Astronomy
Kamil Ekinçi, Ph.D.
Physics
Alvise Favara, Ph.D.
Physics
Joseph Mazzarella, Ph.D.
Alberto Nortiega-Crespo, Ph.D.
Deborah Padgett, Ph.D.
Stephen Padin, Ph.D.
Frederick J. Raab, Ph.D.
William Rea, Ph.D.
Gary H. Sanders, Ph.D.
Richard Savage, Ph.D.
Stephen M. Schindler, Ph.D.
Stephen L. Scott, Ph.D.
David Shupe, Ph.D.
Nancy Silbermann, Ph.D.
Donald Skelton, M.S.
John Stauffer, Ph.D.
Lisa Storrie-Lombardi, Ph.D.
Jason Surace, Ph.D.
Schuyler Van Dyk, Ph.D.
Ann Wehrle, Ph.D.
Stanley E. Whitcomb, Ph.D.
David P. Woody, Ph.D.
Hiroaki Yamamoto, Ph.D.
Ren-Yuan Zhu, Ph.D.

P. Chris Hammel, Ph.D., Habil.
Physics
James Higdon, Ph.D.
Physics
Robert M. Housley, Ph.D.
Physics
Jean Humbert, Ph.D.
Physics
Warren Johnson, Ph.D.
Physics
Sug-Whan Kim, Ph.D.
Physics
Richard C. Lamb, Ph.D.
Physics
Jaewoo Lee, Ph.D.
Physics
Lee Lindblom, Ph.D.
Physics
Yan Liu, Ph.D.
Physics
William Loomis, Ph.D.
Physics
Peter V. Mason, Ph.D.
Physics
Steve McQuirce, Ph.D.
Physics
Martin McHugh, Ph.D.
Physics
Stanislav Mikheev, Ph.D.
Physics
Valery Mitrofanov, M.Sc.
Physics
Benoit Mours, Ph.D.
Physics
Mark Paul, Ph.D.
Physics
Ralph Pudritz, Ph.D.
Astronomy
Michael Ramsey-Musolf, Ph.D.
Physics
Paul Renteln, Ph.D.
Physics
Robert Schofield, Ph.D.
Physics
Ryoichi Seki, Ph.D.
Physics
Eugene Serabyn, Ph.D.
Physics
Mark H. Shapiro, Ph.D.
Physics
Keith Taylor, Ph.D.
Astronomy
Valentine Telegdi, Ph.D.
Physics
Peter G. Wannier, Ph.D.
Physics
Philip Wigen, Ph.D.
Physics
Center for Advanced Computing Research

Paul C. Messina
Director; Assistant Vice President for Scientific Computing

James C. T. Pool
Executive Director

Thomas A. Prince
Associate Director

CAKR Staff

Monty Adams
Michael Alivazis
Paul Angelino
Mark Bartelt
Bevan Bennett
Maciej Brodowicz
Sharon Brunett
Julian Bunn
Sarah Emery Bunn
Chip Chapman
Julian Cummings
Tom Gottschalk
Jill Hayes
Jan Lindheim
Santiago Lombeida
Heidi Lorenz-Wirzba
James Patton
Susan Powell
Raul Radovitsky
Patty Sable
Tracey Sheffer
Thomas Sterling
Roy Williams
Heather Young

Ombuds Office

Helen Hasenfeld, Ombudsperson

Janis Schonauer, Ombudsperson

Staff/Faculty Consultation Center

Susan Cross, Co-Manager

April White, Co-Manager

Avi Leibovici, Counselor

Industrial Relations Center

Gaylord E. Nichols, Jr., B.A.
Director

Information Technology Services

John A. Dundas III, M.S., Director

Robert S. Logan, B.S., Deputy Director

Staff Members

Glenn W. Bach, M.S.
Bruce J. Bell
RuthAnne Bevier, M.L.S.
Michael Black, B.S.
Michael B. Butler, B.S.
James V. Bys, B.S.
Phillip M. Cheetham, B.S.
Kar M. Cheung
Charles Cottillier
Jennifer Davis, B.S.
Daniel Dilling, B.S.
Pamela Y.C. Fong, B.S.
Noah Gift, B.S.
Angela A. Goshorn, A.A.
Martin Griffiths, M.S.
Sandy Kapteyn, B.S.
Robert W. Kerbs, M.S.
David Kewley, M.S.
Kelly Large
David W. LeBlanc
Nathan V. Lee, B.S.
Minh Ma, B.S.
Quang (Vincent) Ma, B.S.
Chris Malek, M.S.
Leslie M. Maxfield, M.S.
Alrun M. Michels, M.S.
Joseph Monaly, B.S.
Roger E. Murray, B.S.
Naveed Near-Ansari
Anthony Nguyen, M.A.
Scott Andrew Norton, B.S.
Dallas W. Oiller, Jr.
Jian X. Ou, B.S.
Carolyn Patterson, B.A.
Mia M. Quaintance
Tony C. Ruyter, A.A.
Mark Ryback
Dimitris Sakellariou, M.S.
Mike Salcido, M.S.
Chad E. Schmutzer, B.S.
Erich Schneider, B.S.
Adele E. Shakal, B.S.
Josh Smith, B.A.
Marzika (Mary) Szalonek
Alex Tang, B.S.
Thomas Tubman, M.S.
Serge Tyurin
Wayne R. Waller, M.S.
Larry Watanabe, M.S.
Kimo Y. Yap, Ph.D.

Institute Library System

Cabinet

Anne M. Buck, M.S. (L.S.)
University Librarian

Kimberly Douglas, M.A., M.S. (L.S.)
Head, Technical Information Services; Director, Sherman Fairchild Library of Engineering and Applied Science

Eric F. Van de Velde, Ph.D.
Director, Library Information Technology

Sandra S. Garstang, B.S.
Manager, Circulation Services

S. Katherine Johnson, M.S. (L.I.S.)
Head, Technical Processing Services

Judith E. Brott, M.B.A.
Business Manager

Professional Staff

Betsy Coles, B.A.
Janet Jenks, M.S. (L.S.)
John McDonald, M.L.S.
Judith Nollar, M.L.S.
George Porter, M.S. (L.S.)
Ted Qu, M.L.S.
Hema Ramachandran, M.L.S.
Dana Roth, M.S., M.S. (L.S.)
Caroline Smith, M.S. (L.I.S.)
Ed Sponsler, B.A.
Daniel Taylor, M.A., M.A. (L.S.)
Louisa Toot, M.S. (L.I.S)
Jay Walters, B.A.

Option Library Representatives

Harry Atwater, Ph.D.
John F. Brady, Ph.D.
Norman H. Brooks, Ph.D.
Jehoshua Bruck, Ph.D.
Erick Carreira, Ph.D.
K. Mani Chandy, Ph.D.
Lance E. Davis, Ph.D.
Richard Flanagan, Ph.D.
Alexander S. Kechris, Ph.D.
Daniel L. Meiron, Ph.D.
Gaylord E. Nichols, Jr., B.A.
Timothy J. Pearson, Ph.D.
George R. Rossman, Ph.D.
Erin M. Schuman, Ph.D.
Petr Vogel, Ph.D.

Archives

Judith R. Goodstein, Ph.D.
University Archivist, Faculty Associate, Registrar

Jet Propulsion Laboratory

Administered by Caltech for the National Aeronautics and Space Administration

Charles Elachi, *Director*

Eugene L. Tartini, *Deputy Director*

Executive Council

Blaine A. Baggett
Manager, Office of Communications and Education

Harry K. Detweiler
Director for Safety and Mission Success

Diane L. Evans
Director for Earth Science and Technology

Thomas R. Gavin
Associate Director for Flight Projects and Mission Success

Susan D. Henry
Deputy Director for Business Operations and Human Resources

Chris P. Jones
Director for Planetary Flight Projects

Fred C. McNutt
Associate Director/Chief Financial Officer and Director for Business Operations and Human Resources
OFFICERS AND FACULTY

University of California = UC Berkeley
California State University = Cal State L.A.

David Baltimore, Ph.D., Nobel Laureate, President; Professor of Biology

John Norman Abelson, Ph.D., George Beadle Professor of Biology
B.S., Washington State University, 1960; Ph.D., Johns Hopkins University, 1965. Professor, Caltech, 1982–91; Beadle Professor, 1991–. Chair, Division of Biology, 1989–95.

Yaser S. Abu-Mostafa, Ph.D., Professor of Electrical Engineering and Computer Science
B.Sc., Cairo University, 1979; M.S.E.E., Georgia Institute of Technology, 1981; Ph.D., Caltech, 1983. Garrett Research Fellow in Electrical Engineering, 1983; Assistant Professor, 1983–89; Associate Professor, 1989–94; Professor, 1994–.

Allan James Acosta, Ph.D., Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering, Emeritus

Christoph Carl Adami, Ph.D., Faculty Associate in Computation and Neural Systems; Lecturer in Computation and Neural Systems

Josef F. Ackeins, Ph.D., Assistant Professor of Geochemistry and Global Environmental Science

Andreas Aebi, Ph.D., Lecturer in German

Sara Ahlgren, Ph.D., Senior Research Fellow in Biology
B.A., Wellesley College, 1987; Ph.D., University of California (San Francisco), 1993. Caltech, 2001–.

Channing C. Ahn, Ph.D., Senior Research Associate in Materials Science; Lecturer in Materials Science

Eric Thomas Ahrens, Ph.D., Visiting Associate in Biology

Thomas J. Ahrens, Ph.D., W. M. Keck Professor of Earth Sciences and Professor of Geophysics
B.S., Massachusetts Institute of Technology, 1975; M.S., Caltech, 1978; Ph.D., Rensselaer Polytechnic Institute, 1962. Associate Professor, Caltech, 1967–76; Professor, 1976–; Keck Professor, 1996–.

Arden Leroy Allbee, Ph.D., Professor of Geology and Planetary Science

Jose Alberola-Ha, M.D., Ph.D., Assistant Professor of Biology
M.D., University of Valencia, 1987; Ph.D., University of Barcelona, 1991. Visiting Associate, Caltech, 1997; Assistant Professor, 1998–.

Shawkat Allinov, Ph.D., Visiting Associate in Mathematics
Ph.D., Moscow State University (Institute for Applied Mathematics), 1970. Vice Rector, University of World Economy and Diplomacy (Tashkent), 1999–. Caltech, 2000–01.

Claude J. Allegre, D.Sc., Moore Distinguished Scholar
Clarence R. Allen, Ph.D., Professor of Geology and Geophysics, Emeritus
B.A., Reed College, 1949; M.S., Caltech, 1951; Ph.D., 1954. Assistant Professor, 1955–59; Associate Professor, 1959–64; Professor, 1964–69; Emeritus, 1969–. Interim Director, Seismological Laboratory, 1965–67; Acting Chairman, Division of Geology, 1967–68.

Mark Andrew Allen, Ph.D., Faculty Associate in Planetary Science

John Morgan Allman, Ph.D., Frank P. Hixon Professor of Neurobiology
B.A., University of Virginia, 1965; A.M., University of Chicago, 1968; Ph.D., 1971. Assistant Professor, Caltech, 1974–77; Associate Professor, 1977–84; Professor, 1984–89; Hixon Professor, 1989–.

R. Michael Alvarez, Ph.D., Associate Professor of Political Science
B.A., Carleton College, 1986; M.A., Duke University, 1990; Ph.D., 1993. Assistant Professor, Caltech, 1992–95; Associate Professor, 1995–.

James Francis Amatruda, M.D., Ph.D., Visiting Associate in Biology
A.B., Harvard College, 1981; M.D., Washington University School of Medicine, 1986; Ph.D., 1992. Assistant Professor, Caltech, 1992–95; Associate Professor, 1995–.

David Jeffrey Anderson, Ph.D., Emeritus

N. Ananthkrishnan, Ph.D., Visiting Assistant Professor of Aeronautics

Richard A. Andersen, Ph.D., James G. Bovell Professor of Neuroscience
B.S., University of California (Davis), 1973; Ph.D., University of California (San Francisco), 1979. Caltech, 1991–.
Diana L. Bank, Ph.D., Associate Professor of Chemistry
B.Sc., Technion—Israel Institute of Technology, 1981; M.Sc., Tel Aviv University, 1981; Ph.D., Harvard University, 1985. Visiting Associate Professor, Caltech, 1989–90; Assistant Professor, 1990–96; Associate Professor, 1996–.

Charles Andrew Barnes, Ph.D., Professor of Physics, Emeritus
B.A., McMaster University, 1943; M.A., University of Western Ontario, 1944; Ph.D., University of Cambridge, 1950. Research Fellow, Caltech, 1953–54; Senior Research Fellow, 1954–58; Associate Professor, 1958–62; Professor Emeritus, 1992–.

Wilton Barnhardt, M.Phil., Lecturer in Creative Writing

Alan Howard Barr, Ph.D., Professor of Computer Science, Executive Officer for Computer Science
B.S., Rensselaer Polytechnic Institute, 1973; M.S., 1976; Ph.D., 1983. Research Fellow, Caltech, 1984; Assistant Professor, 1984–90; Associate Professor, 1990–98; Executive Officer, 1998–; Executive Officer, 2000–.

Jim Barry, B.A., Lecturer in Art

Jacqueline K. Barton, Ph.D., D.Sc.h.c., Arthur and Marian Hanisch Memorial Professor and Professor of Chemistry
B.A., Barnard College, 1974; Ph.D., Columbia University, 1978; D.Sc.h.c., New Jersey Institute; Kenyon College; Skidmore College. Visiting Associate, Caltech, 1974–76; Professor, 1989–; Hanisch Professor, 1997–.

John Spencer Baskin, Ph.D., Senior Research Fellow in Chemistry
B.S., Georgia Institute of Technology, 1976; M.S., 1983; Ph.D., Caltech, 1990. Research Fellow, 1995–98; Senior Research Fellow, 1998–.

Robert Bau, Ph.D., Visiting Associate in Chemistry
B.S., University of Hong Kong, 1964; Ph.D., University of California (Los Angeles), 1968. Professor, University of Southern California, 1977–. Caltech, 1994–.

Wolfgang Baumeister, Dr. rer. nat., Moore Distinguished Scholar
B.S., University of Dusseldorf, 1973. Head, Department of Structural Biology, Max Planck Institute, 1982–. Caltech, 2000–01.

Jesse Lee Beauchamp, Ph.D., Mary and Charles Ferkel Professor of Chemistry
B.S., Caltech, 1964; Ph.D., Harvard University, 1967. Noyes Research Instructor, Caltech, 1967–69; Assistant Professor, 1969–71; Associate Professor, 1971–74; Professor, 1974–2000; Ferkel Professor, 2000–.

James L. Beck, Ph.D., Professor of Applied Mechanics and Civil Engineering

Howard Starr Becker, Ph.D., Visiting Associate in Mathematics
B.S., Dartmouth College, 1972; Ph.D., University of California (Los Angeles), 1979. Associate Professor, University of South Carolina (Columbia), 1984–; Instructor, Caltech, 1982–85; Research Fellow, 1982–84; Visiting Associate Professor, 1987; Visiting Associate, 1997; 2001.

Katrin Becker, Ph.D., Senior Research Fellow in Physics
Vordipl., Ruhr Universität (Germany), 1987; Dipl., Rheinische Fredrick Wilhelms Universität, 1991; Ph.D., University of Bonn, 1994. Caltech, 1997–.

Igor Belegradek, Ph.D., Instructor in Mathematics

Lloyd Douglas Bell II, Ph.D., Visiting Associate in Applied Physics

Josette Bellan, Ph.D., Visiting Associate in Aeronautics

Paul Murray Bellan, Ph.D., Professor of Applied Physics
B.Sc., University of Manitoba, 1970; M.A., Princeton University, 1972; Ph.D., 1976. Assistant Professor, Caltech, 1977–85; Associate Professor, 1983–89; Professor, 1990–.

Shelley M. Bennett, Ph.D., Lecturer in Art

Seumas Benzer, Ph.D., D.Sc,h.c., Crawford Laureate
James G. Burton Professor of Neurosciences, Emeritus
B.A., Brooklyn College, 1942; M.S., Purdue University, 1945; Ph.D., 1947; D.Sc.h.c., Purdue University. Research Fellow, Caltech, 1949–50; Visiting Associate, 1965–70; Professor, 1967–75; Bowell Professor, 1975–91; Boswell Professor Emeritus, 1991–.

John Edward Bercaw, Ph.D., Centennial Professor of Chemistry, Executive Officer for Chemistry
B.S., North Carolina State University, 1967; Ph.D., University of Michigan, 1971. Arthur Amos Noyes Research Fellow, Caltech, 1972–74; Assistant Professor, 1974–77; Associate Professor, 1977–79; Professor, 1979–89; Shell Distinguished Professor, 1981–90; Centennial Professor, 1993–; Executive Officer, 1999–.

Ora Bergman, Ph.D., Sherman Fairchild Senior Research Fellow in Theoretical Physics

Lynn E. Bernstein, Ph.D., Visiting Associate in Biology

Andrew W. Blain, Ph.D., Assistant Professor of Astronomy

Geoffrey A. Blake, Ph.D., Professor of Cosmochemistry and Planetary Chemistry and Professor of Chemistry, Deputy Director, Owens Valley Radio Observatory
B.S., Duke University, 1981; Ph.D., Caltech, 1986. Assistant Professor of Cosmochemistry, 1987–93; Associate Professor of Cosmochemistry and Planetary Sciences, 1993–97; Professor, 1997–99; Professor of Cosmochemistry and Planetary Sciences and Professor of Chemistry, 1999–. Deputy Director, 2000–.

Roger David Blandford, Ph.D., Richard Chace Tolman Professor of Theoretical Astrophysics
Marianne Bronner-Fraser, Ph.D., Albert Billings Ruddock Professor of Biology
B.S., Brown University, 1975; Ph.D., Johns Hopkins University, 1979. Professor, Caltech, 1996–2000; Ruddock Professor, 2000–.

Norman Herrick Brooks, Ph.D., James Irvine Professor of Environmental and Civil Engineering, Emeritus

David A. Boyd, Ph.D., Visiting Associate in Applied Physics

James Boyk, M.F.A., Lecturer in Electrical Engineering/Music
B.S., Caltech, 1970; M.A., M.D., Visiting Associate in Bioengineering

William G. Bradley, Jr., Ph.D., M.D., Visiting Associate in Biology
B.S., Caltech, 1970; M.A., M.D., Visiting Associate in Biochemistry

Patrick R. Brady, Ph.D., Visiting Associate in LIGO
B.Sc., University College (Dublin), 1988; M.Sc., 1989; Ph.D., University of Alberta (Canada), 1991. Assistant Professor, University of Wisconsin (Milwaukee), 1999–. Research Fellow, Caltech, 1995–98; Visiting Associate, 2000.

Vladimir B. Braginsky, Ph.D., Visiting Associate in Physics
B.S., Moscow University, 1954; Ph.D., 1959. Professor, Moscow State University, 1986–. Sherman Fairchild Distinguished Scholar, Caltech, 1990–91; Visiting Associate, 1994–.

Louis Breger, Ph.D., Professor of Psychoanalytic Studies, Emeritus
B.A., California State University (Los Angeles), 1957; M.A., Ohio State University, 1959; Ph.D., 1961. Visiting Associate Professor of Psychology, Caltech, 1970–71; Associate Professor, 1971–80, Associate Professor of Psychology and the Humanities, 1980–83; Professor of Psychoanalytic Studies, 1981–94; Professor Emeritus, 1994–.
Jehoshua Bruck, Ph.D., Gordon and Betty Moore Professor of Computation and Neural Systems and Electrical Engineering B.Sc., Technion—Israel Institute of Technology, 1982; M.Sc., 1983; Ph.D., Stanford University, 1989. Associate Professor, Caltech, 1994–98; Professor, 1998–2000; Moore Professor, 2001–.

Sukbok Chang, Ph.D., Visiting Associate in Chemistry

Rea A. and Lela G. Axline Professor of Business Economics

Andrew Chermak, Ph.D., B.A., San Jose State College, 1968; Ph.D., University of California (Santa Cruz), 1975. Visiting Associate, Caltech, 1984–85; Senior Research Associate, 1985–89; Senior Research Associate, 1989–.

Sukbok Chang, Ph.D., Visiting Associate in Chemistry

B.S., Korea University, 1985; Ph.D., Harvard University, 1996. Assistant Professor, Ewha Womans University, 1998–, Caltech, 2000–01.

Joel W. Burdick, Ph.D., Professor of Mechanical Engineering B.S., Duke University, 1981; M.S., Stanford University, 1982; Ph.D., 1988. Assistant Professor, Caltech, 1986–89; Associate Professor, 1994–2000, Professor, 2000–.

Thomas Kirk Caughhey, Ph.D., Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering, Emeritus B.Sc., Glasgow University, 1948; M.M.E., Cornell University, 1952; Ph.D., Caltech, 1954. Instructor in Applied Mechanics, 1953–54; Assistant Professor, 1954–58; Associate Professor, 1958–62; Professor, 1962–88; Professor of Applied Mechanics and Mechanical Engineering, 1988–94, Hayman Professor, 1994–96, Hayman Professor Emeritus, 1996–.

David C. Chan, M.D., Ph.D., Assistant Professor of Biology, Bren Scholar A.B., Harvard College, 1988; M.D., Harvard Medical School, 1996; Ph.D., 1996. Assistant Professor, Caltech, 2000–; Bren Scholar, 2000–.

Peng-Sheng Chen, Ph.D., Visiting Associate in Biology M.D., National Taiwan University, 1979. Staff Cardiologist and Director of Pacemaker and ICD Clinic and Director of Cardiac Electrophysiology Research, Cedars-Sinai Medical Center, 1992–, Professor of Medicine in Residence, University of California (Los Angeles), 1998–, Caltech, 2000–02.

Tirong Chen, M.S., Visiting Associate in Applied Physics M.S., Wuhan University (China), 1962. Visiting Associate, Caltech, 1984–85; Senior Research Associate, 1985–89; Senior Research Associate, 1989–.

Judith Lynn Campbell, Ph.D., Professor of Chemistry and Biology B.A., Wellesley College, 1965; Ph.D., Harvard University, 1974. Assistant Professor of Chemistry, Caltech, 1977–81; Associate Professor, 1983–85; Associate Professor of Chemistry and Biology, 1985–89; Professor, 1989–.

Emmanuel Candès, Ph.D., Assistant Professor of Applied and Computational Mathematics Dipl., École Polytechnique, 1993; D.E.A., University of Paris IV and University of Paris IX, 1994; Ph.D., Stanford University, 1998. Assistant Professor of Applied Mathematics, Caltech, 2000; Assistant Professor of Applied and Computational Mathematics, 2000–.
Mark E. Davis, Ph.D., Warren and Katherine Schlinger Professor Chemical Engineering; Executive Officer for Chemical Engineering
B.S., University of Kentucky, 1977; M.S., 1978; Ph.D., 1981, Professor, Caltech, 1991–93; Schlinger Professor, 1993–. Executive Officer, 1999–.

Richard Albert Dean, Ph.D., Professor of Mathematics, Emeritus
B.S., Caltech, 1945; A.B., Denison University, 1947; M.S., Ohio State University, 1948; Ph.D., 1953. Harry Bateman Research Fellow, Caltech, 1954–55; Assistant Professor, 1955–59; Associate Professor, 1959–66; Professor, 1966–86; Professor Emeritus, 1987–.

Charles de Bois, Ph.D., Lecturer in French

André Delhoun, Ph.D., Assistant Professor of Computer Science

Richard Delany, Ph.D., Visiting Associate in Astronomy

Marianne K. de Laet, Ph.D., Senior Research Fellow in Humanities; Lecturer in History

Tobias Delbrück, Ph.D., Visiting Associate in Computation and Neural Systems

Michael P. DeIeso, Ph.D., Visiting Associate in Electrical Engineering

Sergei Denisov, Ph.D., Harry Bateman Research Instructor in Mathematics

Darryl L. Denning, B.A., Lecturer in Computer Science

Peter B. Dervan, Ph.D., D.Sch.c., Bren Professor of Chemistry
B.S., Boston College, 1967; Ph.D., Yale University, 1972; D.Sch.c., Boston College. Assistant Professor, Caltech, 1973–79; Associate Professor, 1979–82; Professor, 1982–88; Bren Professor, 1988–Chair, Division of Chemistry and Chemical Engineering, 1994–99.

Bren Professor of Chemistry
B.A., University of Belgrade, 1979; M.A., University of California, 1981; Ph.D., 1985. Assistant Professor, Caltech, 1987–90; Associate Professor, 1990–97; Professor, 1997–.

Richard Dekany, Ph.D., Associate in Electrical Engineering

S. George Djorgovski, Ph.D., Assistant Professor of Astronomy
B.A., University of Belgrade, 1979; M.A., University of California, 1981; Ph.D., 1985. Assistant Professor, Caltech, 1987–90; Associate Professor, 1990–97; Professor, 1997–.

Leverett Davis, Jr., Ph.D., Professor of Theoretical Physics, Emeritus
B.S., Oregon State College, 1936; M.S., Caltech, 1938; Ph.D., 1941. Instructor, 1941–46; Assistant Professor, 1946–50; Associate Professor, 1950–56; Professor, 1956–81; Professor Emeritus, 1981–.

William F. Dowell, Ph.D., Associate Professor of History
Andrew Philip Dowsett, Ph.D., Visiting Associate in Biology

John C. Doyle, Ph.D., Professor of Electrical Engineering
B.S., M.S., Massachusetts Institute of Technology, 1977; Ph.D., University of California, 1984. Visiting Assistant Professor of Electrical Engineering, Caltech, 1985; Visiting Associate Professor, 1986; Visiting Associate in Chemistry, 1988–87; Associate Professor of Electrical Engineering, 1987–91; Professor, 1991–.

Ronald William Prest Dreyer, Ph.D., Professor of Physics
B.S., California, 1953; Ph.D., 1958. Visiting Associate, Caltech, 1977; Professor, 1979–.

William Jacob Dreyer, Ph.D., Professor of Biology
B.A., Reed College, 1952; Ph.D., University of Washington, 1956. Caltech, 1963–.

Jeffrey A. Dubin, Ph.D., Associate Professor of Economics
A.B., University of California, 1978; Ph.D., Massachusetts Institute of Technology, 1982. Assistant Professor, Caltech, 1982–88; Associate Professor, 1988–.

Robert V. Duncan, Ph.D., Visiting Associate in Science
B.S., Massachusetts Institute of Technology, 1982; Ph.D., University of California (Santa Barbara), 1988. Associate Professor, University of New Mexico, 1996–. Caltech, 1998–2002.

William G. Dunphy, Ph.D., Professor of Biology; Associate Investigator, Howard Hughes Medical Institute
A.B., Harvard College, 1980; Ph.D., Stanford University, 1985. Assistant Professor, Caltech, 1989–95; Associate Professor, 1995–2001; Professor, 2001–. Assistant Investigator, 1994–98; Associate Investigator, 1998–.

Michelle Effros, Ph.D., Associate Professor of Electrical Engineering
B.S., Stanford University, 1989; M.S., 1990; Ph.D., 1994. Assistant Professor, Caltech, 1994–2000; Associate Professor, 2000–.

George P. Estabrook, Ph.D., Moore Distinguished Scholar

Fokion N. Egolfopoulos, Ph.D., Visiting Associate in Aeronautics
Dipl., National Technical University of Athens, 1981; M.S., San Jose State University, 1984; Ph.D., University of California (Davis), 1990. Associate Professor, University of Southern California, 1991–. Visiting Associate, Caltech, 1998–2001; Lecturer, 2000–01.

Gerald Eigen, Ph.D., Visiting Associate in Physics

John M. Eiler, Ph.D., Assistant Professor of Geochemistry
B.S., University of Iowa, 1989; M.S., University of Wisconsin (Madison), 1991; Ph.D., 1994. Research Fellow, Caltech, 1994–97; Senior Research Fellow, 1997–98; Assistant Professor, 1998–.

Fred H. Eisen, Ph.D., Visiting Associate in Applied Physics

James P. Eisenstein, Ph.D., Professor of Physics
A.B., Oberlin College, 1974; Ph.D., University of California, 1980. Caltech, 1996–.

Charles Elachi, Ph.D., Vice President; Director of the Jet Propulsion Laboratory; Lecturer in Electrical Engineering and Planetary Science

Heinz E. Ellersick, Ph.D., Associate Professor of History, Emeritus
A.B., University of California (Los Angeles), 1942; M.A., 1948; Ph.D., 1955. Instructor, Caltech, 1950–55; Assistant Professor, 1955–60; Associate Professor, 1960–68; Associate Professor Emeritus, 1988–.

Daid Uplehin Elliot, Ph.D., Professor of History, Emeritus
M.A., St. Andrew’s University, 1939; A.M., Harvard University, 1948; Ph.D., 1951; M.A., University of Oxford, 1956. Assistant Professor, Caltech, 1950–51; Associate Professor, 1953–60; Professor, 1960–86; Professor Emeritus, 1986–. Executive Officer for the Humanities and Social Sciences, 1967–71.

Richard S. Ellis, D.Phil., Professor of Astronomy; Director, Palomar Observatory
B.S., University College (London), 1971; D.Phil., University of Oxford, 1974. Visiting Associate, Caltech, 1997–98; Professor, 1999–. Deputy Director, Palomar Observatory, 1999–2000; Director, 2000–.

Jaspa J. Emri, D.Sc., Visiting Professor of Aeronautics

Stuart Alan Engle, Ph.D., Visiting Associate in Literature
A.B., Cornell University, 1965; M.A., New York University, 1966; Ph.D., Cornell University, 1970. Assistant Professor of English, Caltech, 1973–74; Associate Professor, 1974–80; Associate Professor of Literature, 1980–90; Faculty Associate, 1990–.

Hermann Engelhardt, Dr rer. nat., Senior Research Associate in Geophysics
Dipl., Technical University of Munich, 1960; Dr rer. nat., 1974. Senior Research Fellow, Caltech, 1976–79; Visiting Associate, 1981; Senior Research Associate, 1988–.

Dirk Engelmann, Ph.D., Visiting Associate in Economics

Jean E. Ensminger, Ph.D., Professor of Anthropology

Samuel Epstein, Ph.D., LL.D.h.c., William E. Harndard Professor of Geology, Emeritus
B.S., University of Wisconsin, 1941; M.S., 1942; Ph.D., McGill University, 1948; LL.D.h.c., University of Minnesota. Research Fellow in Geochmistry, Caltech, 1952–53; Senior Research Fellow, 1953–54; Associate Professor, 1954–59; Professor, 1959–84; Leonhard Professor, 1984–90; Leonhard Professor Emeritus, 1990–.

Thomas Eugene Everhart, Ph.D., D.L.h.c., D.P. h.c., President Emeritus; Professor of Electrical Engineering and Applied Physics, Emeritus
A.B., Harvard College, 1953; M.Sc., University of California (Los Angeles), 1955; Ph.D., University of Cambridge, 1958; D.L.h.c., Illinois Wesleyan University; Peppermint University; D.h.c., Colorado School of Mines. Professor, Caltech, 1987–99; Professor Emeritus, 1999–. President, 1987–97; President Emeritus, 1997–.

Pamela Eversoler-Cire, Ph.D., Senior Research Fellow in Biology
B.S. (Biology), R.S. (Chemistry), University of California (Irvine), 1982; M.S., 1985; Ph.D., University of Southern California, 1994. Research Fellow, Caltech, 1995–98; Senior Research Fellow, 1998–.

Harry M. Faraz, Ph.D., Olga TUNDY and John Todd Instructor in Mathematics

Kenneth A. Farley, Ph.D., Professor of Geochmistry
B.S., Yale University, 1986; Ph.D., University of California (San Diego), 1991. Assistant Professor, Caltech, 1991–96; Associate Professor, 1996–98; Professor, 1998–.

Peter Ward Fay, Ph.D., Professor of History, Emeritus
A.B., Harvard College, 1947; B.A., University of Oxford, 1949; Ph.D., Harvard University, 1954. Assistant Professor, Caltech, 1953–60; Associate Professor, 1960–70; Professor, 1970–97; Professor Emeritus, 1997–.

Miriam Feldblum, Ph.D., Faculty Associate in the Humanities; Lecturer in the Humanities

Antony R. H. Fender, B.S., Professor of Chemistry

Francesco Fidecaro, Ph.D., Visiting Professor of Physics
Caroline M. Fohlin, Ph.D., Assistant Professor of Economics
B.S., Tufts University, 1988; Ph.D., University of California, 1994. Caltech, 1994–.

J. P. Folom, Ph.D., Visiting Associate in Biology
B.S., Auburn University, 1972; M.A., Vanderbilt University, 1979; Ph.D., University of Texas, 1987. Director, Huntington Botanical Gardens, 1991–.

Mary Louise Fonseca, M.A., Visiting Associate in English as a Second Language

Joel N. Franklin, Ph.D., Professor of Applied Mathematics, Emeritus
B.S., Stanford University, 1950; Ph.D., 1953. Associate Professor of Applied Mathematics, 1957–65; Professor of Applied Science, 1965–69; Professor of Applied Mathematics, 1969–2000; Professor Emeritus, 2000–.

Steven Clark Frantz, Ph.D., Professor of Theoretical Physics
Caltech, 1991–.

Glenn Steven Freed, Ph.D., Lecturer in Accounting
B.S., University of Florida, 1982; Ph.D., University of Southern California, 1991.

Stuart Freed, B.A., Lecturer in Art
Jesse L. Greenstein, Ph.D., D.Sch.c., Lee A. DuBridge Professor in Astrophysics; Frank J. Gilloon Distinguished Teaching and Service Professor; Vice Provost
B.S., Brooklyn College, 1960, Ph.D., University of Washington, 1965. Research Fellow in Physics, Caltech, 1966–67; Assistant Professor, 1967–71; Associate Professor, 1971–75; Professor, 1975–76; Professor, 1976–85; Gilloon Professor, 1995–.
Vice Provost, 1987–

Judith R. Goodstein, Ph.D., Faculty Associate in History; Lecturer in History; Registrar

David George Goodman, Ph.D., Professor of Mechanical Engineering and Applied Physics
B.S., Harvey Mudd College, 1979; M.S., Stanford University, 1980, Ph.D., 1986. Assistant Professor of Mechanical Engineering, Caltech, 1986–89; Associate Professor of Mechanical Engineering and Applied Physics, 1990–93; Professor, 1993–

Roy Walter Gould, Ph.D., Simon Ramo Professor of Engineering, Emeritus
B.S., Caltech, 1949; M.S., Stanford University, 1950; Ph.D., Caltech, 1956. Assistant Professor of Electrical Engineering, 1953–58; Associate Professor, 1958–60; Associate Professor of Electrical Engineering and Physics, 1960–62; Professor, 1962–74; Professor of Applied Physics, 1974–80; Ramo Professor of Engineering, 1980–90; Ramo Professor Emeritus, 1996–. Executive Officer for Applied Physics, 1973–79; Chairman, Division of Engineering and Applied Science, 1979–85.

Harry Barkus Gray, Ph.D., D.Sch.c., Laureus h.c., D.L.h.c., Arnold O Beckman Professor of Chemistry; Director, Beckman Institute
B.S., Western Kentucky College, 1960; Ph.D., Northwestern University, 1966; D.Sc.h.c., Northwestern University; University of Rochester; University of Chicago; Göttingen University, University of Pennsylvania, Bowling Green State University; University of Arizona; Laurea h.c., University of Florence; D.L.h.c., Illinois Wesleyan University; Visiting Professor of Inorganic Chemistry, Caltech, 1965; Professor of Chemistry, 1966–81; William R. Kenan Professor, 1976–81; Beckman Professor, 1981–. Director, Beckman Institute, 1986–, Chairman, Division of Chemistry and Chemical Engineering, 1978–84.
Michael Robert Hoffmann, Ph.D., James E. Hansen, Ph.D., Executive Officer for Environmental Science and Engineering
B.A., Northwestern University, 1968; Ph.D., Brown University, 1974. Research Fellow, Caltech, 1973–76; Associate Professor, 1976–80; Professor of Environmental Engineering, 1980–90; Professor of Environmental Chemistry, 1990–96; Irvine Professor of Environmental Science, 1996–. Executive Officer, 1996–.

Leroy E. Hood, M.D., Ph.D., D.Sch.c., D.h.c., Visiting Associate in Biology
B.S., Caltech, 1960; M.D., Johns Hopkins University, 1964; Ph.D., Caltech, 1968; D.Sch.c., Montana State University; Mount Sinai School of Medicine of the City University of New York; University of British Columbia; University of Southern California; D.h.c., Johns Hopkins University, Professor and Chairman of Molecular Biotechnology, University of Washington, 1989–2001. Assistant Professor of Biology, Caltech, 1976–73. Associate Professor, 1973–77. Ethel Wilson Bowles and Robert Bowles Professor of Biology, 1977–92; Visiting Associate in Biology, 1992–. Chairman, Division of Biology, 1980–89; Director, Center for the Development of an Integrated Protein and Nucleic Acid Biotechnology, 1989–92.

John J. Hopfield, Ph.D., Rose G. Dickinson Professor of Chemistry and Biology, Emeritus
A.B., Swarthmore College, 1954; Ph.D., Cornell University, 1958. Dickinson Professor, Caltech, 1980–97; Dickinson Professor Emeritus, 1997–.

Hans G. Hornung, Ph.D., C. L. “Kelly” Johnson Professor of Aeronautics; Director of the Graduate Aeronautics Laboratories
B.S., University of Melbourne, 1960; M.S., 1962; Ph.D., University of London (Imperial College), 1965. Johnson Professor, Caltech, 1987–. Director, 1987–.

Norman H. Horowitz, Ph.D., Professor of Biology, Emeritus
B.S., University of Pittsburgh, 1916; Ph.D., Caltech, 1919. Research Fellow, 1940–42; Senior Research Fellow, 1946–47; Associate Professor, 1947–53; Professor, 1953–82; Professor Emeritus, 1982–. Executive Officer for Biology, 1971–76; Acting Chairman, Division of Biology, 1973, Chairman, 1977–80.

Yizhao Thomas Hou, Ph.D., Professor of Applied and Computational Mathematics and Physics
B.S., South China University of Technology, 1982; M.S., University of California (Los Angeles), 1985; Ph.D., 1987. Associate Professor of Applied Mathematics, Caltech, 1991–96; Professor, 1996–. Professor of Applied and Computational Mathematics, 2000–. Executive Officer, 2000–.

Martha A. House, Ph.D., Senior Research Fellow in Geology
B.S., University of Michigan, 1990; Ph.D., Massachusetts Institute of Technology, 1995. Caltech, 1999–.

Robert Melvin Houseley, Ph.D., Visiting Associate in Physics

George W. Housner, Ph.D., Carl F Braun Professor of Engineering, Emeritus
B.S., University of Michigan, 1933; M.S., Caltech, 1934; Ph.D., 1941. Assistant Professor, 1944–49; Associate Professor, 1949–53; Professor, 1953–74; Braun Professor, 1974–81; Braun Professor Emeritus, 1981–.

Elizabeth G. Howard, Ph.D., Lecturer in Art History

James B. Howard, Ph.D., Visiting Associate in Chemistry

Linda C. Hsieh-Wilson, Ph.D., Assistant Professor of Chemistry
B.S., Yale University, 1990; Ph.D., University of California, 1996. Caltech, 2000–.

Maung Than Htin, Ph.D., Visiting Associate in Chemistry
B.Sc., Arts and Science University (Burma), 1979; M.Sc., University of Rangoon, 1984; Ph.D., King Fahd University of Petroleum and Minerals (Saudi Arabia), 1994. Assistant Professor, 1998–. Caltech, 2001–02.

Alice S. Huang, Ph.D., Faculty Associate in Biology

Kenneth W. Hudnut, Ph.D., Visiting Associate in Physics

Emily W. Hughes, Ph.D., Professor of Physics
B.S., Stanford University, 1982; M.A., Columbia University, 1984; M.Phil, 1985; Ph.D., 1987. Associate Professor, Caltech, 1995–99; Professor, 1999–.

Jean E. Humblet, D.Sc., Visiting Associate in Physics

Dirk Hundermark, Dr.rer.Nat., Olga Tanaske and John Todd Instructor in Mathematics

Melany L. Hunt, Ph.D., Professor of Mechanical Engineering
B.S., University of Minnesota, 1983; M.S., University of California, 1985; Ph.D., 1987. Assistant Professor, Caltech, 1988–95; Associate Professor, 1995–2001; Professor, 2001–.

Behnam Hushmand, Ph.D., Lecturer in Civil Engineering; Visiting Associate in Civil Engineering

Sanjong Hwang, Ph.D., Lecturer in Chemistry

Jozsef Illy, Ph.D., Visiting Associate in History

Andrew Perry Ingersoll, Ph.D., Professor of Planetary Science

Wilfred Dean Iwan, Ph.D., Professor of Applied Physics
B.S., Caltech, 1917; M.S., 1918; Ph.D., 1921. Assistant Professor, 1924–65; Associate Professor, 1967–72; Professor, 1972–. Executive Officer for Civil Engineering and Applied Mechanics, 1980–86.

Yauwu Izumiki, Ph.D., Visiting Associate in Geophysics

Matthew O. Jackson, Ph.D., Professor of Economics
B.A., Princeton University, 1984; Ph.D., Stanford University, 1988. Visiting Professor, Caltech, 1995; Professor, 1997–.

Hossein Jadvar, Ph.D., M.D., Visiting Associate in Aeronautics
B.S., Iowa State University, 1982; M.S., University of Wisconsin (Madison), 1984; M.S.E., University of Michigan, 1986; Ph.D., 1988; M.D., University of Chicago, 1990. Assistant Professor, University of Southern California, 1999–. Caltech, 2001–02.

William A. Jenkins, Ph.D., Executive Vice President for Administration
B.S., Vincennes University and Indiana State University, 1969; M.S., Purdue University, 1973; Ph.D., 1973. Caltech, 1999–.

Paul Christian Jennings, Ph.D., Professor of Civil Engineering and Applied Mechanics

Seungwon Jeon, Ph.D., Visiting Associate in Physics
D. Roderick Kiewiet, Ph.D., Professor of Political Science
B.A., Brandeis University, 1974; M.A., Radcliffe College, 1979; Ph.D., Harvard University, 1983. Assistant Professor, Caltech, 1982–89; Associate Professor, 1989–92; Dean of Students, 1992–96; Dean of Graduate Studies, 2000–.

Bumrun Kim, Ph.D., Visiting Associate in Electrical Engineering

Young Bae Kim, Ph.D., Visiting Associate in Chemical Engineering

H. Jeff Kimble, Ph.D., William L. Valentine Professor and Professor of Physics

Amy Mae King, Ph.D., Assistant Professor of Literature

Joseph Lynn Kirschvink, Ph.D., Professor of Geology
B.S., M.S., Caltech, 1975; M.A., Princeton University, 1978; Ph.D., 1979. Assistant Professor, Caltech, 1981–87; Associate Professor, 1987–92; Professor, 1992–.

Horst Kisch, Ph.D., Visiting Associate in Environmental Engineering Science

Aleksei Kitaev, Ph.D., Senior Research Associate in Physics

Marc Kamionkowski, Ph.D., Professor of Theoretical Physics and Astrophysics
B.A., Washington University (St. Louis), 1987; Ph.D., University of Chicago, 1991. Caltech, 1999–.

Alexander Sotiris Kechris, Ph.D., D.Sc., Professor of Mathematics
B.S., National Technical University (Athens), 1969; Ph.D., University of California (Los Angeles), 1972; D.Sc., University of Athens. Assistant Professor, Caltech, 1974–76; Associate Professor, 1976–81; Professor, 1981–. Executive Officer for Mathematics, 1994–97.

Efim Khazanov, Ph.D., Visiting Associate in LIGO

Beena Khrana, Ph.D., Visiting Associate in Biology

Daniel Jerome Kevles, Ph.D., J. O. and Juliette Koepfli Professor of the Humanities, Emeritus

Mary B. Kennedy, Ph.D., Professor of Biology
B.S., St. Mary’s College, 1969; Ph.D., Johns Hopkins University, 1975. Assistant Professor, Caltech, 1981–84; Associate Professor, 1984–92; Professor, 1992–.

Karl M. Kadish, Ph.D., Visiting Professor of Chemistry
B.S., University of Michigan, 1967; Ph.D., Pennsylvania State University, 1970. Professor, University of Houston, 1981–. Visiting Associate, Caltech, 2000; Visiting Professor, 2000–01.

Marc Kamionkowski, Ph.D., Professor of Theoretical Physics and Astrophysics
B.A., Washington University (St. Louis), 1987; Ph.D., University of Chicago, 1991. Caltech, 1999–.

Efim Khazanov, Ph.D., Visiting Associate in LIGO

Beena Khrana, Ph.D., Visiting Associate in Biology
Masakazu Konishi, Ph.D., Bing Professor of Behavioral Biology

Manochehr M. Koochesfahani, Ph.D., Visiting Professor of Aeronautics

Steven Elliot Koonin, Ph.D., Provost
Professor of Theoretical Physics
B.S., Caltech, 1972; Ph.D., Massachusetts Institute of Technology, 1975. Assistant Professor of Theoretical Physics, Caltech, 1975–78; Associate Professor of Physics, 1978–81; Professor of Theoretical Physics, 1981–. Vice President and Provost, 1995–2001, Provost, 2001–.

Joseph Morgan Kousser, Ph.D., Associate in History

Christof Koch, Ph.D., The Louis and Victor Troendle Professor of Cognitive and Behavioral Biology and Professor of Computation and Neural Systems, Emeritus
B.S., Massachusetts Institute of Technology, 1977; Ph.D., University of California (San Diego), 1981. Assistant Professor of Computer Science, Caltech, 1981–86; Associate Professor, 1986–96; Professor, 1996–. Troendle Professor, 2000–. Executive Officer, 1997–.

Joseph B. Koopf, D.Phil., Senior Research Associate in Chemistry, Emeritus
A.B., Stanford University, 1924; M.A., 1925; D.Phil., Imperial College, University of London, 1928. Research Associate, Caltech, 1932–72; Research Associate Emeritus, 1972–74; Senior Research Associate Emeritus, 1974–.

Dmitri Komatitsch, Ph.D., Senior Research Fellow in Geophysics

Akihiro Kuroda, Ph.D., Senior Research Associate in Biology
B.S., Kyoto University (Japan), 1979; Ph.D., 1986. Research Fellow, Caltech, 1986–89; Senior Research Associate, 1996–.
Oscar Mandel, Ph.D., Professor of Education
B.A., New York University, 1947; M.A., Columbia University, 1948; Ph.D., Ohio State University, 1951. Visiting Associate Professor of English, Caltech, 1961–62; Associate Professor, 1962–68; Professor, 1968–80; Professor of Literature, 1980–.

Frank Earl Marble, Ph.D., Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering and Professor of Jet Propulsion, Emeritus
B.S., Case Institute of Technology, 1940; M.S., 1942; A.E., Caltech, 1947; Ph.D., 1948. Instructor in Aeronautics, 1948–49; Assistant Professor of Jet Propulsion and Mechanical Engineering, 1949–53; Associate Professor, 1953–57; Professor, 1957–80; Hayman Professor of Mechanical Engineering and Professor of Jet Propulsion, 1980–89; Hayman Professor and Emeritus, 1989–.

Jerrold E. Marsden, Ph.D., Professor of Control and Dynamical Systems
B.S., University of Toronto, 1965; Ph.D., Princeton University, 1968. Sherman Fairchild Distinguished Scholar, Caltech, 1992; Professor, 1995–.

Richard E. Marsh, Ph.D., Senior Research Associate in Chemistry, Emeritus
B.S., Caltech, 1949; Ph.D. (University of Los Angeles), 1950. Research Fellow, Caltech, 1950–53; Senior Research Fellow, 1953–73; Research Associate, 1973–81; Senior Research Associate, 1981–90; Senior Research Associate Emeritus, 1990–.

Hardy Cross Martel, Ph.D., Professor of Electrical Engineering, Emeritus
B.S., Caltech, 1949; M.S., Massachusetts Institute of Technology, 1950; Ph.D., Caltech, 1956. Instructor, 1953–55; Assistant Professor, 1955–58; Associate Professor, 1958–82; Professor, 1982–90; Professor Emeritus, 1990–. Executive Assistant to the President, 1969–83; Secretary of the Board of Trustees, 1973–85; Executive Officer for Electrical Engineering, 1981–86.

Alain Jean Martin, Ing., Professor of Computer Science
B.S., University of Marseille, 1965; Ing., Polytechnic Institute (Grenoble), 1969. Visiting Assistant Professor, Caltech, 1981–83; Visiting Associate Professor, 1983; Associate Professor, 1983–86; Professor, 1986–. Executive Officer for Computer Science, 1994–97.

D. Christopher Martin, Ph.D., Professor of Physics

Ivan Marusic, Ph.D., Visiting Associate in Aeronautics

Peter V. Mason, Ph.D., Visiting Associate in Physics

Shirley A. Marneus, M.A., Visiting Associate in Economics

Stephen Leon Mayo, Ph.D., Associate Professor of Biology and Chemistry, Associate Investigator, Howard Hughes Medical Institute

Edward J. McCaffery, J.D., Visiting Professor of Law

James Oeland McCalgin, Ph.D., Professor of Applied Science and Electrical Engineering, Emeritus
B.A., University of Texas, 1944; Ph.D., Caltech, 1954. Associate Professor of Applied Science, 1968–73; Professor of Applied Science and Electrical Engineering, 1973–76; Professor of Applied Physics and Electrical Engineering, 1976–81; Professor Emeritus, 1981–.

Gilbert Donald McCann, Ph.D., Professor of Applied Science, Emeritus

Robert James McEliece, Ph.D., Professor of Mathematics

Thomas Corley McGill, Ph.D., Professor of Applied Physics
B.S., Lamar State College of Technology, 1964; M.S., 1965; Ph.D., 1969. Assistant Professor, 1969–71; Associate Professor, 1971–74; Associate Professor, 1974–77; Professor, 1977–85; Jones Professor, 1985–99; Professor, 1999–. Visiting Associate in Physics
B.S., Southern University and A&M College, 1970; M.S., University of Rochester, 1974; Ph.D., Cornell University, 1979. Professor and Chair, Southern University and A&M College, 1999–. Caltech, 2000–02.

Martin McHugh, Ph.D., Visiting Associate in Economics

Richard D. McKelvey, Ph.D., Edie and Lew Waterman Professor of Political Science

Dan McKenzie, Ph.D., Moore Distinguished Scholar in Geological and Planetary Sciences

Robert D. McKeown, Ph.D., Professor of Physics
B.S., State University of New York (Stony Brook), 1974; Ph.D., Princeton University, 1979. Assistant Professor, Caltech, 1980–86; Associate Professor, 1986–92; Professor, 1992–.

Basil Vincent McCoy, Ph.D., Professor of Theoretical Chemistry
B.S., Nova Scotia Technical University, 1960; Ph.D., Yale University, 1964. Noyes Research Instructor in Chemistry, Caltech, 1964–66; Assistant Professor of Theoretical Chemistry, 1967–69; Associate Professor, 1969–75; Professor, 1975–.

Harry Y. McSween, Jr., Ph.D., Visiting Professor of Geosciences

Carver Andress Mead, Ph.D., D.Sch.c., D.Hon., Gordon and Betty Moore Professor of Engineering and Applied Science, Emeritus
B.S., Caltech, 1916; M.S., 1917; Ph.D., 1930. D.Sch.c., University of Lund (Sweden); D.Hon., University of Southern California. Instructor in Electrical Engineering, Caltech, 1958–59; Assistant Professor, 1962–67; Associate Professor, 1967–77; Professor of Computer Science and Electrical Engineering, 1977–80; Moore Professor of Computer Science, 1980–92; Moore Professor of Engineering and Applied Science, 1992–99; Moore Professor Emeritus, 1999–.
Karen E. Nelson, B.A., Coach

Gerry Neugebauer, Ph.D., Robert Andrews
Millikan Professor of Physics, Emeritus

Clemens A. Neusch, M.D., Visiting
Associate in Biology

Dianne K. Newman, Ph.D., Clare Boothe Luce Assistant Professor of Geobiology and Environmental Engineering Science B.A., Stanford University, 1993; Ph.D., Massachusetts Institute of Technology, 1997. Caltech, 2000–.

Harvey B. Newman, Sc.D., Professor of Physics
B.S., Massachusetts Institute of Technology, 1968; Sc.D., 1973. Associate Professor, Caltech, 1982–90; Professor, 1990–.

Marc-Aurèle Nicot, Ph.D., Professor of Electrical Engineering and Applied Physics, Emeritus
Ph.D., University of Basel, 1918. Assistant Professor of Electrical Engineering, Caltech, 1919–65; Associate Professor, 1965–73; Professor, 1973–88; Professor of Electrical Engineering and Applied Physics, 1988–98; Professor Emeritus, 1998–.

Ronald Nijhawan, Ph.D., Visiting Associate in Biology

Katharine Norris, Ph.D., Abraham Postdoctoral Instructor in History

Wheeler James North, Ph.D., Professor of Environmental Science, Emeritus
B.S. (Electrical Engineering), Caltech, 1944; B.S. (Biology), 1950; M.S., University of California, 1953; Ph.D., 1953. Visiting Professor of Biology, Caltech, 1963–68; Professor of Environmental Science, 1968–92; Professor Emeritus, 1992–.

Alexei Novikov, Ph.D., Ivan Karman
Instructor in Applied and Computational Mathematics
M.S., Moscow State University, 1993; Ph.D., Stanford University, 1999. Caltech, 2001–02.

J. Ernest Nunnally, Ed.D., Vice President for Institute Relations
B.A., Dillard University, 1969; Ed.M., Harvard Graduate School of Education, 1984. Assistant Vice President and Director of Development, Caltech, 1991–95; Assistant Vice President and Director of Development and Alumni Relations, 1995–96; Vice President for Institute Relations, 1996–.

Mikio Oda, Ph.D., Visiting Associate in Aeronautics

Hiroshi Oguri, D.Sc., Ph.D., Professor of Theoretical Physics
B.A., Kyoto University (Japan), 1984; M.A., 1986; Ph.D., University of Tokyo, 1989. Visiting Associate, Caltech, 1999–2000; Professor, 2000–.

Carolyn K. Ohno, Ph.D., Senior Research Fellow in Biology
B.Sc., Queen’s University, 1990; Ph.D., 1995. Research Fellow, Caltech, 1995–99; Senior Research Fellow, 1999–.

John Beverley Oke, Ph.D., Professor of Astronomy, Emeritus
B.A., University of Toronto, 1949; M.A., 1950; Ph.D., Princeton University, 1953. Assistant Professor, Caltech, 1958–61; Associate Professor, 1961–64; Professor, 1964–92; Professor Emeritus, 1992–.

Mitchio Okumura, Ph.D., Associate Professor of Chemical Physics
B.S., Yale University, 1979; M.S., 1979; C.P.G.S., University of Cambridge, 1980; Ph.D., University of California, 1986. Assistant Professor, Caltech, 1988–94; Associate Professor, 1994–.

Hitonori Okuzaki, Ph.D., Visiting Associate in Computer Science
B.S., Seoul National University, 1987; Ph.D., Caltech, 1993. Assistant Professor, Chungnam National University, 1997–. Research Fellow, Caltech, 1993–95; Visiting Associate, 1997–99; 2000–.

Robert Andrews Parker, Ph.D., Professor of Chemical Biology, Caltech, 1981–87; Associate Professor, 1987–92; Professor, 1992–99; Professor of Biochemistry, 1999–. Executive Officer, 2000–.

Carolyn K. Ohno, Ph.D., Senior Research Fellow in Biology
B.S., University of Science and Technology (China), 1983; Ph.D., University of California (San Diego), 1993. Research Fellow, Caltech, 1995–98; Senior Research Fellow, 1998–.

Ray David Owen, Ph.D., Sc.D.h.c., Professor of Biology, Emeritus
B.S., Carroll College, 1917; Ph.M., University of Wisconsin, 1918; Ph.D., 1941; Sc.D.h.c., Carroll College; University of the Pacific. Gossen Fellow, Caltech, 1946–47; Associate Professor, 1947–53; Professor, 1953–83; Professor Emeritus, 1983–. Chairman, Division of Biology, 1961–68; Vice President for Student Affairs and Dean of Students, 1975–80.

Oscar J. Painter, Ph.D., Assistant Professor of Applied Physics
B.S., University of British Columbia, 1994; M.S., Caltech, 1995; Ph.D., 2001. Visiting Associate, 2001–02; Assistant Professor, 2002–.

Thomas R. Palfrey, Ph.D., Professor of Economics, Emeritus
B.A., University of Michigan, 1975; M.A., 1976; Ph.D., Caltech, 1981. Professor, 1986–; Executive Officer, 2001–.

Pablo A. Parrillo, Ph.D., Lecturer in Control and Dynamical Systems
Paul H. Patterson, Ph.D., Professor of Biology

Michael T. Pauker, Ph.D., Lecturer in Mechanical Engineering

Mark Paul, Ph.D., Visiting Associate in Physics

Timothy John Pearson, Ph.D., Senior Research Associate in Radio Astronomy

Charles William Peck, Ph.D., Professor of Physics
B.S., New Mexico College of Agricultural and Mechanical Arts, 1936; Ph.D., Caltech, 1946. Research Fellow, 1964–65; Assistant Professor, 1965–69; Associate Professor, 1969–77; Professor, 1977–. Executive Officer for Physics, 1983–86; Chair, Division of Physics, Mathematics and Astronomy, 1993–98.

José Luis Peña, M.D., Senior Research Fellow in Biology

Pietro Perona, D.Eng., Ph.D., Professor of Electrical Engineering; Director, Center for Neuromorphic Systems Engineering
D.Eng., University of Padua (Italy), 1985; Ph.D., University of California, 1990. Assistant Professor, Caltech, 1991–96; Professor, 1996–. Director, 1999–.

Jonas C. Peters, Ph.D., Assistant Professor of Chemistry
B.S., University of Chicago, 1993; Ph.D., Massachusetts Institute of Technology, 1998. Caltech, 1999–.

Kenneth David Phillips, Ph.D., Visiting Associate in Biology
B.S., University of Chicago, 1968; Ph.D., University of California, 1972. Associate Director, University of California School of Medicine (Los Angeles), 1997–. Caltech, 1999–2001.

Robert Phillips, Ph.D., Professor of Mechanical Engineering and Applied Physics
B.S., University of Minnesota, 1986; Ph.D., Washington University, 1989. Clark Milikan Visiting Assistant Professor, Caltech, 1997; Professor, 2000–.

Thomas G. Phillips, D. Phil., Professor of Physics; Director, Caltech Submillimeter Observatory

E. Sterl Phinney III, Ph.D., Professor of Theoretical Astrophysics
B.S., Caltech, 1980; Ph.D., University of Cambridge, 1983. Assistant Professor, Caltech, 1985–91; Associate Professor, 1991–95; Professor, 1995–.

Ramadoss Pichai, Ph.D., Visiting Associate in Physics

Kenneth A. Pickar, Ph.D., J. Stanley Johnson Visiting Professor of Mechanical Engineering

William Hayward Pickering, Ph.D., D. Sc.h.c., D.Eng.h.c., Professor of Electrical Engineering, Emeritus
B.S., Caltech, 1932; M.S., 1933; Ph.D., 1936; D.Sc.h.c., Clark University; Occidental College; D.Eng.h.c., University of Bologna. Instructor, Caltech, 1936–40; Assistant Professor, 1940–45; Associate Professor, 1945–47; Professor, 1947–79; Professor Emeritus, 1979–. Director, Jet Propulsion Laboratory, 1954–76.

John Robinson Pierce, Ph.D., D. Sc.h.c., D.Eng.h.c., LL. D. h.c., Professor of Engineering, Emeritus
B.S., Caltech, 1913; M.S., 1914; Ph.D., 1916; D.Sc.h.c., Columbia University; Northwestern University; Polytechnic Institute of Brooklyn; University of Nevada; University of Southern California; Yale University; D.Eng.h.c., Newark College of Engineering; University of Bologna; E.D.h.c., Carnegie Institute of Technology; LL.D.h.c., University of Pennsylvania; Professor, Caltech, 1971–80; Professor Emeritus, 1980–. Executive Officer for Electrical Engineering, 1975–77; Chief Technologist, Jet Propulsion Laboratory, 1977–82.

Niles A. Pierce, D. Phil., Assistant Professor of Applied and Computational Mathematics

George Wood Pimental, Ph.D., Professor of Literature
A.B., Harvard College, 1973; M.Phil., Yale University, 1975; Ph.D., 1977. Assistant Professor of English, Caltech, 1977–80; Assistant Professor of Literature, 1980–83; Associate Professor, 1983–93; Professor, 1993–.

Jerome Pine, Ph.D., Professor of Physics
A.B., Princeton University, 1949; M.S., Cornell University, 1952; Ph.D., 1959. Associate Professor, Caltech, 1963–67; Professor, 1967–.

Charles Raymond Platt, Ph.D., D. Litt.h.c., D.h.c., Edward S. Harkness Professor of Economics and Political Science
B.S., Oklahoma State University, 1961; M.S., 1964; Ph.D., University of Virginia, 1965; D.Litt.h.c., Purdue University; D.h.c., Université Pierre Mendes. Professor of Economics, Caltech, 1971–87; Harkness Professor, 1987–.

Ronald J. Poporeski, Ph.D., Lecturer in Electrical Engineering
B.S., Wayne State University, 1964; M.S., 1965; Ph.D., Caltech, 1970. Lecturer, 2000–01.

Hugh David Politzer, Ph.D., Professor of Theoretical Physics
B.S., University of Michigan, 1969; Ph.D., Harvard University, 1974. Visiting Associate, Caltech, 1975–76; Associate Professor, 1976–79; Professor, 1979–. Executive Officer for Physics, 1986–88.

James E. Polk, Ph.D., Lecturer in Astrophysics

David J. Pollack, Ph.D., Olgä Tawsky and John Todd Instructor in Mathematics

Roberta Rolene Pollock, Ph.D., Visiting Associate in Biology
B.S., Emory University, 1976; Ph.D., Harvard University, 1981. Associate Professor, Occidental College, 1994–. Caltech, 2001–02.

Adrian Ponce, Ph.D., Visiting Associate in Mechanical Engineering

Frank Clifford Porter, Ph.D., Professor of Physics
B.S., Caltech, 1972; Ph.D., University of California, 1977. Research Fellow, Caltech, 1977–78; Weizmann Research Fellow, 1978–80; Assistant Research Fellow, 1980–82; Assistant Professor, 1982–88; Associate Professor, 1988–94; Professor, 1994–.

John P. Preskill, Ph.D., Professor of Theoretical Physics

Thomas Allen Prince, Ph.D., Professor of Physics
B.A., Villanova University, 1970; M.S., University of Chicago, 1972; Ph.D., 1978. Research Fellow, Caltech, 1977–80; Robert A. Milikan Research Fellow, 1980–82; Senior Research Fellow, 1982–83; Assistant Professor, 1983–86; Associate Professor, 1986–92; Professor, 1992–. Associate Director for Advanced Computer Research, 1995–.
Demetri Peitlis, Ph.D., Thomas G. Myers
Professor of Electrical Engineering

Ralph Pudritz, Ph.D., Visiting Associate in Astronomy
Ph.D., University of British Columbia, 1980; Professor, McMaster University, 1992–. Caltech, 2001.

Jeroen Ritsema, Ph.D., Visiting Associate in Physics

Daniell Rittes, Ph.D., Visiting Associate in Astronomy
B.S., Ben-Gurion University of the Negev, 1979; M.S., Hebrew University (Jerusalem), 1983; Ph.D., 1988. Senior Lecturer, Technion—Israel Institute of Technology, 1997–. Visiting Professor, Caltech, 2000; Visiting Associate, 2001.

Eugene Roberts, Ph.D., Visiting Associate in Chemistry
B.S., Wayne State University, 1940; M.S., University of Michigan (Ann Arbor), 1941; Ph.D., 1945. Distinguished Scientist Emeritus, Beckman Research Institute (City of Hope), 2000–. Caltech, 2001–04.

John D. Roberts, Ph.D., D.rer.Nat.h.c., D.Sc.h.c., D.Sc.h.c., Institute Professor of Chemistry, Emeritus
B.A., University of California (Los Angeles), 1941; Ph.D., 1944; D.rer.Nat.h.c., University of Munich; Sc.D.h.c., Temple University; D.Sc.h.c., University of Wales; Sc.D., University of Notre Dame. Scripps Research Institute. Research Associate, Caltech, 1952–53; Professor, 1953–72; Institute Professor, 1972–81; Department of Chemistry and Chemical Engineering, 1963–68; Acting Chairman, 1972–71; Provost and Vice President, Dean of the Faculty, 1980–83.

Richard W. Roberts, Ph.D., Assistant Professor of Chemistry
B.S., University of Kansas, 1987; Ph.D., Yale University, 1991. Caltech, 1997–.

Norm A. Robertson, Ph.D., Visiting Associate in Physics

Maria C. Rodriguez-Palanques, Ph.D., Visiting Associate in Electrical Engineering

Haisheng Rong, Ph.D., Visiting Associate in Physics
Carl Frederick Ruoff, Ph.D., Visiting Associate in Mechanical Engineering B.S., California State University (Long Beach), 1967; M.S., University of California (Los Angeles), 1971; Ph.D., Caltech, 1993. Staff Technologist, Jet Propulsion Laboratory, 1994–. Visiting Associate, Caltech, 1996–2000.

David B. Rutledge, Ph.D., Professor of Electrical Engineering B.S., Rice University, 1973; M.A., University of Cambridge, 1975; Ph.D., University of California, 1980. Assistant Professor, Caltech, 1980–84; Associate Professor, 1984–89; Professor, 1989–2001; Tomiyasu Professor of Electrical Engineering, 2001–. Executive Officer, 1999–.

Rolf Heinrich Sabersky, Ph.D., Professor of Mechanical Engineering, Emeritus B.S., Caltech, 1942; M.S., 1943; Ph.D., 1949. Assistant Professor, 1949–55; Associate Professor, 1955–61; Professor, 1961–88; Emeritus, 1988–.

George Robert Rossman, Ph.D., Professor of Mineralogy B.S., Wisconsin State University, 1966; Ph.D., Caltech, 1971. Instructor, 1971; Assistant Professor, 1971–77; Associate Professor, 1977–83; Professor, 1983–. Academic Officer, 1999–.

Ellen Rothenberg, Ph.D., Professor of Biology A.B., Harvard University, 1972; Ph.D., Massachusetts Institute of Technology, 1977. Assistant Professor, 1977–81; Associate Professor, 1981–. Academic Officer, 1999–.

Michael L. Roukes, Ph.D., Professor of Physics B.A., University of California (Santa Cruz), 1978; Ph.D., Cornell University, 1985. Associate Professor, Caltech, 1992–96; Professor, 1996–.

Carl Frederick Ruoff, Ph.D., Visiting Associate in Mechanical Engineering B.S., California State University (Long Beach), 1967; M.S., University of California (Los Angeles), 1971; Ph.D., Caltech, 1993. Staff Technologist, Jet Propulsion Laboratory, 1994–. Visiting Associate, Caltech, 1996–2000.

David B. Rutledge, Ph.D., Professor of Electrical Engineering B.S., Rice University, 1973; M.A., University of Cambridge, 1975; Ph.D., University of California, 1980. Assistant Professor, Caltech, 1980–84; Associate Professor, 1984–89; Professor, 1989–2001; Tomiyasu Professor of Electrical Engineering, 2001–. Executive Officer, 1999–.

Rolf Heinrich Sabersky, Ph.D., Professor of Mechanical Engineering, Emeritus B.S., Caltech, 1942; M.S., 1943; Ph.D., 1949. Assistant Professor, 1949–55; Associate Professor, 1955–61; Professor, 1961–88; Emeritus, 1988–.

George Robert Rossman, Ph.D., Professor of Mineralogy B.S., Wisconsin State University, 1966; Ph.D., Caltech, 1971. Instructor, 1971; Assistant Professor, 1971–77; Associate Professor, 1977–83; Professor, 1983–. Academic Officer, 1999–.

Ellen Rothenberg, Ph.D., Professor of Biology A.B., Harvard University, 1972; Ph.D., Massachusetts Institute of Technology, 1977. Assistant Professor, 1977–81; Associate Professor, 1981–. Academic Officer, 1999–.

Michael L. Roukes, Ph.D., Professor of Physics B.A., University of California (Santa Cruz), 1978; Ph.D., Cornell University, 1985. Associate Professor, Caltech, 1992–96; Professor, 1996–.
 Officers and Faculty

Maarten Schmidt, Ph.D., Sc.D., Francis L. \(\text{Sc.D.} \), D.Eng.h.c.,
Ph.D., University of Leiden, 1956; Sc.D.,
Yale University, 1966. Associate Professor,
Caltech, 1976–86; Professor, 1986–89; \(\text{D.Sc.} \),
Institute of Theoretical and Experimental
Physics, 1983; \(\text{D.Sc.} \), 1955; D.Eng.h.c.,
Glasgow University, 1987–96. Moseley
Professor Emeritus, 1996–. Executive Officer
for Astronomy, 1972–75; Chairman, Division of
Physics, Mathematics and Astronomy,
1976–78; Director, Hale Observatories,

Robert Schofield, Ph.D., Visiting Associate
in Physics
Ph.D., University of Oregon, 1990. Senior
Research Associate, 1999–. Caltech,
2000–01.

Petter Schröder, Ph.D., Professor of
Computer Science and Applied
Computational Mathematics
B.S., Technical University of Berlin, 1987;
M.S., Massachusetts Institute of
Technology, 1990, M.A., Princeton
University, 1992; Ph.D., 1994. Assistant
Professor of Computer Science, Caltech,
1995–98; Associate Professor, 1998–2000;
Senior Research Associate of Computer Science
Applied and Computational
Mathematics, 2000–01; Professor, 2001–.

Walter A. Schroeder, Ph.D., Senior
Research Associate in Chemistry, Emeritus
B.S., Pennsylvania State University, 1940;
Ph.D., Caltech, 1943. Research Fellow,
1943–46; Senior Research Fellow,
1946–51; Research Associate, 1951–61;
Senior Research Associate, 1961–86; Senior
Research Associate Emeritus, 1986–.

Leonard J. Schulman, Ph.D., Associate
Professor of Computer Science
B.S., Massachusetts Institute of Technology,

Erin M. Schuman, Ph.D., Associate
Professor of Biology, Assistant Investigator,
Howard Hughes Medical Institute; Executive
Officer, Biological Science
B.A., University of Southern California,
1985; M.A., Princeton University, 1987;
Ph.D., 1990. Assistant Professor, Caltech,
1991–94; Associate Professor, 1994–97; Assistant
Investigator, 1997–. Executive Officer, 2000–.

John H. Schwall, Ph.D., Harold Brown
Professor of Theoretical Physics
A.B., Harvard College, 1962; Ph.D.,
University of California, 1966. Research
Associate, Caltech, 1972–81; Senior
Research Associate, 1981–85; Professor of
Theoretical Physics, 1985–89; Brown Professor,
1989–.

Mark Anthony James Sedeck, Ph.D.,
Visiting Associate in Astronomy
Professor, University of Southern California,

Robert H. Selzer, M.A., Visiting Associate
in Aeronautics
B.S., University of California (Los Angeles),
1955; M.S., 1961; M.A., University of
California, 1964. Task Leader, Biomedical
Image Processing Group, Jet Propulsion

Celal Sengor, Ph.D., Moore Distinguished
Scholar
B.S., State University of New York
(Albany), 1978; M.S., 1979; Ph.D., 1982.
Professor, Istanbul Technical University,

Eugene Serbyn, Ph.D., Visiting Associate
in Physics
B.S., Massachusetts Institute of Technology,
1978; M.S., University of California, 1980;
Ph.D., 1984. Research Scientist, Jet
Propulsion Laboratory, 1984–. Research Fellow,
Caltech, 1989–90; Senior Research Fellow,
1990–92; Visiting Associate, 1992–90.

Hiroyuki Shinto, Ph.D., Visiting Associate
in Chemical Engineering
B.S., Kyoto University (Japan), 1994; M.S.,
1996; Ph.D., 1999. Research Associate, 1999–. Caltech,
2000–02.

Robert P. Sherman, Ph.D., Associate
Professor of Economics and Statistics
B.A., Marquette University, 1978; M.A.,
University of Louisville, 1985; M.Phil., Yale
University, 1987; Ph.D., 1991. Assistant
Professor, Caltech, 1996–99; Associate Professor,
1999–.

Linda Ann Silveria, Ph.D., Visiting
Associate in Biology
B.S., Cornell University, 1984; Ph.D.,
University of California, 1990. Assistant
Professor, University of Redlands, 1993–. Caltech,

Officers and Faculty

Melvin I. Simon, Ph.D., Anne P. and Benjamin F. Biaggi Professor of Biophysical Sciences B.S., City College of New York, 1959; Ph.D., Indiana University of Pennsylvania, 1961; President, Caltech, 1982–86; Biaggi Professor, 1986–. Chair, Division of Biology, 1995–2000.

Mark Simons, Ph.D., Assistant Professor of Geophysics B.S., University of California (Los Angeles), 1989; Ph.D., Massachusetts Institute of Technology, 1995. Postdoctoral Scholar, Caltech, 1995–97; Assistant Professor, 1997–.

Annette Jacqueline Smith, Ph.D., Professor of Literature, Emeritus B.A., University of Paris (Sorbonne), 1947; M.A., 1950, Ph.D., 1970. Visiting Assistant Professor of French, Caltech, 1970–71; Lecturer, 1971–81; Assistant Professor, 1982–85; Professor, 1985–92; Professor Emeritus, 1993–.

G. Jeffrey Snyder Visiting Associate in Materials Science Postdoctoral Research Associate, Jet Propulsion Laboratory, 1997–. Caltech, 1997–.

Mark Spitzer, J.D., Ph.D., Visiting Professor of Law and Social Sciences B.A., City College of New York, 1973; J.D., University of Southern California, 1977; Ph.D., Caltech, 1988; 1990; 1991–92; Professor of Law and Social Sciences, 1992–2001; Visiting Associate in Law, 2001–02.

Edward Manin Stolper, Ph.D., Professor of Economics B.A., University of Paris (Sorbonne), 1947; M.A., 1950; Ph.D., 1970. Visiting Assistant Professor of French, Caltech, 1970–71; Lecturer, 1971–81; Assistant Professor, 1982–85; Professor, 1985–92; Professor Emeritus, 1993–.

Officers and Faculty

Svenja Marianne Viele, Ph.D., Senior Research Associate in Biology
B.S., Eberhard-Karls University (Germany), 1985; M.S., 1990; Ph.D., 1994. Research Fellow, Caltech, 1995–98; Senior Research Fellow, 1998–.

Petr Vogel, Ph.D., Senior Research Associate in Physics

Rochus E. Vogt, Ph.D., R. Stanton Avery Distinguished Service Professor and Professor of Physics
S.M., University of Chicago, 1957; Ph.D., 1961. Assistant Professor, Caltech, 1962–65; Associate Professor, 1965–70; Professor, 1970–; R. Stanton Avery Distinguished Service Professor, 1982–. Chief Scientist, Jet Propulsion Laboratory, 1977–78; Chairman, Division of Physics, Mathematics and Astronomy, 1978–83; Acting Director, Owens Valley Radio Observatory, 1980–81; Vice President and Provost, 1983–87; Director, Laser Interferometer Gravitational-wave Observatory Project, 1987–94.

Thad Vreeland, Jr., Ph.D., Professor of Materials Science
B.S., Stanford University, 1949; M.S., 1950; Ph.D., 1952. Research Fellow in Engineering, 1952–54; Assistant Professor of Mechanical Engineering, 1954–58; Associate Professor, 1958–63; Associate Professor of Materials Science, 1963–68; Professor, 1968–91; Professor Emeritus, 1991–.

Eric S. Wagner, Ph.D., Lecturer in Chemical Engineering

David J. Wald, Ph.D., Visiting Associate in Geophysics

David Bertram Wales, Ph.D., Professor of Mathematics

Robert Lee Walker, Ph.D., Professor of Physics, Emeritus
B.S., University of Chicago, 1941; Ph.D., Cornell University, 1948. Assistant Professor, Caltech, 1949–53; Associate Professor, 1953–59; Professor, 1959–81; Emeritus, 1981–. Visiting Associate in Physics, 1997–2001.

Peter G. Wanner, Ph.D., Visiting Associate in Physics

Sigrid Washburn, Ph.D., Lecturer in German
B.A., California State University (Long Beach), 1970; M.A., 1970; Ph.D., University of Southern California, 1974. Caltech, 1985–.

Gerald J. Wasserburg, Ph.D., D.h.c., Sc.D.h.c., D.Sci., Cрафord Laureate, John D. MacArthur Professor of Geology and Geophysics
S.B., University of Chicago, 1951; S.M., 1952; Ph.D., 1954; D.h.c., Rennes I University, University of Brussels; University of Turin, University of Paris; Sc.D.h.c., Arizona State University; D.Sci.h., University of Chicago. Assistant Professor of Geology, Caltech, 1955–59; Associate Professor, 1959–62; Professor of Geology and Geophysics, 1963–82; MacArthur Professor, 1982–. Chairman, Division of Geological and Planetary Sciences, 1987–89; Executive Officer for Geochemistry, 1987–89.

Satoshi watersake, Ph.D., Visiting Associate in Mechanical Engineering
M.S., Osaka University (Japan), 1995; Ph.D., 1997. Associate Professor, Kyushu University, 2000–. Caltech, 2001–02.

Robert D. Wayne, M.A., Associate Professor of German, Emeritus
Ph.B., Dickinson College, 1935; M.A., Columbia University, 1940. Instructor, Caltech, 1952–62; Assistant Professor, 1962–69; Associate Professor, 1969–78; Associate Professor Emeritus, 1982–.

Matthew J. Weaver, Ph.D., Senior Research Fellow in Physics

Shilomo Weber, Ph.D., Visiting Professor of Economics

Kerstin Weinberg, Dr.Ing., Visiting Associate in Aeronautics
Dipl.Ing., Technical University of Magdeburg (Germany), 1990; Dr.Ing., 1996. Research Assistant, Medical University of Magdeburg, 1999–. Caltech, 2001–02.

Sander Weinreb, Ph.D., Faculty Associate in Electrical Engineering
B.S., Massachusetts Institute of Technology, 1958; Ph.D., 1963. Caltech, 1999–.

Alan Jay Weinstein, Ph.D., Professor of Physics
A.B., Harvard University, 1978; Ph.D., 1981. Assistant Professor, Caltech, 1988–95; Associate Professor, 1995–99; Professor, 2000–.

Cindy Weinstein, Ph.D., Associate Professor of Literature
B.A., Brandeis University, 1982; Ph.D., University of California, 1989. Assistant Professor, Caltech, 1989–95; Associate Professor, 1995–.

Daniel Paul Waltokamp, Ph.D., Associate Professor of Chemical Physics
B.A., Harvard College, 1974; Ph.D., 1981. Assistant Professor, Caltech, 1988–95; Associate Professor, 1995–99; Professor, 2000–.

Paul O. Wennberg, Ph.D., Professor of Atmospheric Chemistry and Environmental Engineering
B.A., Oberlin College, 1985; Ph.D., Harvard University, 1994. Associate Professor, Caltech, 1998–2001; Professor, 2001–.

Brian P. Wernicke, Ph.D., Chandler Family Professor of Geology
B.S., University of Southern California, 1978; Ph.D., Massachusetts Institute of Technology, 1982. Visiting Professor, Caltech, 1990; Professor of Geology, 1992–2001; Chandler Professor, 2001–.

James A. Westphal, Ph.D., Professor of Planetary Science, Emeritus

Peter J. Westwick, Ph.D., Senior Research Fellow in Humanities; Lecturer in History

Ward Whaling, Ph.D., Professor of Physics, Emeritus
B.S., Rice University, 1944; M.A., 1947; Ph.D., 1949. Research Fellow, Caltech, 1949–52; Assistant Professor, 1952–58; Associate Professor, 1958–62; Professor, 1962–93; Professor Emeritus, 1993–.

John Whelan, Ph.D., Visiting Associate in Physics
Ph.D., University of California (Santa Barbara), 1996. Senior Lecturer, University of Texas (Brownsville), 2000–. Caltech, 2001–02.

Gerald Beresford Whitham, Ph.D., Charles Lee Powell Professor of Applied Mathematics, Emeritus

Philip Wigen, Ph.D., Visiting Associate in Physics

Simon J. Willkie, Ph.D., Assistant Professor of Economics
B.Com., University of New South Wales, 1982; M.A., University of Rochester, 1988; Ph.D., 1991. Instructor, Caltech, 1994–95; Assistant Professor, 1995–.

Ruth Williams, Ph.D., Visiting Associate in Physics
Yuk Ling Yung, Ph.D., Professor of Astronomy.
B.S., University of California, 1969; Ph.D., Harvard University, 1974. Visiting Associate, Caltech, 1976; Assistant Professor, 1977–82; Associate Professor, 1982–86; Professor, 1986–.

William R. Zame, Ph.D., Visiting Professor of Economics.

Davit Zargarian, Ph.D., Visiting Associate in Computer Science.
B.S., University of Toronto, 1985; M.S., University of Waterloo, 1987; Ph.D., University of Ottawa, 1992. Associate Professor, Université de Montréal, 1999–.

Tai-Wei Zhu, Ph.D., Visiting Associate in Chemistry.
INDEX

A

abbreviations, 315
academic calendar, 4–5
academic divisions, 215
accreditations, 45
administration, 49–497
admission, 115–122, 216
admission to candidacy, 224, 225, 228
advanced placement, 117, 130, 168
advisers, 30, 31, 220
aeronautical engineer's degree, 215, 243
aeronautics, 69–72
courses, 316–322
graduate option, 240–246
instructional and research staff, 509–516
option representative, 215
undergraduate option, 171
applying for admission, 115
applying for graduate standing, 216
archives, 531
Army ROTC, 123
art history, 335–337
ASCIT, 31, 137
assistantships, 234
Associated Students of Caltech (ASCIT), 31, 137
astronomical observatories, 75, 76, 77
astronomy, 75–77
courses, 338–342
Alumni Association, 39
American school credit, 10
authorizations and accreditation, 45
Avery House, 3, 29
awards, 159–167, 237–240
B

bachelor of science degree, 129, 131, 224
Beckman Auditorium, 21, 34
Beckman Institute, 23, 25
Beckman Laboratory, 18, 85
Big Bear Solar Observatory, 24, 76
biochemistry and molecular biology, 77–78
courses, 342–343
graduate option, 257–258
option representative, 215
bioengineering, 78–79
courses, 343
graduate option, 259–260
option representative, 215
biology, 80–81
advanced placement/college credit, 117
courses, 344–353
course loads. See overloads; underloads
course schedule for first year, 170 courses, 315–488
courses required for graduation, 167–170. See also under specific option
Crafoord laureates, 17
credits, 43, 130

D

deferral of entrance, 117
degrees
aeronautical engineer, 215, 243
bachelor of science, 129, 131, 167, 224
civil engineer, 215, 273
doctor of philosophy, 226–230
See also under specific option
electrical engineer, 215, 281
electrical and computer engineering, 187–188
electrical engineering, 92–97
graduate option, 281–283

E

earl action application plan, 115
economics, 186–187, 386–389
electrical and computer engineering, 187–188
electrical engineering, 92–97
graduate option, 281–283

Index
federal funds, return of, 135
federal grants, 142
federal loans, 146–156
federal student aid application, 139, 146
fee for summer field geology course, 137
fees, 132, 137, 232
fellowships, 235
financial aid, 138–158, 233–237
fire policy, 47
first-year course schedule, 170
foreign students. See international students
freshman advisers, 30

G

GALCIT, 69
geobiology, 197, 198, 199, 289
gochemistry, 197, 200, 290
go geological and planetary sciences, 100–103
courses, 406–421
graduate option, 286–291
instructional and research staff, 517–519
option representative, 215
undergraduate option, 197–201
go geology, 197, 199, 289
geophysics, 197, 201, 290
grade–point average, 43
grades, 41–44
graduate assistantships, 234
graduate degrees, 215
graduate expenses, 230–233
graduate options, 215, 240–312
graduate policies and procedures, 216–223
graduate program, 10, 215
graduate research funds, 235
graduate school advising, 37
graduate standing, admission to, 216
graduate student council, 32
dues, 232
graduate student–faculty adviser relationship, 220

H

graduate studies committee, 215
graduation requirements, 120, 128–129, 167–170
graduation with honor, 129
grants, 142
grievances, 34, 60

harassment policy, 52–60
health insurance, 36
health services, 35
high school requirements for admission, 116
history
courses, 421–425
minor, 291
undergraduate option, 201–202
history of Caltech, 11–16
honor system, 32, 137, 232
housing, 29, 137, 232
humanities, 103, 426–429
humanities and social sciences, 130, 168–170
instructional and research staff, 520–522

immigration matters, 39
independent studies program, 104, 202–204, 429
Industrial Relations Center, 26, 530
Information Technology Services, 26, 530
Infrared Processing and Analysis Center (IPAC), 75
insurance, health, 36
interhouse activities, 30
international baccalaureate, 117
international students, 39–40
employment program, 144
English requirement, 120, 216
financial aid, 140
sabbaticals, 219
internships, 38
involuntary leave, 125

J

jet propulsion, 69, 107, 429–430
Jet Propulsion Laboratory, 24, 531
joint B.S./M.S. degree, 224

K

Keck Observatory, 24, 77, 109
Kellogg Radiation Laboratory, 19, 108
Kerckhoff Marine Laboratory, 24, 80

L

laboratory of chemical synthesis, 18, 85
laboratory requirement, undergraduates, 168
laboratory work, graduates, 222
language courses, 430–433
late registration fees, 137
law courses, 434
See also sabbaticals

libraries, 27, 531
literature, 204, 434–439
loan consolidation, 154
loan deferments, 155
loan repayment, 148–155
loans, 143–154, 235

M

map of campus, 6–7
marine biology laboratory, 24, 81
master of science degree, 223–224
See also under specific option
materials science, 104–105
courses, 440–443
graduate option, 291–294
instructional and research staff, 509–516
option representative, 216
mathematics, 105–106
advanced placement/college credit, 118
courses, 443–451

off–campus facilities, 24
Office of Public Events, 34
Officers of Caltech, 491, 494–495, 498
ombuds office, 34, 530
on–campus recruiting program, 37
option advisers, 31, 130
option regulations, 128–129, 240
option representatives, names of, 215–216
option selection, 130–131
options, 9, 10, 171–213, 215, 240–312
orientation, 119

N

new student orientation, 119
Nobel laureates, 17
nondegree graduate programs for staff members, 221
nondiscrimination policy, 45–46

O

off-campus facilities, 24
Office of Public Events, 34
Officers of Caltech, 491, 494–495, 498
ombuds office, 34, 530
on-campus recruiting program, 37
option advisers, 31, 130
option regulations, 128–129, 240
option representatives, names of, 215–216
option selection, 130–131
options, 9, 10, 171–213, 215, 240–312
orientation, 119

P

PACS, 292
Pardee Foundation, 292

R

recruiting, 37
regulations, 239
residency, 138
registrar, 22
registration, 137, 145
requirements, 158
registrar, 22
registration, 137, 145
requirements, 158
repayment, 148–155
renewal of contract, 243

S

sabbaticals, 219

T

technical assistance, 231
technical assistance, 231

U

university, 233
university, 233

V

vacations, 137

W

war veterans, 38

X

extension program, 231
extensions, 231
extension program, 231
extensions, 231

Y

year–long courses, 231
year–long courses, 231

Z

zoo, 231
zoo, 231
overloads, 129
Owens Valley Radio Observatory,
24, 75, 76, 102, 111

P
Palomar Observatory, 24, 75, 76,
111
part-time graduate study programs,
221–222
pass/fail grading, 43
patent agreements, 62
Pell Grant, 146
performance courses, 458–460
performance instructors, 496
Ph.D. Career Fair, 37
Ph.D. degree, 226–230. See also under specific option
philosophy courses, 460–462
physical education, 31, 131
courses, 462–466
instructors, 496
physics, 108–111
advanced placement/college credit, 118
courses, 467–477
graduate option, 302–306
instructional and research staff, 523–529
option representative, 216
undergraduate option, 206–208
placement examinations, 254, 302
planetary science, 197, 201, 290. See also geological and planetary sciences
policies of Caltech, 45–66
political science courses, 477–479
postdoctoral scholars, 10
premedical programs, 37, 177. See also medical school
prizes, 159–167, 237–240
probability requirement for undergraduates, 168
PROFILE, 139
psychology courses, 479–480
public events, 34
publications, 33

R
recourses, 4–5
records and transcripts, 63–67, 131
refunds, 134–136, 237
registration, 124–127
general deposit, 137
graduate students, 218–219
summer research, 126, 219
religious practice, 34
repayment of loans, 148–155
repayments for withdrawal, 134
research
treas of, 69–113
summer, 28, 126, 219
undergraduate, 28
research funds for graduate students, 235
residency requirements, 218, 227
Resumania, 37
ROTC, 123

S
sabbaticals, 125, 219–220
SAT exams, 115, 116, 120
scholarships, 142, 157, 235
scholastic requirements, undergraduates, 126–131
science, ethics, and society/history and philosophy of science, 112
courses, 480–485
graduate minor, 306–307
undergraduate minor, 211–212
undergraduate option, 208–212
Scripps Institution of Oceanography, 223
seismological laboratory, 102
senior postdoctoral scholars, 10
sexual assault/harassment policy, 48–60
SIRTF Science Center, 75
social science, 112–113
core Institute requirements, 167–170
courses, 485–488
graduate option, 307–312
social science (continued)
instructional and research staff, 520–522
option representative, 216
undergraduate option, 212–213
Staff/Faculty Consultation Center staff, 530
staff of instruction and research, 501–529
Stafford Loan, 146
state grants, 143
stipends, 234
Student Activities Center, 30
student affairs staff, 495–496
student publications, 33
student records and transcripts, 63–67
student retention statistics, 61
student shop, 33
Student Patent and Computer Software Agreement, 62
student publications, 33
student records and transcripts, 63–67
student registration, 124–127
general deposit, 137
graduate students, 218–219
summer research, 126, 219
religious practice, 34
repayment of loans, 148–155
repayments for withdrawal, 134
research
treas of, 69–113
summer, 28, 126, 219
undergraduate, 28
research funds for graduate students, 235
residency requirements, 218, 227
Resumania, 37
ROTC, 123

T
teaching assistantships, 234
tests, college board, 116, 120
tests required for admission to graduate standing, 217
theses, 226, 229
3/2 dual degree plan, 121
transcripts of records, 131
transfer admissions, 119–121
transfer of credit, 120, 130
travel grants in mathematics, 238, 295
trustee committees, 493
trustees, board of, 491
tuition, 132, 231

U
UCLA–Caltech Medical Scientist Training Program, 264
undergraduate admission, 115–122
undergraduate housing, 29
undergraduate options, 171–213
undergraduate program, 9–10
undergraduate research, 28, 126
underloads, 129, 159
units, 43, 129
unpaid bills policy, 137, 230

V
vacations. See recesses
veterans, 66–67
visas, 39

W
withdrawal, 125, 134–136, 237
work-study, 38, 144

Y
Y, Caltech, 34

Index