The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.

While every effort has been made to ensure that this catalog is accurate and up to date, it may include typographical or other errors. The Institute reserves the right to change its policies, rules, regulations, requirements for graduation, course offerings, and any other contents of this catalog at any time.

You can view the Caltech Catalog on line at http://pr.caltech.edu/catalog. Please note that the contents of websites that link to online course entries are not part of the official catalog.
General Information

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Introduction</td>
</tr>
<tr>
<td>11</td>
<td>Historical Sketch</td>
</tr>
<tr>
<td>17</td>
<td>Buildings and Facilities</td>
</tr>
<tr>
<td>26</td>
<td>Undergraduate Research</td>
</tr>
<tr>
<td>27</td>
<td>Student Life</td>
</tr>
<tr>
<td>33</td>
<td>Student Health</td>
</tr>
<tr>
<td>35</td>
<td>Career Development</td>
</tr>
<tr>
<td>37</td>
<td>Caltech Alumni Association</td>
</tr>
<tr>
<td>38</td>
<td>International Student Programs</td>
</tr>
<tr>
<td>38</td>
<td>Auditing Courses</td>
</tr>
<tr>
<td>39</td>
<td>Grades and Grading</td>
</tr>
<tr>
<td>43</td>
<td>Notices and Agreements</td>
</tr>
<tr>
<td>51</td>
<td>Institute Policies</td>
</tr>
</tbody>
</table>

Areas of Study and Research

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>Aeronautics</td>
</tr>
<tr>
<td>80</td>
<td>Applied and Computational Mathematics</td>
</tr>
<tr>
<td>81</td>
<td>Applied Mechanics</td>
</tr>
<tr>
<td>82</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>83</td>
<td>Astrophysics</td>
</tr>
<tr>
<td>85</td>
<td>Biochemistry and Molecular Biophysics</td>
</tr>
<tr>
<td>87</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>88</td>
<td>Biology</td>
</tr>
<tr>
<td>89</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>90</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>91</td>
<td>Chemistry</td>
</tr>
<tr>
<td>93</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>94</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>96</td>
<td>Computer Science</td>
</tr>
<tr>
<td>98</td>
<td>Control and Dynamical Systems</td>
</tr>
<tr>
<td>100</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>105</td>
<td>Environmental Science and Engineering</td>
</tr>
</tbody>
</table>

Information for Undergraduate Students

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>Geological and Planetary Sciences</td>
</tr>
<tr>
<td>110</td>
<td>History and Philosophy of Science</td>
</tr>
<tr>
<td>110</td>
<td>Humanities</td>
</tr>
<tr>
<td>111</td>
<td>Independent Studies Program</td>
</tr>
<tr>
<td>112</td>
<td>Materials Science</td>
</tr>
<tr>
<td>113</td>
<td>Mathematics</td>
</tr>
<tr>
<td>113</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>115</td>
<td>Physics</td>
</tr>
<tr>
<td>119</td>
<td>Social Science</td>
</tr>
<tr>
<td>121</td>
<td>Admission to the Freshman Class</td>
</tr>
<tr>
<td>124</td>
<td>Admission to Upper Classes by Transfer</td>
</tr>
<tr>
<td>128</td>
<td>Study Abroad</td>
</tr>
<tr>
<td>130</td>
<td>ROTC</td>
</tr>
<tr>
<td>131</td>
<td>Registration Regulations</td>
</tr>
<tr>
<td>134</td>
<td>Scholastic Requirements</td>
</tr>
<tr>
<td>139</td>
<td>Undergraduate Expenses</td>
</tr>
<tr>
<td>144</td>
<td>Financial Aid</td>
</tr>
<tr>
<td>165</td>
<td>Prizes</td>
</tr>
<tr>
<td>173</td>
<td>Graduation Requirements, All Options</td>
</tr>
</tbody>
</table>

Information for Graduate Students

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>227</td>
<td>Graduate Program</td>
</tr>
<tr>
<td>228</td>
<td>Graduate Policies and Procedures</td>
</tr>
<tr>
<td>236</td>
<td>Degree Requirements</td>
</tr>
<tr>
<td>243</td>
<td>Graduate Expenses</td>
</tr>
<tr>
<td>246</td>
<td>Financial Assistance</td>
</tr>
<tr>
<td>250</td>
<td>Prizes</td>
</tr>
<tr>
<td>253</td>
<td>Special Regulations of Graduate Options</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>325</td>
<td>General Information</td>
</tr>
<tr>
<td>326</td>
<td>Aeronautics</td>
</tr>
<tr>
<td>333</td>
<td>Anthropology</td>
</tr>
<tr>
<td>334</td>
<td>Applied and Computational Mathematics</td>
</tr>
<tr>
<td>339</td>
<td>Applied Mechanics</td>
</tr>
<tr>
<td>340</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>345</td>
<td>Art History</td>
</tr>
<tr>
<td>348</td>
<td>Astrophysics</td>
</tr>
<tr>
<td>352</td>
<td>Biochemistry and Molecular Biophysics</td>
</tr>
<tr>
<td>353</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>354</td>
<td>Biology</td>
</tr>
<tr>
<td>365</td>
<td>Business Economics and Management</td>
</tr>
<tr>
<td>367</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>371</td>
<td>Chemistry</td>
</tr>
<tr>
<td>380</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>383</td>
<td>Computation and Neural Systems</td>
</tr>
<tr>
<td>387</td>
<td>Computer Science</td>
</tr>
<tr>
<td>397</td>
<td>Control and Dynamical Systems</td>
</tr>
<tr>
<td>400</td>
<td>Economics</td>
</tr>
<tr>
<td>403</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>411</td>
<td>Engineering (General)</td>
</tr>
<tr>
<td>413</td>
<td>English</td>
</tr>
<tr>
<td>418</td>
<td>English As a Second Language</td>
</tr>
<tr>
<td>419</td>
<td>Environmental Science and Engineering</td>
</tr>
<tr>
<td>423</td>
<td>Geological and Planetary Sciences</td>
</tr>
<tr>
<td>438</td>
<td>History</td>
</tr>
<tr>
<td>444</td>
<td>History and Philosophy of Science</td>
</tr>
<tr>
<td>449</td>
<td>Humanities</td>
</tr>
<tr>
<td>453</td>
<td>Independent Studies Program</td>
</tr>
<tr>
<td>453</td>
<td>Languages</td>
</tr>
<tr>
<td>457</td>
<td>Law</td>
</tr>
</tbody>
</table>

Trustees, Administration, Faculty

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>505</td>
<td>Officers</td>
</tr>
<tr>
<td>505</td>
<td>Board of Trustees</td>
</tr>
<tr>
<td>509</td>
<td>Administrative Officers</td>
</tr>
<tr>
<td>511</td>
<td>Faculty Officers and Committees</td>
</tr>
<tr>
<td>514</td>
<td>Staff of Instruction and Research</td>
</tr>
<tr>
<td>549</td>
<td>Officers and Faculty</td>
</tr>
</tbody>
</table>

604 Index
ACADEMIC CALENDAR
2005–06

FIRST TERM 2005

September 12–17
Pre-orientation for international students

September 18
New-student check-in, location and time TBA

September 19–23
New-student orientation

September 26
Beginning of instruction—8 a.m.

September 27
Undergraduate Academic Standards and Honors Committee—9 a.m.

October 14
Last day for adding courses and removing conditions and incompletes

October 26–November 1
Midterm examination period

November 7
Midterm deficiency notices due—9 a.m.

November 16
Last day for dropping courses, exercising pass/fail option, and changing sections

November 17–30
Registration for second term, 2005–06

November 18
Last day for admission to candidacy for the degrees of Master of Science and Engineer

November 24–25
Thanksgiving (Institute holiday)

November 24–27
Thanksgiving recess

November 30
Last day to register for second term, 2005–06, without a $50 late fee

December 2
Last day of classes

December 3–6
Study period

ACADEMIC CALENDAR
2005–06

FIRST TERM 2005

September 12–17
Pre-orientation for international students

September 18
New-student check-in, location and time TBA

September 19–23
New-student orientation

September 26
Beginning of instruction—8 a.m.

September 27
Undergraduate Academic Standards and Honors Committee—9 a.m.

October 14
Last day for adding courses and removing conditions and incompletes

October 26–November 1
Midterm examination period

November 7
Midterm deficiency notices due—9 a.m.

November 16
Last day for dropping courses, exercising pass/fail option, and changing sections

November 17–30
Registration for second term, 2005–06

November 18
Last day for admission to candidacy for the degrees of Master of Science and Engineer

November 24–25
Thanksgiving (Institute holiday)

November 24–27
Thanksgiving recess

November 30
Last day to register for second term, 2005–06, without a $50 late fee

December 2
Last day of classes

December 3–6
Study period

March 18
End of second term, 2005–06

March 19–26
Spring recess

March 22
Instructors’ final grade reports due—9 a.m.

March 23–26
Christmas (Institute holiday)

December 30-January 3
New Year’s holidays (Institute holiday)

SECOND TERM 2006

January 4
Beginning of instruction—8 a.m.

January 5
Undergraduate Academic Standards and Honors Committee—9 a.m.

January 16
Martin Luther King Day (Institute holiday)

January 20
Last day for adding courses and removing conditions and incompletes

February 1–7
Midterm examination period

February 13
Midterm deficiency notices due—9 a.m.

February 20
Presidents’ Day (Institute holiday)

February 22
Last day for dropping courses, exercising pass/fail option, and changing sections

February 23–March 10
Registration for third term, 2005–06

March 10
Last day of classes

March 10
Last day to register for third term, 2005–06, without a $50 late fee

March 11–14
Study period

March 15–17
Final examinations, second term, 2005–06

March 18
End of second term, 2005–06

March 19–26
Spring recess

March 22
Instructors’ final grade reports due—9 a.m.

March 23–26
Christmas (Institute holiday)

December 30-January 3
New Year’s holidays (Institute holiday)

SECOND TERM 2006

January 4
Beginning of instruction—8 a.m.

January 5
Undergraduate Academic Standards and Honors Committee—9 a.m.

January 16
Martin Luther King Day (Institute holiday)

January 20
Last day for adding courses and removing conditions and incompletes

February 1–7
Midterm examination period

February 13
Midterm deficiency notices due—9 a.m.

February 20
Presidents’ Day (Institute holiday)

February 22
Last day for dropping courses, exercising pass/fail option, and changing sections

February 23–March 10
Registration for third term, 2005–06

March 10
Last day of classes

March 10
Last day to register for third term, 2005–06, without a $50 late fee

March 11–14
Study period

March 15–17
Final examinations, second term, 2005–06

*First due date for final examinations

*First due date for final examinations

THIRD TERM 2006

March 27
Beginning of instruction—8 a.m.

March 28
Undergraduate Academic Standards and Honors Committee—9 a.m.

April 14
Last day for adding courses and removing conditions and incompletes

April 26–May 2
Midterm examination period

May 8
Midterm deficiency notices due—9 a.m.

May 17
Last day for seniors to remove conditions and incompletes

May 24–26
Final examinations for seniors and graduate students, third term, 2005–06

May 31–June 2
Final examinations for seniors and graduate students, third term, 2005–06

June 2
Last day of classes—undergraduates

June 3–6
Study period for undergraduates

June 5
Instructors’ final grade reports due for seniors and graduate students—9 a.m.

June 7
Undergraduate Academic Standards and Honors Committee—9 a.m.

(Final term meeting)

Curriculum Committee—10 a.m.

Faculty meeting—2 p.m.

June 7–9
Final examinations for undergraduates, third term, 2005–06

June 9
Commencement—10 a.m.

June 10
End of third term, 2005–06

June 14
Instructors’ final grade reports due for undergraduates—9 a.m.

June 21
Undergraduate Academic Standards and Honors Committee—9 a.m.

July 3–4
Independence Day (Institute holiday)

September 4
Labor Day (Institute holiday)

FIRST TERM 2006–07

September 17
New-student check-in, location and time TBA

September 18–22
New-student orientation

September 25
Beginning of instruction—8 a.m.

September 26
Last day for admission to candidacy for the degrees of Master of Science and Engineer

September 27
Undergraduate Academic Standards and Honors Committee—9 a.m.

October 1
Last day for adding courses and removing conditions and incompletes

October 5
Last day for dropping courses, exercising pass/fail option, and changing sections

October 11–15
Midterm examination period

October 16
Midterm deficiency notices due—9 a.m.

October 23
Last day for seniors to remove conditions and incompletes

October 30–November 1
Registration for second term, 2006–07

November 1
Last day to register for second term, 2006–07, without a $50 late fee

November 7
Thanksgiving (Institute holiday)

November 9
Thanksgiving recess

November 14
Last day of classes

November 20
Last day to register for second term, 2006–07, without a $50 late fee

November 21
Last day of classes—undergraduates

November 28
Midterm deficiency notices due—9 a.m.

December 4
Last day for seniors to remove conditions and incompletes

December 11
Last day of classes

December 12
Last day to register for second term, 2006–07, without a $50 late fee

December 13
Last day of classes—undergraduates

December 19
Midterm deficiency notices due—9 a.m.

December 20
Last day of classes

December 21
Last day to register for second term, 2006–07, without a $50 late fee

December 22
Last day of classes—undergraduates

December 26
Midterm deficiency notices due—9 a.m.

December 27
Last day of classes

December 28
Last day to register for second term, 2006–07, without a $50 late fee

December 29
Last day of classes—undergraduates

December 30
Last day of classes

January 3
Last day to register for second term, 2006–07, without a $50 late fee

January 4
Beginning of instruction—8 a.m.

January 5
Undergraduate Academic Standards and Honors Committee—9 a.m.

January 16
Martin Luther King Day (Institute holiday)

January 20
Last day for adding courses and removing conditions and incompletes

February 1–7
Midterm examination period

February 13
Midterm deficiency notices due—9 a.m.

February 20
Presidents’ Day (Institute holiday)

February 22
Last day for dropping courses, exercising pass/fail option, and changing sections

February 23–March 10
Registration for third term, 2006–07

March 10
Last day of classes

March 10
Last day to register for third term, 2006–07, without a $50 late fee

March 11–14
Study period

March 15–17
Final examinations, second term, 2006–07

*First due date for final examinations

*First due date for final examinations
California Institute of Technology

- Emergency Operating Center
- First Aid
- Shelter Site
- Emergency Telephone
- Security Station
The California Institute of Technology is an independent, privately supported university, whose educational mission has not changed since it was stated by the original trustees on November 29, 1921: “To train the creative type of scientist or engineer urgently needed in our educational, governmental, and industrial development.”

Its mission in research was expressed by President Emeritus Thomas E. Everhart in his 1988 inaugural address: “There need to be a few places that look ahead and still dare to do the most ambitious things that human beings can accomplish. Caltech still has that ambition and that daring.”

Caltech conducts instruction at both the undergraduate and graduate levels and, including its off-campus facilities, is one of the world’s major research institutions. Its mission to train creative scientists and engineers is achieved by conducting instruction in an atmosphere of research, accomplished by the close contacts between a relatively small group of students (approximately 900 undergraduate and 1,200 graduate students) and the members of a relatively large faculty (approximately 280 professorial faculty, 62 research faculty, and 570 postdoctoral scholars). “Caltech has achieved international influence far disproportionate to its size,” according to *Time* magazine.

The Institute is organized into six divisions: Biology; Chemistry and Chemical Engineering; Engineering and Applied Science; Geological and Planetary Sciences; the Humanities and Social Sciences; and Physics, Mathematics and Astronomy. It is accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges.

Undergraduate Program

Caltech offers a four-year undergraduate course with options available in applied and computational mathematics; applied physics; astrophysics; biology; business economics and management; chemical engineering; chemistry; computer science; economics; electrical engineering; engineering and applied science; English; geobiology; geochemistry; geology; geophysics; history; history and philosophy of science; independent studies; mathematics; mechanical engineering; philosophy; physics; planetary science; and social science. Each leads to the degree of Bachelor of Science.

All options require students to take courses in biology, chemistry, humanities, mathematics, physics, and the social sciences. Course work is rigorous and students are encouraged to participate in research. The undergraduate program is thus designed to provide an intensive exposure to a wide spectrum of intellectual pursuits.
Near the end of the first year, students select an option, and during the second year they begin to specialize. However, the major concentration in chosen fields and professional subjects occurs during the third and fourth years.

Caltech also encourages a reasonable participation in extracurricular activities, which are largely managed by the students themselves. Three terms of physical education are required, and intercollegiate and intramural sports are encouraged.

In short, every effort is made to provide undergraduate students with well-rounded, integrated programs that will not only give them sound training in their professional fields, but that will also develop character, intellectual breadth, and physical well-being.

Graduate Program

Graduate students constitute approximately 59 percent of the total student body at Caltech. Jointly engaged in research problems with faculty members, they contribute materially to the general atmosphere of intellectual curiosity and creative activity generated on the Institute campus.

Caltech offers courses leading to the degree of Master of Science, which normally involves one year of graduate work; the degree of Engineer in certain branches of engineering, with a minimum of two years; and the degree of Doctor of Philosophy. In all the graduate work, research is strongly emphasized, not only because of its importance in contributing to the advancement of science and thus to the intellectual and material welfare of mankind, but also because research activities add vitality to the educational work of Caltech.

The graduate options are aeronautics, applied and computational mathematics, applied mechanics, applied physics, astrophysics, biochemistry and molecular biophysics, bioengineering, biology, chemical engineering, chemistry, civil engineering, computation and neural systems, computer science, control and dynamical systems, electrical engineering, environmental science and engineering, geological and planetary sciences, materials science, mathematics, mechanical engineering, physics, and social science.

Postdoctoral and Senior Postdoctoral Scholars

Postdoctoral scholars form a vital part of the research community at Caltech and JPL. They advance knowledge through research and scholarship in science and technology; add to their own experience and education; and contribute to the education of Caltech undergraduates and graduate students. Postdoctoral scholars on campus always work under the close supervision of one or more Caltech professorial faculty members. In virtually all circumstances they must have an earned doctorate from a duly accredited institution. Upon arrival at the Institute, postdoctoral scholars should call the Postdoctoral Scholar Services office in Human Resources, (626) 395-3300, to make an appointment to activate their positions according to the terms and conditions of their letter.

Betty and Gordon Moore Distinguished Visitors

The Moore Distinguished Visitors program brings to the Caltech campus scientists, scholars, technologists, and artists of great distinction or of great promise. Through this program, Caltech faculty and students and the Moore Distinguished Visitors will have the opportunity to inform, inspire, and invigorate one another through discussions, seminars, lectures, and research. Appointments will be made in all academic divisions, and will normally last from two to nine months.

HISTORICAL SKETCH

The California Institute of Technology developed from a local school of arts and crafts founded in Pasadena in 1891 by the Honorable Amos G. Throop. Initially named Throop Polytechnic Institute, it was later renamed Throop Polytechnic Institute. Known as the California Institute of Technology since 1920, it has enjoyed the support of the citizens of Pasadena, and as early as 1908 the Board of Trustees had as members Dr. Norman Bridge, Arthur H. Fleming, Henry M. Robinson, J. A. Culbertson, C. W. Gates, and Dr. George Ellery Hale. The dedication by these men, of their time, their minds, and their fortunes, transformed a modest vocational school into a university capable of attracting to its faculty some of the most eminent of the world's scholars and scientists.

George Ellery Hale, astronomer and first director of the Mount Wilson Observatory, foresaw the development in Pasadena of a distinguished institution of engineering and scientific research. Hale well knew that a prime necessity was modern well-equipped laboratories, but he stressed to his fellow trustees that the aim was not machines, but men. “We must not forget,” he wrote in 1907, “that the greatest engineer is not the man who is trained merely to understand machines and apply formulas, but is the man who, while knowing these things, has not failed to develop his breadth of view and the highest qualities of his imagination. No creative work, whether in engineering or in art, in literature or in science, has been the work of a man devoid of the imaginative faculty.”

The realization of these aims meant specializing, so the trustees decided in 1907 to discontinue the elementary school, the business school, the teacher-training program, and the high school, leaving only a college of science and technology that conferred Bachelor of Science degrees in electrical, mechanical, and civil engineering.

In 1910 Throop Polytechnic Institute moved from its crowded quarters in the center of Pasadena to a new campus of 22 acres on the southeastern edge of town, the gift of Arthur H. Fleming and his daughter Marjorie. The president, Dr. James A. B. Scherer, and his faculty of 16 members, opened the doors to 31 students that
September. When, on March 21, 1911, Theodore Roosevelt delivered an address at Throop Institute, he declared, “I want to see institutions like Throop turn out perhaps ninety-nine of every hundred students as men who are to do given pieces of industrial work better than any one else can do them; I want to see those men do the kind of work that is now being done on the Panama Canal and on the great irrigation projects in the interior of this country—and the one-hundredth man I want to see with the kind of cultural scientific training that will make him and his fellows the matrix out of which you can occasionally develop a man like your great astronomer, George Ellery Hale.”

It would have surprised Roosevelt to know that within a decade the little Institute, known from 1913 as Throop College of Technology, would have again raised its sights, leaving to others the training of more efficient technicians and concentrating its own efforts on Roosevelt’s “hundredth man.” On November 29, 1921, the trustees declared it to be the express policy of the Institute to pursue scientific researches of the greatest importance and at the same time “to continue to conduct thorough courses in engineering and pure science, basing the work of these courses on exceptionally strong instruction in the fundamental sciences of mathematics, physics, and chemistry; broadening and enriching the curriculum by a liberal amount of instruction in such subjects as English, history, and economics; and vitalizing all the work of the Institute by the infusion in generous measure of the spirit of research.”

Three men were responsible for the change in the Institute. George Ellery Hale still held to his dream. Arthur Amos Noyes, professor of physical chemistry and former acting president of the Massachusetts Institute of Technology, served part of each year from 1913 to 1919 as professor of general chemistry and as research associate; then, in 1919, he resigned from MIT to devote full time to Throop as director of chemical research. In a similar way Robert Andrews Millikan began, in 1916–17, to spend a few months a year at Throop as director of physical research. Shortly after the school was renamed in 1920, Scherer resigned as president. In 1921, when Dr. Norman Bridge agreed to provide a research laboratory in physics, Millikan resigned from the University of Chicago and became administrative head of the Institute as well as director of the Norman Bridge Laboratory.

The great period of the Institute’s life began, then, under the guidance of three men of vision—Hale, Noyes, and Millikan. They were distinguished research scientists who soon attracted graduate students. In 1920 the enrollment was nine graduate students and 359 undergraduates with a faculty of 60; a decade later there were 138 graduate students, 510 undergraduates, and a faculty of 180. At the present time there are about 900 undergraduates, 1,100 graduate students, and 900 faculty (including postdoctoral fellows).

The Institute also attracted financial support from individuals, corporations, and foundations. In January 1920 the endowment had reached half a million dollars. In February of that year it was announced that $200,000 had been secured for research in chemistry and a like amount for research in physics. Other gifts followed from trustees and friends who could now feel pride in the Institute as well as hope for its future. The Southern California Edison Company provided a high-voltage laboratory, with the million-volt Sorensen transformer. Philanthropic foundations bearing the names of Carnegie, Rockefeller, and Guggenheim came forth with needed help when new departments or projects were organized.

In 1923 Millikan received the Nobel Prize in physics. He had attracted to the Institute such men as Charles Galton Darwin, Paul Epstein, and Richard C. Tolman. In 1924 the Ph.D. degree was awarded to nine candidates.

It was inevitable that the Institute would enlarge its fields; it could not continue to be merely a research and instructional center in physics, chemistry, and engineering. But the trustees pursued a cautious and conservative policy, not undertaking to add new departments except when the work done in them would be at the same high level as that in physics and chemistry. In 1925 a gift of $25,000 from the Carnegie Corporation of New York made possible the opening of a department of instruction and research in geology. A seismological laboratory was constructed, and Professors John P. Buwalda and Chester Stock came from the University of California to lead the work in the new division.

That same year William Bennett Munro, chairman of the Division of History, Government, and Economics at Harvard, joined the Institute faculty. Offerings in economics, history, and literature were added to the core of undergraduate instruction.

In 1928 Caltech began its program of research and instruction in biology. Thomas Hunt Morgan became the first chairman of the new Division of Biology and a member of Caltech’s Executive Council. Under Morgan’s direction the work in biology developed rapidly, especially in genetics and biochemistry. Morgan received the Nobel Prize in 1933.

The Guggenheim Graduate School of Aeronautics was founded at Caltech in the summer of 1926 and a laboratory was built in 1929, but courses in theoretical aerodynamics had been given at the Institute for many years by Professors Harry Bateman and P. S. Epstein. As early as 1917 the Throop Institute had constructed a wind tunnel in which, the catalog proudly boasted, constant velocities of 4 to 40 miles an hour could be maintained, “the controls being very sensitive.” The new program, under the leadership of Theodore von Kármán, included graduate study and research at the level of the other scientific work at the Institute, and what is now known as GALCIT (Graduate Aeronautical Laboratories at the California Institute of Technology) was soon a world-famous research center in aeronautics.
In 1928 George Ellery Hale and his associates at the Mount Wilson Observatory developed a proposal for a 200-inch telescope and attracted the interest of the General Education Board in providing $6,000,000 for its construction. The Board proposed that the gift be made, and Caltech agreed to be responsible for the construction and operation. The huge instrument was erected on Palomar Mountain. Teaching and research in astronomy and astrophysics thus became a part of the Caltech program.

From the summer of 1940 until 1945, Caltech devoted an increasingly large part of its personnel and facilities to the furthering of the national defense and war effort. Caltech's work during this period fell mainly into two categories: special instructional programs and weapons research. The research and development work was carried on, for the most part, under nonprofit contracts with the Office of Scientific Research and Development. Rockets, jet propulsion, and antisubmarine warfare were the chief fields of endeavor. The Jet Propulsion Laboratory in the upper Arroyo Seco continues under Institute management to carry on a large-scale program of research for the National Aeronautics and Space Administration and other agencies in the science and technology of robotic space exploration.

In the 1950s, in response to the growing technological component of societal problems, the Institute began to expand the fields in which it had substantial expertise. In the late 1960s and early 1970s the Institute added to its faculty several economists and political scientists who initiated theoretical and applied studies of interdisciplinary issues. A graduate program in social sciences was added in 1972. Caltech students could now engage their talents in the development of the basic scientific aspects of economics and political science, and begin to use the principles from these sciences together with those from the physical sciences to formulate and address public policies.

In 1945 Robert A. Millikan retired as chairman of the Executive Council but served as vice chairman of the Board of Trustees until his death in 1953. Dr. Lee A. DuBridge became president of Caltech on September 1, 1946. Formerly chairman of the physics department and dean of the faculty at the University of Rochester, he came to the Institute after working five years as wartime director of the MIT Radiation Laboratory—and remained for 22 years.

DuBridge was also committed to the concept of a small, select institution offering excellence in education. Facts and figures are only part of the story, but the statistical record of change during the DuBridge administration indicates how he held to that concept. The 30-acre campus of 1946 grew to 80 acres; the $17 million endowment grew to more than $100 million; the faculty of 260 became 550; the number of campus buildings increased from 20 to 64; and the budget went from something less than $8 million to $30 million. But enrollment remained relatively constant. In 1946 the total number of students, graduate and undergraduate, was 1,391. In 1968, the year DuBridge left, it was 1,492.

Dr. Harold Brown came to Caltech as president in 1969. A physicist who had received his Ph.D. from Columbia in 1949, he had succeeded Dr. Edward Teller as director of the University of California's Lawrence Radiation Laboratory in Livermore in 1960. President Lyndon Johnson named Brown Secretary of the Air Force in 1965, and he came to the Institute from that office. Six new campus buildings were dedicated under Brown's administration, and a major development campaign for $130 million was under way when he resigned in 1977 to become Secretary of Defense under President Carter.

Dr. Marvin L. Goldberger was appointed president in 1978. He had received his B.S. at the Carnegie Institute of Technology (now Carnegie Mellon University) and his Ph.D. at the University of Chicago. He came to Caltech from Princeton University, where he was the Joseph Henry Professor of Physics. Among the major accomplishments of the Goldberger administration were the addition of three new laboratories; the acquisition of a $70 million grant for construction of the W. M. Keck Observatory to house the world's most powerful optical telescope; and a $50 million pledge for the establishment of the Beckman Institute. Goldberger resigned in 1987 to become director of the Institute for Advanced Study, in Princeton, New Jersey.

In fall 1987 Dr. Thomas E. Everhart became president, coming to Caltech from his position as chancellor at the University of Illinois at Urbana-Champaign. Everhart graduated magna cum laude with an A.B. in physics from Harvard, received his M.Sc. in applied physics from UCLA, and earned a Ph.D. in engineering from Cambridge University. He had gained international recognition for his work in the development of electron microscopy, and he had also done research on electron beams as applied to the analysis and fabrication of semiconductors. Everhart retired as president in October 1997, but he retains his position as professor of electrical engineering and applied physics. During his tenure in office, he oversaw construction of the Keck Observatory in Hawaii, the Moore Laboratory of Engineering, Avery House, the Braun Athletic Center, the Sherman Fairchild Library, and the Beckman Institute, and he directed the successful completion of a $350 million campaign for Caltech.

In October 1997, Dr. David Baltimore assumed the presidency of the Institute. Baltimore, one of the world's leading biologists, was the winner of the 1975 Nobel Prize for his work in virology. He was previously Ivan R. Cottrell Professor of Molecular Biology and Immunology at the Massachusetts Institute of Technology, and founding director of the Whitehead Institute for Biomedical Research at MIT, serving from 1982 to 1990, when he became president of Rockefeller University. He had also earned his doctorate at Rockefeller in 1964. During the 1970s, he played a pivotal role with several other eminent biologists in creating a consensus on national science policy regarding recombinant DNA research.
Douglas D. Osheroff, B.S. ’67
Robert C. Merton, M.S. ’67
* Ahmed H. Zewail
Leland H. Hartwell, B.S. ’61
Vernon L. Smith, B.S. ’49
* Hugh David Politzer
* Gerald J. Wasserburg
Allan R. Sandage, Ph.D. ’53
* Seymour Benzer
* Don L. Anderson, M.S. ’58, Ph.D. ’62
James E. Gunn, Ph.D. ’66
* In residence

Caltech Nobel Laureates

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert A. Millikan</td>
<td>physics</td>
<td>1923</td>
</tr>
<tr>
<td>Thomas Hunt Morgan</td>
<td>physiology</td>
<td>1933</td>
</tr>
<tr>
<td>Carl D. Anderson, B.S. ’27, Ph.D. ’30</td>
<td>physics</td>
<td>1936</td>
</tr>
<tr>
<td>Edwin M. McMillan, B.S. ’28, M.S. ’29</td>
<td>chemistry</td>
<td>1951</td>
</tr>
<tr>
<td>Linus Pauling, Ph.D. ’25</td>
<td>chemistry</td>
<td>1954</td>
</tr>
<tr>
<td>William Shockley, B.S. ’32</td>
<td>physics</td>
<td>1956</td>
</tr>
<tr>
<td>George W. Beadle</td>
<td>physiology</td>
<td>1958</td>
</tr>
<tr>
<td>Donald A. Glaser, Ph.D. ’50</td>
<td>physics</td>
<td>1960</td>
</tr>
<tr>
<td>Rudolf Mössbauer</td>
<td>physics</td>
<td>1961</td>
</tr>
<tr>
<td>Charles H. Townes, Ph.D. ’39</td>
<td>physics</td>
<td>1964</td>
</tr>
<tr>
<td>Richard Feynman</td>
<td>physics</td>
<td>1965</td>
</tr>
<tr>
<td>Murray Gell-Mann</td>
<td>physics</td>
<td>1969</td>
</tr>
<tr>
<td>Max Delbrück</td>
<td>physiology</td>
<td>1969</td>
</tr>
<tr>
<td>* David Baltimore (president)</td>
<td>physiology</td>
<td>1975</td>
</tr>
<tr>
<td>Renato Dulbecco</td>
<td>physiology</td>
<td>1975</td>
</tr>
<tr>
<td>Leo James Rainwater, B.S. ’39</td>
<td>physiology</td>
<td>1975</td>
</tr>
<tr>
<td>Howard M. Temin, Ph.D. ’60</td>
<td>physiology</td>
<td>1975</td>
</tr>
<tr>
<td>William N. Lipscomb, Ph.D. ’46</td>
<td>chemistry</td>
<td>1976</td>
</tr>
<tr>
<td>Robert W. Wilson, Ph.D. ’62</td>
<td>physics</td>
<td>1978</td>
</tr>
<tr>
<td>Roger W. Sperry</td>
<td>physiology</td>
<td>1981</td>
</tr>
<tr>
<td>Kenneth G. Wilson, Ph.D. ’61</td>
<td>physics</td>
<td>1982</td>
</tr>
<tr>
<td>William A. Fowler, Ph.D. ’36</td>
<td>physics</td>
<td>1983</td>
</tr>
<tr>
<td>* Rudolph A. Marcus</td>
<td>chemistry</td>
<td>1992</td>
</tr>
<tr>
<td>Edward B. Lewis, Ph.D. ’42</td>
<td>physiology</td>
<td>1995</td>
</tr>
</tbody>
</table>

General Information

establishing research standards that are followed by the genetics community to this day. More recently, Baltimore has been a major figure in Washington as chairman of the National Institutes of Health AIDS Vaccine Research Committee. In 1999, he was awarded the National Medal of Science by President Clinton.

As Caltech has developed in effectiveness and prestige, it has attracted a steady flow of gifts for buildings, endowment, and current operations. In addition, substantial grants and contracts from the federal government and private sources support many research activities.

Caltech has more than 21,000 living alumni all over the world, many of them eminent in their fields of engineering, science, law, academe, and entrepreneurship.

Buildings and Facilities

General Information

Douglass D. Osheroff, B.S. ’67
Robert C. Merton, M.S. ’67
* Ahmed H. Zewail
Leland H. Hartwell, B.S. ’61
Vernon L. Smith, B.S. ’49
* Hugh David Politzer
* Gerald J. Wasserburg
Allan R. Sandage, Ph.D. ’53
* Seymour Benzer
* Don L. Anderson, M.S. ’58, Ph.D. ’62
James E. Gunn, Ph.D. ’66
* In residence

On-Campus Buildings

Gates and Crellin Laboratories of Chemistry: first unit, 1917; second unit, 1927; third unit, 1937. The first two units were the gifts of Messrs. C. W. Gates and P. G. Gates of Pasadena; the third unit was the gift of Mr. and Mrs. E. W. Crellin of Pasadena. Gates (first unit), which was retired after suffering extensive damage in the 1971 earthquake, was rebuilt in 1983 as the Parsons-Gates Hall of Administration. The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, 1986, occupying portions of Crellin Laboratory (as well as portions of Church Laboratory for Chemical Biology), was built with funds provided by the Arnold and Mabel Beckman Foundation.

Norman Bridge Laboratory of Physics: first unit, 1922; second unit, 1924; third unit, 1925. The gift of Dr. Norman Bridge of Los Angeles, president of the Board of Trustees, 1896–1917.

High Voltage Research Laboratory, 1923. Built with funds provided by the Southern California Edison Company. Retired in 1959 with basic research completed and rebuilt in 1960 as the Alfred P. Sloan Laboratory of Mathematics and Physics.

Danney Hall, 1928. The gift of Mr. and Mrs. Joseph B. Danney of Los Angeles.
William G. Kerckhoff Laboratories of the Biological Sciences: first unit, 1928; second unit, 1939; annex, 1948. The gift of Mr. and Mrs. William G. Kerckhoff of Los Angeles. He was a trustee during 1928.

Guggenheim Aeronautical Laboratory, 1929. Built with funds provided by the Daniel Guggenheim Fund for the Promotion of Aeronautics. A substantial addition was built in 1947.

Athenaeum, 1930. A clubhouse for the teaching, research, and administrative staffs of the Institute and the Huntington Library, Art Collections, and Botanical Gardens, for the Associates of the California Institute of Technology, and for others who have demonstrated their interest in advancing the objectives of the Institute. The gift of Mr. and Mrs. Allan C. Balch of Los Angeles. He was president of the Board of Trustees, 1933–43.

Undergraduate Houses, 1931:
- Blacker House. The gift of Mr. and Mrs. R. R. Blacker of Pasadena.
- Dubney House. The gift of Mr. and Mrs. Joseph B. Dubney of Los Angeles.
- Fleming House. Built with funds provided by some 20 donors and named in honor of Mr. Arthur H. Fleming of Pasadena, president of the Board of Trustees, 1917–33.
- Ricketts House. The gift of Dr. and Mrs. Louis D. Ricketts of Pasadena.

W. K. Kellogg Radiation Laboratory, 1932. The gift of Mr. W. K. Kellogg of Battle Creek, Michigan.

Henry M. Robinson Laboratory of Astrophysics, 1932. Built with funds provided by the International Education Board and the General Education Board, and named in honor of Mr. Henry M. Robinson of Pasadena, member of the Board of Trustees, 1907–37, and of the Executive Council of the Institute.

Charles Arms Laboratory of the Geological Sciences, 1938. The gift of Mr. and Mrs. Henry M. Robinson of Pasadena, in memory of Mrs. Robinson's father, Mr. Charles Arms.

Seeley W. Mudd Laboratory of the Geological Sciences, 1938. The gift of Mrs. Seeley W. Mudd of Los Angeles, in memory of her husband.

Franklin Thomas Laboratory of Engineering: first unit, 1945; second unit, 1950. Funds for the first unit were allocated from the Eudora Hull Spalding Trust with the approval of Mr. Keith Spalding, trustee. Named in honor of Dean Franklin Thomas, professor of civil engineering and first chair of the Division of Engineering, 1924–45.

Alumni Swimming Pool, 1954. Provided by the Alumni Fund through contributions from the alumni of the Institute.

Scott Brown Gymnasium, 1954. Built with funds provided by the trust established by Mr. Scott Brown of Pasadena and Chicago, who was a member and director of the Caltech Associates.

Norman W. Church Laboratory for Chemical Biology, 1955. Built with funds provided through a gift and bequest by Mr. Norman W. Church of Los Angeles, who was a member of the Caltech Associates.

Archibald Young Health Center, 1957. The gift of Mrs. Archibald Young of Pasadena, in memory of her husband, who was a life member and officer of the Caltech Associates, 1926–56.

Physical Plant Building and Shops, 1959. Built with funds provided by many donors.

Gordon A. Alles Laboratory for Molecular Biology, 1960. Erected with the gift of Dr. Gordon A. Alles of Pasadena, research associate in biology at the Institute, an alumnus, and a member of the Caltech Associates, 1947–63; and with funds provided by the Health Research Facilities Branch of the National Institutes of Health.

Undergraduate Houses, 1960. Built with funds provided by the Lloyd Foundation and other donors.
- Lloyd House. Named in memory of Mr. Ralph B. Lloyd and his wife, Mrs. Lulu Hull Lloyd, of Beverly Hills. He was a member of the Board of Trustees, 1939–52.
- Ruddock House. Named in honor of Mr. Albert B. Ruddock of Santa Barbara, a member of the Board of Trustees, 1938–71, and chairman, 1954–61.

Harry Chandler Dining Hall, 1960. The gift of the Chandler family, the Pfaffinger Foundation, and the Times Mirror Company of Los Angeles.

Alfred P. Sloan Laboratory of Mathematics and Physics, 1960. Formerly the High Voltage Research Laboratory, 1923. Rebuilt in 1960 with funds provided by the Alfred P. Sloan Foundation.

Graduate Houses, 1961:
Braun House. Built with funds provided by the trustees of the Carl F Braun Trust Estate, in his memory.
Marks House. The gift of Dr. David X. Marks of Los Angeles.

Karman Laboratory of Fluid Mechanics and Jet Propulsion, 1961. The gift of the Aerojet-General Corporation, named in honor of Dr. Theodore von Kármán, professor of aeronautics at the Institute, 1929–49.

Firestone Flight Sciences Laboratory, 1962. The gift of the Firestone Tire and Rubber Company.

Winnett Student Center, 1962. The gift of Mr. P. G. Winnett of Los Angeles, a member of the Board of Trustees, 1939–68. Winnett houses the bookstore, the Red Door Café, and Caltech Wired.

Beckman Auditorium, 1964. The gift of Dr. and Mrs. Arnold O. Beckman. Dr. Beckman, an alumnus, was a member of the Institute's faculty from 1928 to 1939. He has been a member of the Board of Trustees since 1953, was chairman of the Board, 1964–74, and is now chairman emeritus.

Harry G. Steele Laboratory of Electrical Sciences, 1965. Built with funds provided by the Harry G. Steele Foundation and the National Science Foundation.

Central Engineering Services Building, 1966.

Robert A. Millikan Memorial Library, 1967. Built with a gift from Dr. Seeley G. Mudd and named in honor of Dr. Robert Andrews Millikan, director of the Bridge Laboratory of Physics and chair of the Executive Council of the Institute, 1921–45.

Arthur Amos Noyes Laboratory of Chemical Physics, 1967. Built with funds provided by the National Science Foundation and Mr. Chester F. Carlson, an alumnus, and named in honor of Dr. Arthur Amos Noyes, director of the Gates and Crellin Laboratories of Chemistry and chair of the Division of Chemistry and Chemical Engineering, 1919–36.

Central Plant, 1967.

George W. Downs Laboratory of Physics and Charles C. Lauritsen Laboratory of High Energy Physics, 1969. The Downs wing was built with funds provided by Mr. George W. Downs and the National Science Foundation. The Lauritsen wing was built with Atomic Energy Commission funds and named in honor of Dr. Charles C. Lauritsen, a member of the Institute faculty, 1930–68.

Donald E. Baxter, M.D., Hall of the Humanities and Social Sciences, 1971. Built with funds provided by Mrs. Delia B. Baxter of Atherton and named in honor of her late husband, Donald E. Baxter, M.D. Additional funds were given by the U.S. Department of Health, Education and Welfare. Dr. and Mrs. Simon Ramo provided funds for the completion of Ramo Auditorium within the hall. Dr. Ramo is a life member of the Board of Trustees.

The Earle M. Jorgensen Laboratory of Information Science, 1971. Built with the gift of Mr. and Mrs. Earle M. Jorgensen, with additional funds provided by the Booth-Ferris Foundation and other private donors. Mr. Jorgensen was a member of the Board of Trustees, 1957–99.

The Mabel and Arnold Beckman Laboratories of Behavioral Biology, 1974. The gift of Dr. and Mrs. Arnold O. Beckman of Corona del Mar. Dr. Beckman is chairman emeritus of the Board of Trustees.

Seeley G. Mudd Building of Geophysics and Planetary Science, 1974. Built with funds provided by Dr. Seeley G. Mudd, Mrs. Roland Lindhurst, Mr. and Mrs. Ross McCollum, Mr. and Mrs. Henry Salvatori, and the U.S. Department of Health, Education and Welfare.

Clifford S. and Ruth A. Mead Memorial Undergraduate Chemistry Laboratory, 1981. Built with funds allocated from the Clifford S. and Ruth A. Mead Memorial Building Fund.

Thomas J. Watson, Sr., Laboratories of Applied Physics, 1982. Built with funds provided by the Watson family and other private donors. Thomas J. Watson, Jr., was a member of the Board of Trustees, 1961–92.

Braun Laboratories in Memory of Carl F and Winifred H Braun, 1982. Built with funds provided by the Braun family, other private donors, and the National Cancer Institute. Various members of the Braun family have served on Caltech's Board of Trustees.

General Information

Buildings and Facilities

Athletic Facility, 1984. Built with funds provided by the Carl F Braun Trust and the Braun Foundation.

Catalina Graduate Apartment Complex, 1984, 1986, 1988. Four of the buildings have been named for Max and Ruth Alcorn, Frank and Elizabeth Gilloon, Fred and Marvis Maloney, and William C. and Verna Rockefeller, in recognition of their generosity to the Institute.

Infrared Processing and Analysis Center, 1986. Renamed the David W. Morrisroe Astoscience Laboratory, 1995. Second-floor addition built with funds provided by Dr. Arnold O. Beckman, chairman emeritus of the Board of Trustees.

Beckman Institute, 1989. Built with funds provided by the Arnold and Mabel Beckman Foundation and other private donors. Dr. Arnold O. Beckman is chairman emeritus of the Board of Trustees.

Braun Athletic Center, 1992. Built with funds provided by the Braun family.

The Gordon and Betty Moore Laboratory of Engineering, 1996. Built with funds provided by Dr. and Mrs. Gordon Moore. Dr. Moore is an alumnus and chairman emeritus of the Board of Trustees.

Avery House, 1996. Built with funds provided by Mr. R. Stanton Avery, who was a member of the Board of Trustees from 1971 until his death in 1997. He had been chairman, 1974–85, and chairman emeritus since 1986.

Powell–Booth Laboratory for Computational Science, 1999. Formerly the Willis H. Booth Computing Center, 1963, constructed with support from the Booth-Ferris Foundation and the National Science Foundation. Renovated in 1999 with grants from the Charles Lee Powell Foundation, the National Science Foundation, and the Booth-Ferris Foundation.

Center for Student Services, the Keck Wing, 2000. Originally the Keck Graduate House, built with funds provided by the William M. Keck, Jr., Foundation, 1961. Center for Student Services, the Mosher–Jorgensen Wing, 2002. Originally the Mosher–Jorgensen Graduate House, built with funds provided by Mr. Samuel B. Mosher and Mr. Earle M. Jorgensen, both of Los Angeles. Mr. Jorgensen was a member of the Board of Trustees, 1957–99.

Broad Center for the Biological Sciences, 2002. Made possible by a lead gift from Eli and Edythe Broad. Eli Broad is a member of the Board of Trustees.

Off-Campus Facilities

Kresge Building, Seismological Laboratory (Division of Geological and Planetary Sciences), 1926, 220 North San Rafael Avenue, Pasadena. Named in recognition of a gift from the Kresge Foundation of Troy, Michigan.

William G. Kerckhoff Marine Biological Laboratory, 1930, Corona del Mar. Rehabilitated with funds provided by the National Science Foundation in 1966.

Jet Propulsion Laboratory, 1944, 4800 Oak Grove Drive, Pasadena. Administered by the Institute; owned and supported by the National Aeronautics and Space Administration.

Palomar Observatory, 1948, San Diego County. Site of the 200-inch Hale Telescope, built by the Institute with funds from the Rockefeller Foundation.

Owens Valley Radio Observatory, 1958, Big Pine. Built with funds provided by the Winnett Foundation, the Office of Naval Research, the National Science Foundation, and the Oscar G. and Elsa S. Mayer Charitable Trust.
Big Bear Solar Observatory, 1969, Big Bear Lake. Built with funds provided by the National Science Foundation and the Max C. Fleischmann Foundation of Nevada. (Operated by the New Jersey Institute of Technology.)

Submillimeter Observatory, 1986, Mauna Kea, Hawaii. Built with funds provided by the National Science Foundation and the Kresge Foundation.

Georgina and William Gimbel Building, Caltech
Submillimeter Observatory, 1996, Hilo, Hawaii. Built with funds provided by Mr. and Mrs. William Gimbel, members of the Caltech Associates.

Center for Innovative Technologies at the California Institute of Technology, 2003, E. Washington Boulevard, Pasadena. Formerly the St. Luke Medical Center, the center is being reconfigured to house a variety of research groups.

Beckman Institute
Opening its doors in 1990, the Beckman Institute represented a major new addition to Caltech. The mission of the scientists working there is to invent new methods, new materials, and new instrumentation for fundamental research in biology and chemistry. Their results will open the way for new applications of scientific discoveries to human needs.

Center for Advanced Computing Research
The Center for Advanced Computing Research (CACR) exists to ensure that Caltech is at the forefront of computational science and engineering (CS&E). CS&E is the practice of computer-based modeling, simulation, and data analysis for the study of scientific phenomena and engineering designs. Computer modeling and simulation make it possible to investigate regimes that are beyond current experimental capabilities and to study phenomena that cannot be replicated in laboratories, such as the evolution of the universe. The results often suggest new experiments and theories. Computation is also essential for processing the flood of high-dimensional data generated by modern instruments. In engineering, many more design options can be explored through simulation than by building physical models, usually at a fraction of the cost and time.

CACR provides an environment that cultivates multidisciplinary collaborations. CACR researchers take an application-driven approach to CS&E, and currently work with Caltech groups in applied mathematics, astronomy, biology, engineering, geophysics, and experimental physics.

Center staff have expertise in data-intensive scientific discovery, physics-based simulation, scientific software engineering, visualization techniques, novel computer architectures, and the design and operation of large-scale computing facilities. CACR also participates in national-level initiatives such as the TeraGrid: the largest and most comprehensive infrastructure ever deployed for CS&E research.

Industrial Relations Center
The Industrial Relations Center develops and offers programs on managing technology and innovation, improving the effectiveness of business operations, developing the leadership skills of technical professionals, and encouraging new business ventures. Courses and forums are presented on campus and are open to executives and managers in technology-based organizations, and Caltech students, faculty, and staff. Fees are waived for Caltech students who participate in the center’s programs.

The center is located on campus at 383 South Hill Avenue. The latest calendar of programs or more information may be obtained by calling (626) 395-4041.

Libraries
The Caltech Library System (CLS) consists of a number of distributed library locations from which staff provide a high level of information service to support and facilitate the research and educational programs of the Institute. The Library’s policies and many electronic resources, including the online catalog, are accessible from the CLS website at http://library.caltech.edu.

The CLS includes the astrophysics library; Dabney library for the Division of the Humanities and Social Sciences, which contains literature, art, philosophy, European, Asian, and ancient history monographs, and music CD collections; the geology library, with an extensive map collection; Millikan Memorial Library, which contains collections for biology, chemistry, mathematics, and physics, government documents, microforms, the humanities and social sciences journals, American history and social sciences monographs, along with library administration and the interlibrary-loan/document delivery services; the Sherman Fairchild Library of Engineering and Applied Science, which supports the environmental, aeronautics, chemical and mechanical engineering, and applied physics and mathematics programs.

Collectively, the libraries subscribe to over 2,228 print journals and 2,959 electronic journals. They hold over 705,950 volumes, and have extensive collections of technical reports, government documents, and maps. The library electronic catalog includes records of print and nonprint materials held throughout the libraries, and active links to electronic resources, especially full-text online journals. Also available online are citations to articles from over 10,000 journals in science and technology, the social
UNDERGRADUATE RESEARCH

The Institute provides three principal avenues for undergraduate research: the Summer Undergraduate Research Fellowships (SURF) program, research courses for academic credit and senior theses, and research for pay under a faculty member’s grant or contract. Students may combine these options, but they may not receive both pay and credit (at the same time) for the same piece of work. Students registering for a research course during the summer do not have to pay tuition.

Each division offers the opportunity for qualified students early in their careers to engage in research under the supervision of a faculty member. Most options offer undergraduate research courses in order to encourage participation, and students should consult listings and descriptions of opportunities. Students are encouraged to undertake research of such scope and caliber as to merit the preparation of a senior thesis. The requirements for such thesis research vary from option to option; individual option representatives should be consulted.

The Summer Undergraduate Research Fellowships (SURF) program provides continuing undergraduate students the opportunity to work on an individual research project in a tutorial relationship with a mentor, usually a member of the Caltech/JPL research community, but occasionally a faculty member at another college or university. Students write research proposals in collaboration with their mentors. Proposals and recommendations are reviewed by the SURF administrative committee, and awards are made on the basis of reviewer recommendation and available funding. The work is carried out during a 10-week period in the summer. Students may attend weekly seminars presented by members of the Caltech faculty and JPL technical staff and may participate in professional development workshops to help students consider short-term career decisions in the context of long-term life and career goals. At the conclusion of the summer, SURFers submit a written report describing the project, methods, and results of their work. On the third Saturday of October, students make oral presentations of their projects at SURF Seminar Day. About 20 percent of the students publish their work in the open scientific literature. In 2005, SURF students received stipends of $5,000. Applications are available online at http://www.surf.caltech.edu and are due on March 1. Awards are announced in early April. To be eligible, students must be continuing undergraduates and have a cumulative GPA of at least 2.0. Students must complete the third quarter at Caltech (or at another school under a program approved by a dean). Students must be eligible for full term registration as of the end of the June Undergraduate Academic Standards and Honors (UASH) Committee reinstatement meeting and must not be on medical leave or under disciplinary sanction.

For further information regarding this program, contact the Student-Faculty Programs Office, Room 137, Beckman Institute, (626) 395-2885, sfp@its.caltech.edu. Visit the Student-Faculty Programs website at http://www.sfp.caltech.edu for more information on SURF and other programs.

STUDENT LIFE

Undergraduate Student Houses

The seven undergraduate student houses are situated on both sides of the Olive Walk near the southeastern end of the campus. The original four—Blacker, Dabney, Fleming, and Ricketts—were built in 1931 from the plans of Mr. Gordon B. Kaufmann, in the Mediterranean style to harmonize with the adjacent Athenaeum. These houses will be closed for renovation until fall 2006. The other three, designed by Smith, Powell and Morgridge, were completed in 1960, and are named Lloyd, Page, and Ruddock.

Each of the houses is a separate unit with its own dining room and lounge, providing accommodations for between 65 and 100 students, depending on the house. Each has its own elected officers; a long history of self-governance gives students a great deal of influence over their living environments. Each house has a resident associate, typically a graduate student.

In addition to the student houses, the Institute maintains two apartment buildings, Avery House, Marks House, and a number of off-campus houses. Typically two or three students share an apartment. Depending upon size, the off-campus houses have a capacity of four to ten students. These residences are all within a short walk of the campus and offer students greater privacy, a different life style, and the opportunity to prepare their own meals.

Application for rooms in the student houses may be made through Institute Housing, Mail Code 160-86, California Institute of Technology, Pasadena, CA 91125.

Mail is delivered daily to the student mailboxes. Students should use their mailbox number, California Institute of Technology, Pasadena, CA 91126, to facilitate handling of mail at the campus post office.
Faculty-Student Relations
Faculty-student coordination and cooperation with regard to campus affairs are secured through the presence of students on faculty committees, by faculty-student conferences, and by other mechanisms, such as course ombudsmen.

Freshman Advisers
Each member of the freshman class is assigned a faculty adviser. The adviser follows the freshman’s progress and provides advice on any questions or problems that the freshman may have.

Option Advisers
Each member of the three undergraduate upper classes is assigned an option adviser, a faculty member in the option in which the student is enrolled. The adviser takes an interest in the student’s selection of courses and progress toward a degree, and, eventually, in assisting the student toward satisfactory placement in industry or in graduate school. Normally, the association between student and adviser is established before the beginning of the sophomore year and continues through graduation.

Athletics
Caltech supports a well-rounded program of competitive athletics. As a member of the NCAA Division III and the Southern California Intercollegiate Athletic Conference, Caltech carries out intercollegiate competition in 10 men’s sports and eight women’s sports, with teams such as Claremont-Mudd-Scripps, LaVerne, Occidental, Pomona-Pitzer, Cal Lutheran, Redlands, and Whittier. Individual athletes and teams who distinguish themselves in conference competition earn the privilege of participating in NCAA regional and national championships.

Caltech also sponsors vigorous programs of club sports and intramural competition. Club sports include rugby, ultimate Frisbee, ice hockey, and men’s volleyball and soccer. Intramural competition consists of residence house teams battling for championships (and bragging rights) in flag football, soccer, swimming, ultimate Frisbee, basketball, volleyball, tennis, track and field, and softball. A full 33 percent of Caltech undergraduates participate in intercollegiate athletics, and over 80 percent participate in some form of organized athletic competition each year.

Outdoor athletic facilities include an all-weather running track, a soccer field, baseball diamonds, eight tennis courts, and two 25-yard swimming pools. Indoor facilities include two full-size gymnasiums for basketball, volleyball, and badminton; four racquetball courts; two squash courts; a 4,000-square-foot weight room; and a large multipurpose room for dance/aerobics, fencing, and martial arts.

The Student Activities Center
The SAC is located in the basement of the south undergraduate housing complex and is open for student use 24 hours a day.

The SAC provides office space for the officers of the undergraduate student government, working space for student publications, office and rehearsal space for musical and art activities, and space for many more student-oriented functions.

Whether students are interested in music, art, publications, student government, gaming, photography, or simply finding a room for their group to meet in, the SAC will probably have what is needed. The center also houses the South House laundry room and has several club rooms, a small library, a bike shop, and a TV/VCR room—most are open 24 hours. The center also includes a coffeehouse. The SAC is open to all current members of the Caltech and JPL communities, though first priority is given to undergraduate and graduate students.

Note: The SAC will be closed during renovations to the South Houses. It will reopen in the fall of 2006.

Interhouse Activities
The president of each undergraduate house represents that house on the Interhouse Committee (IHC). While the seven houses are generally autonomous, the IHC exists to ensure that conflicts between houses do not develop and to deal with matters that affect the houses in general. In particular, the IHC is responsible for the selection process by which the houses choose their new members.

In conjunction with the athletic department, the IHC conducts two intramural sports programs: the Interhouse and Discobolus trophy competitions. (These are described below under Athletics.) Other interhouse activities include parties, usually involving two or three houses, which are held once or twice each term.

Avery House
Made possible by a gift from trustee R. Stanton Avery, this innovative residential complex was designed by Moore, Ruble, Yudell and completed in September 1996. Located at the north end of the campus, Avery House has a resident associate and rooms for about 100 undergraduates and 25 graduate students, in addition to three faculty apartments and a visitor’s apartment. Its dining facilities, meeting rooms, lounges, and library are designed to encourage informal faculty-student interaction and to attract all members of the campus community to join in this interaction. Avery House hosts programs and social events that facilitate involvement between residents, faculty in residence, Avery associates, and visitors to the campus.

The Student Activities Center
The SAC is located in the basement of the south undergraduate housing complex and is open for student use 24 hours a day.

The SAC provides office space for the officers of the undergraduate student government, working space for student publications, office and rehearsal space for musical and art activities, and space for many more student-oriented functions.

Whether students are interested in music, art, publications, student government, gaming, photography, or simply finding a room for their group to meet in, the SAC will probably have what is needed. The center also houses the South House laundry room and has several club rooms, a small library, a bike shop, and a TV/VCR room—most are open 24 hours. The center also includes a coffeehouse. The SAC is open to all current members of the Caltech and JPL communities, though first priority is given to undergraduate and graduate students.

Note: The SAC will be closed during renovations to the South Houses. It will reopen in the fall of 2006.

Interhouse Activities
The president of each undergraduate house represents that house on the Interhouse Committee (IHC). While the seven houses are generally autonomous, the IHC exists to ensure that conflicts between houses do not develop and to deal with matters that affect the houses in general. In particular, the IHC is responsible for the selection process by which the houses choose their new members.

In conjunction with the athletic department, the IHC conducts two intramural sports programs: the Interhouse and Discobolus trophy competitions. (These are described below under Athletics.) Other interhouse activities include parties, usually involving two or three houses, which are held once or twice each term.

Faculty-Student Relations
Faculty-student coordination and cooperation with regard to campus affairs are secured through the presence of students on faculty committees, by faculty-student conferences, and by other mechanisms, such as course ombudsmen.

Freshman Advisers
Each member of the freshman class is assigned a faculty adviser. The adviser follows the freshman’s progress and provides advice on any questions or problems that the freshman may have.

Option Advisers
Each member of the three undergraduate upper classes is assigned an option adviser, a faculty member in the option in which the student is enrolled. The adviser takes an interest in the student’s selection of courses and progress toward a degree, and, eventually, in assisting the student toward satisfactory placement in industry or in graduate school. Normally, the association between student and adviser is established before the beginning of the sophomore year and continues through graduation.

Athletics
Caltech supports a well-rounded program of competitive athletics. As a member of the NCAA Division III and the Southern California Intercollegiate Athletic Conference, Caltech carries out intercollegiate competition in 10 men’s sports and eight women’s sports, with teams such as Claremont-Mudd-Scripps, LaVerne, Occidental, Pomona-Pitzer, Cal Lutheran, Redlands, and Whittier. Individual athletes and teams who distinguish themselves in conference competition earn the privilege of participating in NCAA regional and national championships.

Caltech also sponsors vigorous programs of club sports and intramural competition. Club sports include rugby, ultimate Frisbee, ice hockey, and men’s volleyball and soccer. Intramural competition consists of residence house teams battling for championships (and bragging rights) in flag football, soccer, swimming, ultimate Frisbee, basketball, volleyball, tennis, track and field, and softball. A full 33 percent of Caltech undergraduates participate in intercollegiate athletics, and over 80 percent participate in some form of organized athletic competition each year.

Outdoor athletic facilities include an all-weather running track, a soccer field, baseball diamonds, eight tennis courts, and two 25-yard swimming pools. Indoor facilities include two full-size gymnasiums for basketball, volleyball, and badminton; four racquetball courts; two squash courts; a 4,000-square-foot weight room; and a large multipurpose room for dance/aerobics, fencing, and martial arts.

Avery House
Made possible by a gift from trustee R. Stanton Avery, this innovative residential complex was designed by Moore, Ruble, Yudell and completed in September 1996. Located at the north end of the campus, Avery House has a resident associate and rooms for about 100 undergraduates and 25 graduate students, in addition to three faculty apartments and a visitor’s apartment. Its dining facilities, meeting rooms, lounges, and library are designed to encourage informal faculty-student interaction and to attract all members of the campus community to join in this interaction. Avery House hosts programs and social events that facilitate involvement between residents, faculty in residence, Avery associates, and visitors to the campus.

The Student Activities Center
The SAC is located in the basement of the south undergraduate housing complex and is open for student use 24 hours a day.

The SAC provides office space for the officers of the undergraduate student government, working space for student publications, office and rehearsal space for musical and art activities, and space for many more student-oriented functions.

Whether students are interested in music, art, publications, student government, gaming, photography, or simply finding a room for their group to meet in, the SAC will probably have what is needed. The center also houses the South House laundry room and has several club rooms, a small library, a bike shop, and a TV/VCR room—most are open 24 hours. The center also includes a coffeehouse. The SAC is open to all current members of the Caltech and JPL communities, though first priority is given to undergraduate and graduate students.

Note: The SAC will be closed during renovations to the South Houses. It will reopen in the fall of 2006.

Interhouse Activities
The president of each undergraduate house represents that house on the Interhouse Committee (IHC). While the seven houses are generally autonomous, the IHC exists to ensure that conflicts between houses do not develop and to deal with matters that affect the houses in general. In particular, the IHC is responsible for the selection process by which the houses choose their new members.

In conjunction with the athletic department, the IHC conducts two intramural sports programs: the Interhouse and Discobolus trophy competitions. (These are described below under Athletics.) Other interhouse activities include parties, usually involving two or three houses, which are held once or twice each term.

Faculty-Student Relations
Faculty-student coordination and cooperation with regard to campus affairs are secured through the presence of students on faculty committees, by faculty-student conferences, and by other mechanisms, such as course ombudsmen.

Freshman Advisers
Each member of the freshman class is assigned a faculty adviser. The adviser follows the freshman’s progress and provides advice on any questions or problems that the freshman may have.

Option Advisers
Each member of the three undergraduate upper classes is assigned an option adviser, a faculty member in the option in which the student is enrolled. The adviser takes an interest in the student’s selection of courses and progress toward a degree, and, eventually, in assisting the student toward satisfactory placement in industry or in graduate school. Normally, the association between student and adviser is established before the beginning of the sophomore year and continues through graduation.

Athletics
Caltech supports a well-rounded program of competitive athletics. As a member of the NCAA Division III and the Southern California Intercollegiate Athletic Conference, Caltech carries out intercollegiate competition in 10 men’s sports and eight women’s sports, with teams such as Claremont-Mudd-Scripps, LaVerne, Occidental, Pomona-Pitzer, Cal Lutheran, Redlands, and Whittier. Individual athletes and teams who distinguish themselves in conference competition earn the privilege of participating in NCAA regional and national championships.

Caltech also sponsors vigorous programs of club sports and intramural competition. Club sports include rugby, ultimate Frisbee, ice hockey, and men’s volleyball and soccer. Intramural competition consists of residence house teams battling for championships (and bragging rights) in flag football, soccer, swimming, ultimate Frisbee, basketball, volleyball, tennis, track and field, and softball. A full 33 percent of Caltech undergraduates participate in intercollegiate athletics, and over 80 percent participate in some form of organized athletic competition each year.

Outdoor athletic facilities include an all-weather running track, a soccer field, baseball diamonds, eight tennis courts, and two 25-yard swimming pools. Indoor facilities include two full-size gymnasiums for basketball, volleyball, and badminton; four racquetball courts; two squash courts; a 4,000-square-foot weight room; and a large multipurpose room for dance/aerobics, fencing, and martial arts.
ASCIT

The undergraduate student body forms the membership of a corporation known as the Associated Students of the California Institute of Technology, Inc., or ASCIT. Governed by a board of directors consisting of nine elected officers, it is involved in many aspects of student life, overseeing publication of the student newspaper, a directory, the yearbook, a research opportunities handbook, a course review, and a literary magazine.

Besides overseeing many student publications and coordinating activities and policies, the ASCIT Board of Directors administers the corporation’s finances. ASCIT sponsors a wide variety of special-interest clubs and programs, such as the student shop and the Students for the Exploration and Development of Space (SEDS).

The student government is active in campus affairs. The student members of each standing faculty committee ensure that undergraduate opinion is considered seriously. Excellent informal relations between students and faculty and between students and administration promote mutual concern and goodwill. Student-faculty conferences are held from time to time, and serve a very useful purpose in promoting cooperation and communication.

Graduate Student Council

The graduate student body forms the membership of a corporation known as the Graduate Student Council, or GSC. Governed by a board of directors, consisting of graduate student representatives from different graduate options, the GSC provides funding for student clubs, publishes a monthly newsletter, and organizes or subsidizes various campus events. Annual events include weeklong New Student Orientation activities, and Gradimators, a fun-filled summer day of unusual games. *The Technique*, an information guide for graduate-student life off and on campus, is published yearly by the GSC. The GSC also organizes monthly social hours, the GSC Teaching and Mentoring Awards, and the Everhart Lecture Series, which honors outstanding graduate student speakers, and is active in campus affairs, with graduate student representatives on many faculty standing committees.

Honor System

The Honor System, embodied in the phrase “No member shall take unfair advantage of any member of the Caltech community,” is the fundamental principle of conduct for all students. More than merely a code applying to conduct in examinations, it extends to all phases of campus life. It is the code of behavior governing scholastic and extracurricular activities, relations among students, and relations between students and faculty. The Honor System is the outstanding tradition of the student body, which accepts full responsibility for its operation. The Board of Control, which is composed of elected student representatives, is charged with monitoring the Honor System for undergraduates, while the Graduate Review Board performs the same function for graduate students. The Conduct Review Committee, composed of students, faculty, and staff, also considers cases involving the Honor System and Institute policies. Suspected violations are reported to the appropriate board, which conducts investigations and hearings with strict confidentiality. If necessary, recommendations for actions are made to the deans.

Student Body Publications

The publications of the student body include a weekly paper, *The California Tech*; an undergraduate research journal, CURJ; a literary magazine, *The Totem*; a student handbook, *the little t*, which gives a survey of student activities and organizations and serves as a campus directory; a yearbook, *The Big T*; an annual review of the quality of teaching in the various courses, *The Clue*; and a handbook of available research opportunities. These publications, staffed entirely by students, provide an opportunity for interested students to obtain valuable experience in creative writing, photography, artwork, reporting and editing, advertising, and business management.

Musical Activities

The Institute provides qualified directors and facilities for various choral music groups, a concert band, a jazz band, a symphony orchestra (jointly with Occidental College), numerous chamber music ensembles, a weekly interpretive music class, and guitar classes. A series of Sunday afternoon chamber concerts is presented in Dabney Lounge, as well as a variety of musical programs in Beckman and Ramo Auditoriums.

Student Societies and Clubs

The Institute has more than 70 societies and clubs covering a wide range of interests. The American Chemical Society, the American Institute of Chemical Engineers, the American Society of Mechanical Engineers, and the Society of Women Engineers all maintain active student branches. There is a chapter of the National Society of Black Engineers, and the Caltech Latino Association of Students in Engineering and Science is a chapter of the Society of Hispanic Engineers.

The Institute has a chapter (California Beta) of Tau Beta Pi, the national scholarship honor society of engineering colleges. Each year the Tau Beta Pi chapter elects to membership students from the highest-ranking eighth of the junior class and the highest fifth of the senior class.

Special interests and hobbies are provided for by a broad and constantly changing spectrum of clubs, some informal but most formally recognized by either ASCIT or the Graduate Student Council.
Student Shop
The student shop is housed in the Physical Plant complex. It is equipped by the Institute, largely through donations, and is operated by the students. Here qualified students may work on private projects that require tools and equipment not otherwise available. All students are eligible to apply for membership in the student shop; applications are acted on by a governing committee of students. Members not proficient in power tools are limited to hand tools and bench work; however, instruction in power tools is given as needed. Yearly dues are collected to provide for maintenance and replacement.

The Caltech Y
The Y is a nonprofit, student-directed organization dedicated to helping students learn about themselves and their place in the world community through increased social, ethical, and cultural awareness. To this end, the Y organizes numerous outdoor adventures, social activities, educational programs, cultural events, and community service projects each year. Some of the more notable programs include the Y hike to the Sierras, Alternative Spring Break and Make a Difference Day community service projects, International Week, and the Social Activism Speaker Series. The Caltech Y also offers services such as interest-free emergency loans, the annual $3,000 Studenski Award, camping and audio-visual equipment rentals, and amusement park and movie theater discount ticket sales; and provides resources, such as advising and funding, for student organizations and planners interested in coordinating their own events. The Caltech Y is located in the North wing of the Center for Student Services, on South Holliston Avenue.

For those interested in helping plan and organize programs, there are many opportunities for leadership within the Y: on committees planning community service projects, outdoor adventures, and the speaker series; or as part of the Y ExComm, the student executive planning committee for the Caltech Y.

Ombuds Office
The Ombuds Office provides the Caltech community with confidential, informal assistance in resolving campus conflicts, disputes, and grievances. It helps to promote fair and equitable treatment within the Institute and to foster general well-being of the Caltech community. The office is available to all members of the Caltech community (students, faculty, and staff). Appointments are available upon request before and after normal business hours.

Religious Life
In addition to several groups active on campus such as the Caltech Christian Fellowship and Hillel, houses of worship of many different denominations are within walking distance or are only a short drive from campus.

General Information

Public Events
Beckman and Ramo Auditoriums serve as the home of the professional performing arts program on the Caltech campus. Each year, more than 150 public events, ranging from the traditional Earnest C. Watson Lecture Series to dramatic, film, and concert attractions (featuring world-renowned artists), are presented at Caltech. Tickets, often with discounts available, are offered to Caltech students for all events in Beckman and Ramo Auditoriums.

Bookstore
The Caltech Bookstore is located on the ground floor of the Winnett Student Center. Owned and operated by the Institute, the store serves the students, faculty, and staff, carrying a complete stock of general interest and reference books, insignia merchandise, greeting cards, and gift items. These are in addition to textbooks, and school and office supplies. The store offers an ordering service for books and items that are not a part of its regular stock. Located within the store are the Red Door Café and Caltech Wired Computer Store. The Red Door Café provides various types of coffee drinks and juices, along with other food items. Caltech Wired provides computers (including hardware and supporting software and instructional materials) that support Caltech’s educational and research functions.

STUDENT HEALTH

Medical Examination
Before initial registration, each applicant is required to submit a Report of Medical History and Physical Examination on a form that is sent at the time of notification of admission. Students who have been absent from the Institute for two years or more may also be required to submit this report.

Student Health Services
The Archibald Young Health Center provides the following services for undergraduate and graduate students and their spouses enrolled in the Spouse Program: (1) office consultation and treatment of most medical problems by physicians and nurse practitioners (physician visits by appointment only and at prescribed hours); (2) referral to specialists; (3) laboratory tests and some radiology tests as ordered by the medical staff; (4) women's services for annual Pap and contraceptive needs; (5) HIV and STI screening; (6) routine medications, common vaccinations, prescription drugs, and other supplies at cost; (7) allergy clinic, travel medicine, dermatology and orthopedic clinic visits. A variety of health education handouts are also available. Visits to the health center are provided at no cost. For more information visit the health center webpage at www.healthcenter.caltech.edu.
To secure payment from the insurance plan and substantiate a claim for services rendered away from the Institute, the student is required to retain bills for such services and present them with appropriate documentation when medical claims are made. The Health Center office staff may be called upon for advice on the preparation of claim forms.

CAREER DEVELOPMENT

Career Services
The Career Development Center (CDC) provides assistance to students, postdoctoral scholars, and alumni in the areas of career and life planning and employment. Personal assistance is available in career choice, résumé preparation, interviewing, graduate school application, and job search strategies. Career and vocational interest tests can also be taken.

All students are encouraged to visit and make use of the Career Development Center early in their student careers.

CDC Online
The CDC's home page contains information about the center's programs and activities, as well as links to career, educational, and employment resources nationwide. The URL is http://www.career.caltech.edu.

Premedical and Graduate School Advising
Students planning to apply to medical school can make use of many resources and individual counseling in the CDC. Medical school catalogs and statistical information on successful Caltech medical school matriculants are among the materials available. Students can obtain relevant medical research experience, and there is a comprehensive list of available health-related volunteer opportunities. Counselors can help students throughout the process from freshman year to graduation, and will work closely with students to help ensure their success.

We encourage students planning to apply to graduate school and other professional programs to plan ahead. The CDC provides many resources for these programs.

On-Campus Recruiting Program
Through the on-campus recruiting program, employment interviews are arranged with companies that seek full-time employees pursuing B.S., M.S., Eng., or Ph.D. degrees. All graduating students, Caltech postdoctoral scholars, and recent alumni are eligible to participate.
Annual Report

The center surveys all graduating students and compiles a detailed annual report that provides information on the plans of graduating students. Included are lists of graduate and medical schools chosen, companies that recruited on campus, and industry and academic salaries offered and accepted. (The report is available online at http://www.career.caltech.edu.)

Employment Experience of Recent Graduates

Each year the CDC surveys graduating students’ future plans. Over several years approximately 50 percent of undergraduates are accepted to graduate school programs, 30 percent accept employment, 10 percent have not accepted offers yet, and 10 percent pursue unconventional options, such as part-time work, part-time school, travel, a year off, etc. At the M.S. level, about 85 percent continue in graduate school, and the remainder accept employment. Of those receiving the Ph.D. degree, about 50 percent accept faculty positions, about 40 percent accept employment, and 10 percent pursue other options.

Caltech graduates who accept industry positions consistently receive salaries in the top quartile nationally.

CALTECH ALUMNI ASSOCIATION

The mission of the Association is to promote the interests of Caltech as a world standard of academic excellence by strengthening the ties of goodwill and communication between the Institute, its alumni, and current students, and by maintaining programs to serve alumni needs. These programs include

- the Alumni College, a two-day lecture series focused on one discipline, with Caltech faculty as featured speakers;
- Seminar Day, a day of lectures, exhibits, and social events held on campus;
- reunions;
- domestic and overseas travel/study programs;
- regional events around the country, some of which feature Caltech faculty.

The Association also supports on-campus student activities and organizations, provides contact between alumni and students, and administers scholarships and undergraduate awards. Alumni volunteers play an important role for the Association by representing Caltech at college fairs nationwide, by maintaining contact with prospective students and their families, and by serving as mentors to current students. Benefits of membership in the Alumni Association include a subscription to *Engineering & Science* magazine and an alumni e-mail account.
INTERNATIONAL STUDENT PROGRAMS

The Office of International Student Programs (ISP) is responsible for all immigration-related matters pertaining to students. In addition, ISP provides support services and programs that assist international students and their dependents in adjusting to life in the United States and in addressing any personal, academic, or other important issues that they may face during their stay at Caltech.

As the definitive immigration resource for international students, ISP disseminates information on the rules and regulations pertaining to all student visas. The office is able to assist students with visa acquisition, employment authorization, extensions of stay, and any other immigration-related matters.

Both independently and in cooperation with various student organizations and Institute departments, ISP plans and promotes events that celebrate cultures and peoples of the world, address cross-cultural adjustment, and provide opportunities for international students to establish a sense of community at Caltech. Each September, ISP hosts a weeklong orientation program that provides a comprehensive introduction to academic and social life at Caltech and in the United States. All incoming international students are required to participate in this program.

Further information about services, current programs, and U.S. immigration regulations pertaining to nonimmigrant students can be obtained by contacting the ISP staff at isp@caltech.edu.

For information on English-as-a-second-language courses for graduates, please refer to the course listings of this catalog.

AUDITING COURSES

Persons not regularly enrolled in the Institute may audit courses if they obtain the consent of the instructor in charge of the course, and the dean of undergraduate students or dean of graduate studies, as appropriate, and pay the required fee (contact Bursar’s Office for audit fee). The fees are nonrefundable.

Auditing fees for nonacademic staff members may be covered by the Institute Tuition Support Plan. Auditing cards may be obtained in the Registrar’s Office.

Regularly enrolled students and members of the faculty are not charged for auditing. Auditing cards are not required, but the instructor’s consent is necessary in all cases. No grades for auditors are reported to the Registrar’s Office, and no official record is kept of the work done.

GRADES AND GRADING

All permanent grades recorded for freshmen during the first and second terms they are enrolled will be either P, indicating passed, or F, indicating failed. The temporary grade of I (Incomplete) may be used as it is for other students. The temporary grade of E may be given to freshmen as described below for other students. It may also be used in a continuing course if the performance of the freshman concerned is not significantly below the current passing level, and if the student is maintaining a steady and substantial improvement; an E given for this reason will be automatically changed to a P if the freshman earns a P for the following term, and will change to an F if the student receives an F for the following term. The grade may not be used in this way for two successive terms nor for the last term of the course.

If a first-quarter or second-quarter freshman is enrolled in a course in which the instructor gives letter grades, the registrar will record P for all passing grades. No grades given to a freshman during the first and second quarter in which they are enrolled will be used in computing the cumulative grade-point average.

For all students beyond the first and second quarters of their freshman year, graduate and undergraduate, letter grades will ordinarily be used to indicate the character of the student’s work: A, excellent; B, good; C, satisfactory; D, poor; E, conditional; F, failed; I, incomplete. P may also be used as described below under Pass/Fail Grading. In addition, grades of A+, A-, B+, B-, C+, and C-, and D+ may be used. In any situation in which no grade is reported, the grade shall be assumed to be F.

At their discretion, instructors may give students who have not completed their work for a course by the end of the term a grade of E. The grade E indicates deficiencies that may be made up without repeating the course. If the instructor does not specify a date on the grade report sheet for completion of the work, students receiving an E will have until Add Day of the following term to complete their work for that course. Instructors may, however, require the work for the course to be completed by an earlier date. If a student receives an E and does not complete the work by the date specified by the instructor or by Add Day, the grade will be changed to an F. Adequate time must be afforded to instructors to grade the work and to submit the final grade to the registrar. It is the responsibility of a student receiving an E to confirm that the registrar has recorded the terms for satisfying the completion of the work in the course.

With the written permission of the instructor a student may extend the E grade past Add Day of the following term, but doing so will cause an additional E grade to be registered. Each additional extension of the E will be until the date specified by the instructor or until Add Day of the following term, but in each case will require the written permission of the instructor and the registering of an additional E grade.
After an undergraduate student has been awarded the grade of E six times, he or she is not eligible to receive E grades in any subsequent term. A petition for an E in a subsequent term may be approved by the Undergraduate Academic Standards and Honors Committee (UASH) in an exceptional case. Such a petition requires the support of the instructor and the dean or associate dean of students.

The grade I is given only in case of sickness or other emergency that justifies noncompletion of the work at the usual time. It is given at the discretion of the instructor, after approval by the dean or associate dean of students or the dean of graduate studies. The time period within which the grade of I is to be made up should be indicated on the grade sheet, or students receiving an I will have until Add Day of the following term to complete their work for the course. As in the case of the E grade, the grade of I shall not be considered in calculating a student's grade-point average.

Students receiving grades of E or I should consult with their instructors not later than the beginning of the next term in residence as to the work required and the time allowed. This time should, in most cases, coincide with the date fixed in the calendar for removal of conditions and incompletes (Add Day), and in fact if no other time is specified, this date will be assumed. Further, under no circumstances may the time for the completion of the work be extended for more than three terms in residence after the end of the term in which the grade of E or I was given. At the end of the specified time, unless there is a written request from the instructor to the contrary, or in any event at the time of graduation or at the end of three terms in residence, whichever occurs first, all E's and I's not otherwise reported will be changed to F. Grades of E and I shall not be considered in calculating a student's grade-point average.

Failed means that no credit will be recorded for the course. The units, however, count in computing the student's grade-point average, unless the course was taken on a pass/fail basis. He or she may register to repeat the subject in a subsequent term and receive credit without regard to the previous grade, the new grade and units for the course remain on the record. An F, once recorded, will be changed to a passing grade only on the basis of error. Such a change may be made only with the approval of the Undergraduate Academic Standards and Honors Committee or of the Graduate Studies Committee, whichever has jurisdiction.

Petitions by undergraduate students for late drops (i.e., requests to drop a course after Drop Day) will be considered by the UASH Committee. If approved, a W (standing for “withdrawn”) will be recorded on the student's transcript in place of a grade for that course. W's will not be included in the computation of the student's grade-point average. Courses will be expunged from the student's record only in exceptional circumstances, at the discretion of the UASH Committee.

Each course at the Institute is assigned a number of units corresponding to the total number of hours per week devoted to that subject, including classwork, laboratory, and the normal outside preparation. Credits are awarded as shown in the table below.

<table>
<thead>
<tr>
<th>No. of</th>
<th>A+</th>
<th>A-</th>
<th>B+</th>
<th>B-</th>
<th>C+</th>
<th>C-</th>
<th>D+</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>21</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>24</td>
<td>21</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>36</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>40</td>
<td>37</td>
<td>34</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>37</td>
<td>32</td>
<td>29</td>
<td>26</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>56</td>
<td>52</td>
<td>48</td>
<td>44</td>
<td>41</td>
<td>38</td>
<td>35</td>
<td>32</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>61</td>
<td>56</td>
<td>52</td>
<td>48</td>
<td>45</td>
<td>42</td>
<td>39</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>42</td>
<td>39</td>
<td>36</td>
<td>33</td>
</tr>
</tbody>
</table>

Pass/Fail Grading: The following regulations apply:
- First-quarter and second-quarter freshmen receive pass/fail grades in all courses by virtue of their classification as freshmen by an admissions committee or, for students whose status after the first year is uncertain, by the Undergraduate Academic Standards and Honors Committee.
- Required laboratory courses will be graded P or F regardless of when they are taken, but these courses must be taken during the freshman or sophomore years.
- All other students, undergraduate and graduate, in courses with numbers under 200 will receive letter grades unless the course is designated “graded pass/fail” or unless, when it is allowed, the student files with the office of the registrar a completed Pass/Fail Course Selection Card not later than the last day for dropping courses.
- In courses with numbers 200 or greater that are not designated either “graded pass/fail” or “letter grades only,” the
instructor may decide separately for each student what class of grades to use.

- All research courses, seminar courses, or other courses that do not have a formal class structure shall be designated “graded pass/fail.”
- Procedures for Resolving Disputes over Grading

At Caltech, the instructor has full responsibility for assigning grades to students enrolled in a course. On occasion, a student may not understand how a grade was determined and may seek further information. The student should first meet with the instructor or teaching assistant to discuss the grade. If after doing so the student believes the grade is unjustified or capricious, the following procedures are available.

Before the end of the term following the term when the grade was issued, the student should contact the academic mediator,
Access to Student Records

The Institute maintains educational records for each student that include name, address, student identification number (including Social Security number), information on parents, guardian, and spouse, general information on academic status at the Institute, previous school data, results of standardized admissions examinations, courses previously taken or being taken, credits, and grades. Applicants for financial aid have an additional file holding those records. The Family Education Rights and Privacy Act (FERPA) and Caltech policy afford students certain rights as well as establish limitations with respect to student education records. These rights and limitations are as follows:

1. The registrar of the Institute is responsible for maintaining all educational records, except for those involving Financial Aid. Caltech permits disclosure of educational records, without consent of the student, to Institute officials with legitimate educational interests in them. An Institute official is a person employed by the Institute in an administrative, supervisory, academic or research, or support-staff position (including security personnel and health and women’s center staff), a person or company with whom the Institute has contracted (such as an attorney, auditor, or collection agent), a person serving on the Board of Trustees, or a student serving on an official committee, such as a disciplinary or grievance committee, or assisting another Institute official in performing his or her tasks. An Institute official has a legitimate educational interest if he or she needs to review an education record in order to fulfill his or her professional responsibility. They are available to the registrar, provost, president, general counsel, vice president for student affairs, dean of graduate studies, dean of students, director of financial aid, and faculty of the Institute and to their respective staffs for the normal academic and business purposes of the Institute. Records involving financial aid are maintained by the director of financial aid, and are available to the director and staff, to the dean of graduate studies and staff, to the Faculty Committee on Scholarships and Financial Aid, and to the Faculty Committee on Graduate Study, for the purpose of granting and administering the Institute’s Financial Aid program. Except as authorized by federal or state law or regulation, none of these educational records nor any personally identifiable information contained therein, other than directory information (see below), will be made available to anyone else, other than the student, without the written consent of that student. Where consent is required and given, the student, upon request, will receive a copy of the records to be released. The Institute will keep a record, available to the student and kept with his or her file, of all persons and organizations, other than those authorized within the Institute, requesting or obtaining access to the files, except when records have been produced in response to a grand-jury subpoena or other subpoena issued for a law-enforcement purpose and the court or issuing agency has ordered that the existence or the contents of the subpoena or the information furnished in response to the subpoena not be disclosed.

2. Students are allowed access to their educational records as follows: A student may inspect his or her academic transcript during normal working hours. To see other records, the student must provide a written request to the registrar or to the director of financial aid or to the dean of graduate studies or to the dean of students, or their deputies, as appropriate. A mutually convenient time will be arranged within 10 working days after receipt of the request for the student to examine the records in his or her file. At that time the student may examine all educational records in the file with the exception of those specifically exempted by Part 99 of Title 34 of the Code of Federal Regulations. The student may obtain copies of any of the records available to him or her; the cost will be 44 cents for the first page copied and 12 cents for each additional page. All reasonable requests for explanations or interpretations of the educational records will be honored, and if inaccurate, misleading, or otherwise
3. The Institute considers the following to be directory information: a student's name, UID, gender, address, e-mail address, telephone listing, ID photograph, date and place of birth, major field of study, year in school, current enrollment status, expected date of graduation, participation in officially recognized activities and sports, weight and height if a member of an athletic team, dates of attendance, degrees and awards received, thesis title, home town, and most recently attended educational agency or institution. Directory information includes: a student's name, UID, gender, address, e-mail address, telephone listing, ID photograph, date and place of birth, major field of study, year in school, current enrollment status, expected date of graduation, participation in officially recognized activities and sports, weight and height if a member of an athletic team, dates of attendance, degrees and awards received, thesis title, home town, and most recently attended educational agency or institution. Directory information may be made available to requestors at the Institute's discretion. Any student may, however, have part or all of this information withheld by notifying the registrar in writing no later than 30 days after the commencement of classes in the academic year. That information will then be withheld for the balance of that academic year. If the information is to be withheld in subsequent years, new requests must be filed.

4. A student may not be required to waive any rights regarding access to educational records. However, a student may voluntarily waive the right of access to confidential statements made by third parties respecting admission to educational agencies or institutions, applications for employment, or the receipt of an honor or honorary recognition. In case of waiver, the confidential statements will be used solely for the purposes for which they were specifically intended, and the student will, upon request, be notified of the names of all persons making such confidential statements. If a student desires to so waive right of access, so as to facilitate the obtaining of a confidential statement of this nature, he or she should contact the registrar for the necessary form.

5. The Institute reserves the right to destroy from time to time any and all educational records that it maintains on a student, except to the extent that the law requires their maintenance for a longer period of time. However, where access to records has been requested, no destruction of those records will be allowed to take place until such access has been granted or denied.

6. Students who believe their rights under FERPA may have been violated may file a complaint with the Family Policy Compliance Office, U.S. Department of Education, 400 Maryland Avenue SW, Washington D.C. 20202-4605.

Transcripts of Records
A student, or former student, may request that official transcripts of his or her records be forwarded to designated institutions or individuals. Requests should be filed at the Registrar's Office at least five days before the date on which the transcripts are to be mailed. (See "Unpaid Bills," page 143, for complete details.)

Accreditations and Authorizations
The California Institute of Technology is accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges, 985 Atlantic Ave., Ste. 100, Alameda, CA 94501; (510) 748-9001. In addition, the Institute is authorized by the California State Department of Education, Office of Private Postsecondary Education, to operate as a private postsecondary educational institution and, by the same agency, to train veterans in the programs of the Veterans Administration.
The Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (111 Market Place, Suite 1050, Baltimore, MD 21202-4012; 410-347-7700) has accredited our B.S. programs in chemical engineering, in electrical engineering, in engineering and applied science, and in mechanical engineering. Further, the Committee on Professional Training of the American Chemical Society has approved our B.S. program in chemistry.

The documents describing these accreditations and authorizations are on file and may be inspected in the Office of the Registrar, the Undergraduate Admissions Office, or the Office of the Dean of Graduate Studies.

Student Grievance Procedure

Caltech provides a variety of routes, most of them informal, by which students may bring complaints to consideration and resolution. In academic matters, for example, they may begin with faculty-student conversations and may extend to the deans, the division chairs, the registrar, or to various committees having faculty and student members. Undergraduate housing matters are dealt with by house officers, the resident associates, the IHC, and the senior director of campus life. The dean of graduate studies is often of assistance in resolving graduate student matters. As the Institute officers responsible for the supervision of many Student Affairs offices, the assistant vice presidents for student affairs may be the appropriate persons to appeal to in case of unresolved complaints involving those offices. The ombudsperson, who acts on behalf of the entire Caltech community, may be consulted confidentially about any problem. The Graduate Student Council and ASCIT may become involved in important complaints, and sometimes ad hoc groups are formed to make recommendations.

The grievance procedure is intended to deal with complaints by currently enrolled students for which reasonable efforts by the available informal routes have not led to an acceptable resolution, and which do not fall within the jurisdiction of the Honor System.

The first step in this procedure is to consult with the person appointed by the president of the Institute as mediator for student grievances. The mediator will assist the student in trying to work out the problem in an informal way. If the student is not satisfied with the results, he or she may appeal the case to the Student Grievance Committee. The members of the committee are undergraduates appointed by the ASCIT Board of Directors, graduate students appointed by the Graduate Student Council, faculty appointed by the faculty chair, and administrative staff appointed by the vice president for student affairs. Two members and two alternates are appointed from each of the four categories. The chair of the committee is appointed by the president and does not vote except in case of a tie. The grievant may present the case to the committee, present documents in support of the case, request that witnesses be called, and be assisted by another member of the Caltech community who is not an attorney. The committee will present its conclusions and recommendations to the president of the Institute, and the president's decision will be final. A complete statement of the student grievance procedure is available from the following offices: Student Affairs, Dean of Students, Dean of Graduate Studies, Women's Center, and the Ombuds Office.

Student Patent and Computer Software Agreement

Students at Caltech have many opportunities to work in laboratories, in shops, or with computers, sometimes on individual projects and sometimes as part of a group activity. It is not unusual under these circumstances for inventions to be made, or computer software (including programs, databases, and associated documentation) to be written, and it is important that the student's rights in patents on inventions and in computer software he or she may have made or written be protected. The Institute's policy generally is to reserve to itself rights in inventions and computer software made by faculty and staff members with the use of Institute facilities or in the normal course of their Institute duties. The student's position is different, however, and students generally retain all rights except in inventions or computer software made under circumstances such that rights clearly belong to the Institute or to the sponsor of the research. In order to clarify this situation and to protect the rights both of the student and of the Institute, each entering student is asked to sign the following agreement:

1. The Institute agrees that I shall retain all rights in inventions and computer software made or written by me except when such inventions are first conceived or reduced to practice or such computer software written: 1.1 in the course of the performance of work as a paid employee of the Institute; 1.2 in the course of independent student research financed by or otherwise obligated to an outside grant or contract to the Institute or financed by a grant from the Institute; 1.3 or when they arise out of work in the research program of an academic staff member.

2. The Institute agrees that rights of all other inventions or computer software made or written by me with the use of Institute facilities are to be retained by me, except for computer software that is written in connection with or used in the educational program of the Institute (e.g., course work, homework, theses), for which the Institute shall obtain an irrevocable royalty-free, nonexclusive license, with the right to grant sublicenses, for any purpose whatsoever.

3. I agree to notify the Institute promptly of any discovery, innovation, or invention that is first conceived or first
actually reduced to practice, or computer software first written, under the conditions of items 1.1 or 1.2 or 1.3 above and computer software written in connection with or used in the educational program of the Institute under the conditions of paragraph 2 above.

4. I agree to assign to the Institute or its nominee all rights in the United States and foreign countries to inventions and computer software made or written under the conditions of items 1.1 or 1.2 or 1.3 above and to supply all information and execute all papers necessary for the purpose of prosecuting all patent applications, or registering copyrights in or otherwise protecting such computer software, and fulfilling obligations that may arise from such inventions or computer software. The Institute will bear the expenses for such patent applications or copyright registrations or for obtaining such other protection.

It is understood that the student will share in the same manner as a member of the academic staff such royalty income from patents or computer software as the Institute may receive on inventions assigned to it, or computer software assigned or licensed to it, as a result of this agreement.

It is also understood that the Institute relies on the foregoing agreement when it signs contracts with others and obligates itself with respect to discoveries, innovations, or inventions or computer software made or written in the course of research conducted at the Institute under such contracts.

Student Retention and Persistence Rates

Most undergraduates enter Caltech at the freshman level. Of the 191 freshmen enrolled during the 2003–04 academic year, 187 reenrolled in the first term of the 2004–05 academic year and are progressing, yielding a persistence rate of 98 percent. Of the 254 freshmen enrolled during the 1998–99 academic year, 226 graduated by June 2004, yielding a graduation rate for this group of 89 percent.

At the graduate level, most students enter Caltech to pursue either the degree of Master of Science or Doctor of Philosophy or, occasionally, both. Of the 220 entering graduate students enrolled in a Ph.D. program during the 2003–04 academic year, 216 reenrolled in the first term of the 2004–05 academic year and are making satisfactory academic progress, resulting in a persistence rate of 98 percent. Of the 43 entering graduate students enrolled in M.S. programs during the 2003–04 academic year, 5 completed requirements within one year; an additional 36 reenrolled in the first term of the 2004–05 academic year and are making satisfactory progress towards a higher degree.

General Information

INSTITUTE POLICIES

Acceptable Use of Electronic Information Resources

Caltech provides electronic information resources (including, but not limited to, computers, computer accounts and services, networks, software, electronic mail services, electronic information sources, video and voice services, servers, webpages, and related services) to assist members of the Institute community in the pursuit of education and research. This policy, in conjunction with other applicable Caltech policies, sets forth the acceptable use of all Caltech electronic information resources owned or managed by Caltech, and describes the rights and responsibilities of the Institute and of faculty, staff, students, and other members of the Institute community with respect to use of these resources.

Electronic information resources are intended to be used to carry out the legitimate business of the Institute, although some incidental personal use is permitted. Faculty, staff, students, and other members of the Institute community, who use campus electronic information resources, should be guided by the Institute's Honor System, which prohibits any member of the Institute community from taking unfair advantage of any other. In addition, faculty, staff, students, and other members of the Institute community, who use the Institute's electronic information resources, assume responsibility for their appropriate use and agree to comply with all relevant Institute policies and all applicable local, state, and federal laws.

Users of Institute electronic information resources may not use these resources for inappropriate or unauthorized purposes. Some examples of inappropriate use are sending a communication or using electronic information resources, including webpages, to discriminate against or illegally harass, defame, or threaten individuals or organizations, or to engage in other illegal conduct or conduct that violates Institute policy; destruction of or damage to equipment, software, or data belonging to others; disruption or unauthorized monitoring of electronic communications; interference with use of Institute systems; violations of computer security systems; unauthorized use of accounts, access codes, or identification numbers; use of facilities in ways that intentionally impede the legitimate computing activities of others; use of facilities for commercial purposes; use for political or lobbying activities that jeopardize the Institute's tax exempt status and therefore violate Institute policy; violation of copyrights, software license agreements, patent protections and authorizations, protections on proprietary or confidential information, or unauthorized use of Caltech's trademarks; violations of another's privacy; academic dishonesty; sending chain mail; spamming; intrusion into computer

...
The use of Institute electronic information resources is a privilege, not a right, and the Institute may revoke this privilege, or decline to extend this privilege, at any time. Inappropriate uses of Institute resources may result in administrative discipline up to and including separation from the Institute. Suspected illegal acts involving Institute electronic information services may be reported to state and federal authorities, and may result in prosecution by those authorities. Any questions concerning the appropriate use of any of the Institute’s electronic information resources or relevant Institute policies should be directed to the chief information officer, the associate vice president for human resources, the dean of students, or the dean of graduate studies.

Accommodations for Disabilities

It is the policy and practice of Caltech to comply fully with the Americans with Disabilities Act (ADA), the Rehabilitation Act (Section 504), and other applicable federal, state, and local laws to ensure equal opportunity for qualified persons with disabilities. Caltech is committed to ensuring that there is no unlawful discrimination in any of its programs, services, activities, and terms and conditions of employment. As required by law, Caltech will provide reasonable accommodations to qualified individuals with disabilities including students, employees, and job applicants.

It is the responsibility of the Caltech administration and faculty to ensure the Institute’s compliance with this policy.

The following individuals have been designated as contacts regarding disability issues. For students, Barbara Green, associate dean of students, (626) 395-6351. For staff, Julia McCallin, director of employee relations, (626) 395-6382. For faculty, Sharon Borbon, assistant to the provost for faculty administration, (626) 395-6261.

Alcohol Use at Student Events

1. **Basic Principles**

 Caltech is committed to providing its students, faculty, and staff with an environment that promotes safe and responsible social interaction.

 The Institute’s concern over the illicit use and the abuse of alcohol and drugs results from the serious health hazards caused by substance abuse and from the potential legal penalties for those convicted of unlawful use, possession, or distribution of these substances, and by the ways in which alcohol and drugs adversely affect the campus environment. All members of the Caltech community should be familiar with and adhere to the Institute’s policy on substance abuse.

 Caltech’s primary approach to preventing substance abuse is to educate its students regarding the medical and psychological hazards of abuse and to increase student sensitivity to the ways in which substance abuse interferes with the rights and privileges of others. The Institute seeks to become more than ever a community where substance abuse is not condoned and where those with related abuse problems are provided with assistance.
The Caltech community, guided by the Honor Code, is founded on trust, respect, and responsibility. These principles apply to all aspects of Caltech life, including alcohol and substance use and abuse. Caltech has a long-standing tradition of students acting responsibly and refraining from actions that are damaging to others or to the Institute. Individuals are expected to take responsibility for their own conduct and to comply with state and federal laws as well as with Institute policy and the Honor Code.

II. Caltech Policy on Controlled Substances and Alcohol
The Institute maintains a drug-free workplace and campus. The use, possession, cultivation, manufacture, sale, or transfer of illegal drugs is prohibited. The illegal use of other drugs or prescriptions is also prohibited. Members of the Caltech community are expected to act lawfully with respect to the possession and consumption of alcoholic beverages. Possession and consumption of alcohol by individuals under 21 is prohibited. It is a violation of Caltech’s policy to serve, share, or pass alcohol to anyone under 21. Anyone who is intoxicated, regardless of age, may not be served. All members of the Caltech community, including students, are prohibited from returning to work in an experimental lab after having consumed alcohol. Consumption of alcoholic beverages in public areas outside residences, such as walkways, building steps and porches, and green spaces (e.g., the Olive Walk, the Millikan Pond area, the Court of Man), is not permitted regardless of the drinker's age unless the event is registered.

Planning Student Events at Caltech
Caltech recognizes that student parties and activities are an important part of campus life. The information provided here is intended to help minimize the risks associated with sponsoring a party, and to help individuals and organizations plan and execute a safe, healthy, fun, and problem-free event.

Event planners are encouraged to consult with the assistant vice president for campus life and security prior to the party so that the respective office can work with planners in arranging their event.

Planning Requirements
These requirements apply to events taking place in an Institute common area (any area outside of an individual’s apartment or private room). Examples of common areas include house lounges, dining rooms, and courtyards, the Catalina recreation room, Dabney Lounge, etc. These planning requirements do not apply to activities that take place in private rooms within student residences or student apartments, unless 15 or more students will be present. Such locales are governed by applicable laws and conditions of the housing contract.

All student events at which alcohol will be served (including official campus functions, registered events, and private parties) must adhere to the following guidelines:

- In order to use Institute funds (including house dues, club funding, and student government funding) for an event where alcohol is served, prior authorization must be received from the assistant vice president for campus life.
- Events where alcohol is served may be open only to members of the Caltech community and their invited personal guests.
- Events should not promote the inappropriate or excessive use of alcohol.
- One student must fill out the event registration form as the event host on behalf of the sponsoring organization, signifying that the organization agrees to abide by Caltech procedures and applicable law.
- Professional bartenders are required at any event where alcohol is served and participants under the legal drinking age are present. Professional bartenders may also be required at the discretion of the Institute if circumstances require. A current driver's license with a picture, a state-issued identification card, or a passport is the acceptable means of age verification.
- A bartender may not serve alcohol to any individual who is under 21 years of age or to anyone who is intoxicated. A bartender may not serve more than one drink to one person at any one time.
- Alcoholic and nonalcoholic beverages must be free and provided in quantities determined by the proportion of guests above and below the legal drinking age. An adequate supply of quality nonalcoholic beverages must be provided throughout the duration of the party. Alcohol may not be served if nonalcoholic beverages run out. Food must also be available throughout the duration of the event.
- Campus security must be present at any registered event where alcohol is served unless the assistant vice president for campus life grants an exception.
- All events must conclude by the time governed by Institute policy, which is 2:00 a.m. The bar must be closed at 2:00 a.m., and security will be present to assist in the process. This may include removing remaining alcohol to a designated secure location.
- An accessible shared supply of alcohol may not be held by houses, individuals, or clubs. This includes, but is not limited to, unregistered kegs, trash-can punches, and beer fridges.

To determine whether your event must be registered, access the undergraduate event registration form or the graduate registration form on the Student Affairs website.
In addition to suspension or expulsion, other sanctions may include the following:

- Verbal and written warnings
- Organizing an educational program for peers
- Community service
- The completion of an appropriate rehabilitation program
- Social probation for an individual or a group
- Persona non grata status
- Suspension from housing
- Attending a substance-abuse awareness program

Houses and student organizations that flagrantly or frequently violate the policy will have restrictions placed on parties, events, and/or other social activities. An event may be closed immediately, or other interventions may be taken to correct the violation. Disciplinary action may be invoked entirely apart from any civil or criminal penalties that the student might incur.

Students should understand that inebriation is never an excuse for misconduct—that a student's careless or willful reduction, through the use of alcohol or other intoxicants, of his or her own ability to think clearly, exercise good judgment, and respond to rational intervention may invoke more stringent penalties than otherwise might be levied.

Recent legislation allows institutions of higher education to contact parents when their adult children violate a school's alcohol or drug policy. It is a possibility that if students' behavior with respect to alcohol and drugs presents a danger to themselves and/or others, Caltech may inform parents. Such a determination will be made by the deans or the assistant vice president for campus life, in consultation with other offices as necessary.

Alcohol Safety

When planning an event where alcohol will be served, it is important to be aware of the need to implement a plan to promote the health and safety of your guests. Caltech's alcohol policy and programs are intended to encourage its community members to make responsible decisions about the use of alcoholic beverages, and to promote safe, legal, and healthy patterns of social interaction.

As an event host or as a participant, it is important to be educated regarding signs of intoxication, signs and symptoms of alcohol poisoning, and managing high-risk guests.

In order to manage high-risk guests, the following is a list of suggested Dos and Don'ts:

Do
- Be friendly but firm
- Be assertive and nonjudgmental
- Make sure you have others close by for support
- Use the guest's friends as your allies
Offer guests an alternative to drinking; this will allow the guest to “save face” and feel in control.
Be aware of possible aggression; try to get the person away from the crowd and distracted from possible sources of anger.

Don’t
- Be angry or obnoxious
- Back down or change your mind
- Hesitate to call your RA or Security
- Take statements personally or get into a shouting match
- Touch anyone without good reason; if someone attacks you, only use enough force to restrain them
- Embarrass the guest; others observing the situation may feel a need to intervene or retaliate

In addition, the ability to differentiate between the symptoms of alcohol intoxication and an alcohol emergency is critical. Signs of intoxication include:

- Talking loudly, then very softly
- Rambling or irrational speech
- Acting aggressively or belligerently
- Spilling drinks
- A decrease in coordination, e.g., missing the mouth while attempting to drink

In contrast, the signs and symptoms of alcohol poisoning are more severe and dangerous. There is no way to sober someone up quickly. It takes about as many hours to sober up as the number of drinks consumed. If an individual exhibits:

- Unconsciousness or semiconsciousness
- Slow breathing—eight breaths or less a minute
- Cold, clammy, pale, or bluish skin
- No response to sounds, pinching, prodding, or poking

it is highly possible that he or she has alcohol poisoning.

What to Do:

- Telephone ext. 5000 or 395-5000 immediately
- Stay with the person until help arrives
- Observe the person’s vital signs (level of consciousness, breathing rate, color of skin)
- Prevent choking by rolling the person onto his or her side

In cases of intoxication and/or alcohol poisoning, the primary concern is for the health and safety of the persons involved.

Individuals are strongly encouraged to call for medical assistance for themselves or for a friend/acquaintance who is dangerously intoxicated. No student seeking medical treatment for an alcohol or drug-related overdose will be subject to discipline for the sole violation of using or possessing alcohol or drugs.

A staff member may follow up with the student after the incident to determine his or her health and welfare.

Resources
You can always contact your RA and health advocate. Additional resources include:

- Security ext. 5000
- Health Center 395-6393
- Counseling Center 395-8331
- Health Educator 395-2961
- Huntington Hospital Emergency Room 397-5111

Fire Safety
It is the policy of the California Institute of Technology to comply with all applicable laws, regulations, codes, and standards in regard to fires, fire safety, and fire protection. The Institute recognizes that campus fire safety is vitally important to the Institute community, and thus is committed to maintaining a safe environment for faculty, staff, students, and other members of the Institute community.

The purpose of the Institute Policy on Fire Safety is to provide guidelines for establishing and maintaining fire safety procedures with respect to the undergraduate and graduate student houses and dormitories (student living areas or student housing) at the Institute.

Please refer to http://www.studaff.caltech.edu/policies.htm for the complete text of the policy.

Firearms and Other Dangerous Materials
No one is allowed to maintain, possess, transport, or use any firearms, including BB, pellet or paintball guns, or replicas that could be mistaken for real guns, or other weapons, including martial arts weapons, hunting knives, fireworks, ammunition, explosives, dangerous chemicals, or highly flammable materials (e.g., gasoline) on Institute property, including off-campus facilities. The use or threatened use of any knife as a weapon is also prohibited.

Nondiscrimination and Equal Employment Opportunity
Caltech is committed to equal employment opportunity for all persons without regard to sex, race, creed, color, religion, national origin, ancestry, age, marital status, pregnancy, gender identity, sexual orientation, status as a disabled veteran, a veteran of the Vietnam era or other eligible veteran, and for otherwise qualified individuals with a dis-ability. Consistent with this policy, illegal harassment will not be tolerated at Caltech, which will take all reasonable steps to eliminate it in its work and academic environment.
Caltech is an equal employment and affirmative action employer and will, whenever possible, actively recruit and include for employment members of minority groups, females, disabled veterans, veterans of the Vietnam era, other eligible veterans, and otherwise qualified persons with disabilities. Caltech will hire, place, transfer, and promote based on the qualifications of the individual to ensure equal consideration and fair treatment of all. All other employment actions, such as work assignments, appointments, compensation, evaluations, training, benefits, layoffs, and terminations are governed by this policy. Personnel actions will be reviewed to ensure adherence to this policy.

The provost has been designated as the Equal Employment Coordinator for the faculty, the director of employee relations for staff, the dean of students for undergraduate students, and the dean of graduate studies for graduate students. Inquiries concerning the interpretation and application of this policy should be referred to the appropriate designated individual. These coordinators are responsible for program administration, monitoring progress, and implementing goals and action-oriented programs relating to affirmative action. Likewise, management is responsible for monitoring decisions regarding personnel actions to ensure that these decisions are based solely on the individual's merit, and on legitimate, nondiscriminatory job requirements for the position in question, and the reasonableness of any necessary accommodations for persons with disabilities. Managers' performance in regards to Caltech's affirmative action goals and objectives will be evaluated, as will be their performance on other Institute goals.

Anyone who witnesses or experiences conduct they believe to be in violation of this policy is urged to contact any of the coordinators mentioned above, the individuals identified in the related harassment policy, or the Employee Relations office immediately. Complaints will be investigated promptly, and individuals who violate this policy will be subject to disciplinary action up to and including termination or expulsion.

To achieve the goals of Caltech's affirmative action program and to ensure equal employment opportunity and nondiscrimination, each member of the Caltech community must understand the importance of this policy and his or her responsibilities to contribute to its success.

Sexual Assault

The California Institute of Technology will not tolerate sexual assault, whether directed at males or females. It is the policy of the Institute to provide a work and academic environment free of physical assault, including sexual assault. Rape and other types of sexual assault, whether by a stranger or by an acquaintance, are violations of the law and Caltech policy. Sexual assault includes, but is not limited to, rape, forced sodomy, forced oral copulation, rape by a foreign object, sexual battery, or threat of sexual assault.

Caltech views sexual assault, in any of its forms, as a very serious matter and is committed to responding promptly to, and thoroughly investigating, sexual assault charges leveled at a member of the Caltech community. To reduce the risk of sexual assault, Caltech provides education for the campus community to increase awareness of this important issue.

I. Basic Principles

A crucial part of Caltech culture is respect for one another; no member of the Caltech community should take unfair personal advantage of another member of the community. Students, faculty, and staff who wish to file a complaint against another member of the Caltech community will have their complaints treated seriously and will be treated with dignity. The Institute recognizes that a sexual assault is more than an assault on an individual's body, but is also an attack on the individual's dignity and sense of self. Therefore, the Institute is committed to seeking input from the complainant and the respondent before making any decision to take action. There may be circumstances, depending on the seriousness of the offense, in which the Institute must take action to protect the complainant or other members of the Caltech community. The Institute will provide assistance and support for survivors of sexual assault.

II. What to Do if a Sexual Assault Has Occurred

If you have been sexually assaulted, you are encouraged to seek medical, psychological, and support services provided by campus and/or community services. If emergency response is required, please call Campus Security (x5000) or local law enforcement (744-4241).

Psychological treatment is available from the Student Counseling Center or the Staff and Faculty Consultation Center. Medical treatment is available at the Caltech Health Center, Huntington Memorial Hospital Emergency Room, a private physician, or through other community resources. You will benefit from being examined for physical injury, disease, and/or the possibility of pregnancy.

Because sexual assault may involve physical trauma and is a crime, the person assaulted is urged to seek medical treatment as soon as possible so that physical evidence can be obtained. To preserve evidence, do not bathe, douche, smoke, brush your teeth, or change your clothes. If clothes have been changed, the original clothes should be put in a paper bag (paper is best for preserving evidence) and brought to the hospital. If possible, you should bring a fresh change of clothes. In most cases, evidence can be collected only within 72 hours of the assault.

Please note that the hospital and certain health-care providers have an obligation to inform the police, and the police may
conduct an interview at the hospital regarding the assault. Your consent will be requested to allow collection of evidence. You can choose whether or not to disclose information to the police or to file a civil or criminal complaint. If you desire further information concerning this procedure, please contact the Women's Center, Staff and Faculty Consultation Center, or the Rape Hotline.

Individuals who do not wish to be interviewed by the police should seek medical assistance from a private physician or other community resources. These health-care professionals may need to fulfill legally mandated reporting requirements.

III. Community Resources

If you or someone you know has been sexually assaulted within or outside of the Caltech community, there are individuals you can contact.

Confidential Campus Resources

Members of the Caltech community may contact any of the offices below confidentially. These individuals will listen and offer options. Talking to any of these individuals does not constitute reporting an incident involving a member of the Caltech community to Caltech. However, these offices can provide you with support and can guide you through Institute procedures. Although they will not participate in formal Institute processes or legal action, the staff in each office is available to help the complainant and/or the respondent look at all available options; decide what plan of action feels most comfortable; craft a statement that contains all of the relevant information regarding the complaint; and make decisions about how to proceed.

Sources of support and information on campus and in the community include:

- Student Counseling Center: (626) 395-8331
- Staff and Faculty Consultation Center: (626) 395-8360
- Ombuds Office: (626) 395-6990
- Caltech Women's Center: (626) 395-3221

Other campus resources:

- Student Health Center: (626) 395-6393
- Dean of Students: (626) 395-6351
- Dean of Graduate Studies: (626) 395-5802
- Campus Life: (626) 395-6194
- Associate Vice President for Human Resources: (626) 395-3230
- Director of Employee Relations: (626) 395-6382
- Provost: (626) 395-6336
- Campus Security: (626) 395-5000
- Vice President for Student Affairs: (626) 395-6100

IV. Procedures for Filing Complaints

A. Filing a Complaint with Civil Authorities

Members of the Caltech community wishing to report a sexual assault to the police are encouraged to seek support and guidance from the Caltech Women’s Center. Its telephone number is (626) 395-3221. The telephone number of the Pasadena Police is (626) 744-4241.

B. Filing a Complaint on Campus—Overview

Students, faculty, or staff who wish to file a campus complaint against a member of the Caltech community should do so as soon as possible after the assault, although complaints may be filed at any time. Complaints should be brought to the attention of one of the following individuals: provost, deans, director of employee relations, employee relations specialist, student affairs directors, division chairs, and division administrators. They will ensure that complaints reach the appropriate investigating office. If the respondent is a student, the complaint will be forwarded to the dean of students or dean of graduate studies; if staff, to the director of employee relations; and if faculty, to the provost. Within a reasonable length of time the person accused, the respondent, will be notified of the nature of the complaint and an investigation will begin. If administrative changes are needed to protect the rights of either party during the investigation, the appropriate administrators shall see that they are made.

The complaint should immediately notify any of the above individuals if anyone associated with the matter is under continuing threat or is being subjected to retaliation. Immediate action will be taken, and in such cases the complainant has the right to file another complaint.
C. Campus Complaint Procedure

Initial Meeting
The administrator receiving the complaint will
- Ask the complainant questions to assess whether there is a continuing threat to the complainant and/or other members of the community.
- Ensure that the complainant is given appropriate protection, if necessary, including protection from retaliation for the complaint. Such protection may include restrictions on the accused.
- Provide a copy of this policy to the complainant.
- Review available resources, including medical and psychological counseling.
- Request a written statement from the complainant.

As soon as practicable after a complaint is received, the office of the relevant dean, the Provost’s office, or Employee Relations will form a team to investigate the complaint. The lead investigator will be from the same area as the respondent. For example, if a staff member makes a complaint against a faculty member, a representative of the provost will lead the investigation, and if a faculty member files a complaint against a staff member, a representative of the director of employee relations will lead the investigation. The individuals involved in the investigation will respect the privacy of the complainant and that of all parties involved while they complete a thorough review of the situation. All participants will be required to keep the contents of the investigation confidential.

The investigation should be completed as soon as practicable, usually within 30 days after the formation of the team. The Caltech investigation will occur independently from any legal proceedings that may take place.

The investigative process will be the following:
- The respondent should be notified as soon as possible after a complaint is filed. The respondent will receive a verbal summary of the complaint and a copy of this policy.
- The investigators will review the written statement from the complainant if one has been prepared, and interview the complainant and the respondent. Each will be allowed to have a friend who is a member of the Caltech community present during his or her interview. The friend will serve as an observer and will not participate in the proceedings.
- The complainant and the respondent will be asked to suggest available witnesses. Others may be interviewed to obtain relevant information.

Both parties will be kept informed of the status of the investigation.

Determination
The investigators will consult with Institute counsel and make a recommendation to the relevant dean, the Provost’s office, or Employee Relations, as appropriate, regarding the charges and the appropriate consequences, including disciplining of the respondent.

In addition, the investigators will prepare a summary record of the case for the president of Caltech. This record will be considered a confidential Institute document and will be provided only to the vice president for business and finance (for staff), the provost (for faculty), the vice president for student affairs (for students), and the president in the case of an appeal.

Resolution
The Dean of Students Office, the Dean of Graduate Studies Office, the Provost’s office, or Employee Relations, as appropriate, will inform both parties of the outcome of the investigation in writing within seven days after receiving the recommendation and completing consultation with counsel. The provost, the vice president for student affairs, or the vice president for business and finance will carry out any disciplinary consequences and should consult with Institute counsel for aid in determining the Institute’s legal duties and obligations before taking appropriate disciplinary action based on the team’s findings. Discipline can include, but is not limited to, the following: counseling, probation, involuntary leave of absence, expulsion and/or termination. If the complainant is found to have acted in bad faith in bringing the charges, disciplinary action may also be taken.

Appeal
Any party involved in the investigation may appeal the decision to the president of Caltech. The appeal must be on the grounds of improper procedure or an arbitrary decision based on evidence in the record. The president will appoint an investigator to interview both parties and confer with the original investigators before deciding whether to accept the original judgment or authorize further investigation or deliberations.

Confidentiality
On a “need to know” basis, the following individuals at the Institute may also be informed of the fact that a sexual assault complaint has been made and that both parties are members of the Caltech community:
- President
- Ombudsperson
- Vice President/Assistant Vice President for Student Affairs
- Campus security
- Dean of Students
- Dean of Graduate Studies
- Assistant Vice President for Student Affairs, Campus Life
-
feels that he or she has been harassed should review the Procedures for Investigating and Resolving Unlawful Harassment Complaints at Caltech and immediately bring the matter to the attention of his or her supervisor or any of the individuals listed below. They will handle matters brought to their attention with sensitivity and discretion.

- Deans
- Director of employee relations
- Division administrators
- Division chairs
- Employee relations specialists
- Provost
- Student affairs directors (including the master of student houses)

The Institute also offers members of the Caltech community the choice of seeking confidential counseling outside the Institute’s formal mechanisms for resolving harassment complaints. These confidential counseling services are intended for the personal benefit of the individual and offer a setting where various courses of action can be explored. Those seeking this type of assistance should check with the offices listed below, each of which has its own mandate and guidelines for providing services:

- Ombuds Office
- Staff and Faculty Consultation Center
- Student Counseling Center
- Women’s Center

Information for faculty, students, and staff is also available from the Women’s Center, Ombuds Office, Staff and Faculty Consultation Center, any Student Affairs office, resident associates, or Employee Relations.

Any member of the Caltech community who believes he or she has been a witness to or a target of harassment is urged to report promptly the facts of the incident(s) to any of the above offices. Delay in reporting may impede the Institute’s ability to take appropriate action. In addition, an employee who believes he or she has been harassed has the right to file a complaint with the federal Equal Employment Opportunity Commission or the California Department of Fair Employment and Housing, which have the authority to remedy violations; students may file complaints with the federal Office for Civil Rights. No member of the Caltech community will be retaliated against for making a good faith report of alleged harassment or for participating in an investigation, proceeding, or hearing conducted by the Institute, or by a state or federal agency.

The names of the individuals involved will not be released unless the release is essential to the health and safety of the complainant or is otherwise required in order to fulfill the legal obligations of the Institute. In such rare circumstances, the vice president for student affairs (for students), the provost (for faculty), and the associate vice president for human resources (for staff) are the only persons authorized to make an exception to the rule of complete confidentiality regarding the names of those involved. If an exception is made to this rule, the parties involved in the incident will be notified as soon as possible.

Unlawful Harassment

It is the policy of the Institute to provide a work and academic environment free of unlawful harassment and retaliation. Harassment is the creation of a hostile or intimidating environment in which verbal or physical conduct, because of its severity and/or persistence, is likely to interfere significantly with an individual’s work or education, or affect adversely an individual’s living conditions. **Harassment in any form, based on sex, race, color, age, national origin, disability, religion, gender identity, sexual orientation, or any other characteristic protected by state or federal laws, is prohibited, as are all forms of sexual intimidation and exploitation.** All faculty, students, and staff should be aware that the Institute will not tolerate any conduct that constitutes illegal harassment. The Institute also takes prompt action when notified about harassment by third parties such as nonemployees, vendors, or contractors. Complaints of such harassment will be promptly and thoroughly investigated and appropriate action, including disciplinary measures, will be taken when warranted.

Faculty, students, and staff, at all levels, are responsible for maintaining an appropriate environment for study and work. This includes conducting themselves in a professional manner, actively discouraging harassment, and taking appropriate corrective action to prevent and eliminate harassment.

Faculty, students, and staff have the right at any time to raise the issue of harassment without fear of retaliation. Caltech policy prohibits retaliation against an individual for making a good-faith report of alleged harassment. Any faculty, student, or staff who
I. Guidelines Regarding Harassment

Harassment

Harassment is the creation of a hostile or intimidating environment, in which verbal or physical conduct, because of its severity and/or persistence, is likely to interfere significantly with an individual’s work or education, or affect adversely an individual’s living conditions. Abusive or harassing behavior, verbal or physical, which demeans, intimidates, threatens, or injures another because of his or her personal characteristics or beliefs is subject to the Institute’s disciplinary process. Examples of personal characteristics or beliefs include race, ethnicity, national origin, religion, disability, age, gender identity, and sexual orientation. Some kinds of behavior that are clearly intended to harass, while inappropriate and not tolerated at Caltech, may not be illegal because the behaviors are not clearly linked to these personal characteristics or beliefs. These types of behavior may be dealt with through the student disciplinary process or through supervisory intervention, including the Caltech progressive disciplinary process.

Harassment must be distinguished from behavior which, even though unpleasant or disconcerting, is appropriate to the carrying out of certain instructional, advisory, or supervisory responsibilities or is objectively reasonable under the circumstances. Similarly, instructional responsibilities require appropriate latitude for pedagogical decisions concerning the topics discussed and the methods used to draw students into discussion and full participation. There are, however, obligations of civility and respect for others that underlie rational discourse. Behavior evidently intended to dishonor or such characteristics as race, gender identity, national origin or ethnic group, religious belief, sexual orientation, age, or disability is contrary to the pursuit of inquiry and education and may be discriminatory harassment violative of law and Institute policy. Some examples of incidents that may constitute illegal harassment follow:

- An adviser tells a minority student not to take a certain course because the adviser says that other minority students have had difficulty in the course.
- A disabled individual is not included in an off-site outing because of lack of mobility.
- A supervisor assigns only menial tasks to a minority staff member. A supervisor gives menial tasks only to a minority staff member and not to other employees.
- An older employee is disciplined for insubordination when the same conduct is tolerated from younger employees.
- Swastikas have been painted on the door of a room often used to prepare for the observance of the Jewish Sabbath.
- A student tells a racially offensive joke within a study group session with other students.

Of course, in order to make an accurate judgement as to whether these incidents are illegal or violate policy, the full context in which these actions were taken or statements made must be considered. Conduct of this type, therefore, will initiate an investigation since making tolerance of illegal harassment or submission to it a condition of employment, evaluation, compensation, or advancement is a serious offense.

Sexual Harassment

Sexual harassment is unlawful, violating Title VII of the Civil Rights Act of 1964, as amended, Title IX of the Education Code, and California state law. Sexual harassment is defined as follows:

Unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature constitute sexual harassment when

1. submission to such conduct is made either explicitly or implicitly a term or condition of an individual’s employment or education,
2. submission to or rejection of such conduct by an individual is used as the basis for decisions affecting that individual, or
3. such conduct has the purpose or effect of unreasonably interfering with an individual’s performance or creating an intimidating, hostile, or offensive environment.

The test is not whether the person participated voluntarily; the test is whether the conduct was unwelcome.

Sexual harassment by peers, coworkers, or third parties such as nonemployees, vendors, or contractors is a form of prohibited sex discrimination where the objectionable conduct creates a hostile educational or work environment. Both males and females are protected from peer sexual harassment. Moreover, sexual harassment is prohibited regardless of the sex of the harasser, e.g., even where the harasser and the person being harassed are members of the same sex.

Some examples of conduct that may constitute harassment are

- Unwanted sexual advances.
- Offering employment benefits in exchange for sexual favors.
- Making or threatening reprisals after a negative response to sexual advances.
- Making sexual gestures; displaying sexually suggestive objects, pictures, cartoons, posters, calendars, or computer screens.
- Making or using derogatory comments, epithets, slurs, or jokes of a sexual nature.
- Verbal sexual advances or propositions.
- Using Institute resources or time to create or obtain sexually explicit materials that are not directly related to legitimate business of the Institute.
- Verbal abuse of a sexual nature, graphic commentaries about an individual's body, sexually degrading words used to
describe an individual, suggestive or obscene letters, notes, electronic mail messages, or invitations.

- Unwelcome, intentional and/or repeated touching of a sexual nature.
- Stalking.
- Ostracizing individuals from group activities because of their sex or because they objected to harassing behavior.

Even when relationships are consensual, care must be taken to eliminate the potential for harassment or other conflicts. Institute practice, as well as more general ethical principles, precludes individuals from evaluating the work or academic performance of those with whom they have amorous and/or sexual relationships, or from making hiring, salary, or similar decisions.

Upon learning about such a relationship, the supervisor, the dean(s), or the division chair has the authority and responsibility to review and remedy, if inappropriate, any direct administrative or academic relationship between the involved individuals.

When a consensual personal relationship arises and a power differential exists, consent will not be considered a defense in a claim that the Institute’s unlawful harassment policy has been violated. The individual in the relationship with greater power will bear the burden of accountability.

Investigations
The Institute is firmly committed to resolving allegations of harassment fairly and quickly. To ensure that open and forthright dialog occurs, attorneys are not permitted to accompany individuals during interviews, nor are interview sessions recorded in any manner. Those interviewed are always entitled to submit a written statement if they so choose or to consult with others regarding the interview, keeping in mind that these proceedings must be kept as confidential as possible.

II. Procedures for Investigating and Resolving Unlawful Harassment Complaints at Caltech

Basic Principles
The Institute is committed to maintaining a work and study environment for all members of the Caltech community that is free of unlawful harassment, including sexual harassment. A crucial part of Caltech culture is respect for one another; no member of the Caltech community should take unfair personal advantage of another member of the community.

Caltech is also dedicated to the free exchange of ideas and intellectual development, as part of the campus milieu. Harassment, as defined in the Institute’s policy on unlawful harassment, is neither legal nor a proper exercise of academic freedom. This policy is not intended to stifle vigorous discussion, debate, or freedom of expression generally, or to limit teaching methods. Harassment compromises the tradition of intellectual freedom and the trust placed in the members of the Caltech community.

Caltech provides resources that address unlawful harassment and sexual harassment. Law and Caltech policy also prohibit retaliation against an individual for reporting any type of harassment.

Copies of the Institute’s nondiscrimination, unlawful harassment, and other policies are available from the Human Resources, any Student Affairs office, the Women’s Center, the Ombuds Office, the Staff and Faculty Consultation Center, and the Provost’s office. Policies are also published in the Caltech Catalog and the Employee Handbook, and are on the Caltech website. The policies and these procedures identify appropriate people on campus to contact with complaints.

Procedures
A member of the Caltech community who believes he or she has been subjected to harassment, including sexual harassment, should review the Institute’s policy. There are several courses of action available to address the problem, each with different consequences and implications with respect to confidentiality and resultant action. These options are not mutually exclusive. The complainant may choose which course to follow and may submit a formal complaint at any time.

A. Informal Options
In general, the goal of informal options is to quickly end the offending behavior without utilizing disciplinary action. Third parties with an official status at Caltech, such as faculty, managers, or supervisors, are expected to follow up with the complainant to make sure that the issue has indeed been resolved. Mutually agreeable administrative changes are sometimes possible to ease an uncomfortable situation. Complainants should consider at the outset whether such changes might be desirable. Informal options include

1. Talking personally with the offending individual, or writing a letter asking him or her to stop. This is a personal step taken solely among the relevant parties.

2. Speaking to members of the Student Counseling Center, the Ombuds Office, the Staff and Faculty Consultation Center, or the Women’s Center. Such conversations are confidential and are not communicated to individuals within or outside the Institute.

3. Resolving the complaint informally with the help of a third party who does not have a faculty, supervisory, or managerial position at Caltech. This could be a peer for staff; or, for students, a peer, a resident associate, or a member of the Board of Control or the Graduate Review Board. The goal here is to allow the parties to resolve complaints without an
4. Resolving the complaint informally with the help of a third party who has a faculty, supervisory, or managerial position at Caltech. The goal here is also to allow the parties to resolve complaints without an investigation and without elevating the complaint within the Institute. However, a person in these official positions is obligated to follow up to be sure the situation has been resolved. This action might include referring to an appropriate individual within the Institute or sharing some of this information with other persons holding positions of responsibility at Caltech.

B. Formal Complaints
A formal complaint is a request that the Institute take action. Complainants may file a formal complaint by reporting the offending conduct to individuals holding any of the following positions: provost, dean, director of employee relations, employee relations consultant, student affairs director (including master of student houses), division chair, division administrator. The complaint is then taken to the provost, director of employee relations, or dean(s) as appropriate (for faculty or postdoctoral scholars, staff, and students, respectively). This individual initiates an investigation described more fully below.

Protection of complainant. Because the Institute encourages staff, faculty, and students to report and address incidents of harassment, complainants will be protected: retaliation against any member of the Caltech community is strictly prohibited. Overt or covert acts of reprisal, interference, discrimination, intimidation, or harassment against an individual or group for exercising his or her rights under this policy will be subject to appropriate and prompt disciplinary or remedial action.

Administrative and/or academic changes may be needed in order to protect the rights of the complainant. These changes should be discussed with the appropriate parties (provost, dean(s), or director of employee relations). Changes might include transfer of supervisory or evaluative responsibility regarding grading, supervision, tenure review, letters of recommendation, etc. Care will be taken to protect both the complainant and the respondent with the greatest degree of confidentiality. Complainants may have an adviser or support person present when reporting harassment. However, the proceeding is an internal Caltech function and, therefore, the presence of legal counsel is not permitted by anyone during the conduct of these procedures.

C. Details of Formal Complaints
- Formal complaints of harassment can be made orally or in writing, but if made orally, should, in the end, be reduced to writing.
- Complaints should be brought to the attention of one of the following individuals: provost, dean, director of employee relations, employee relations specialist, student affairs director, division chair, division administrator. They will ensure that complaints reach the provost, director of employee relations, or the dean(s), as appropriate.
- Within a reasonable length of time the accused party (“the respondent”) will be notified of the nature of the complaint, and an investigation will begin. If administrative changes are needed to protect the rights of the complainant during the investigation, the appropriate administrators shall see that they are made.
- All formal complaints will be investigated within a reason able length of time after the complaint has been made, normally within 120 days. An individual, a committee, or an outside consultant may conduct the investigation. The purpose of the investigation is to determine the facts relating to the complaint.
- Each individual or team member who conducts an investigation will be trained in various aspects of harassment. Because of the sensitive nature of these investigations, he or she will consult with the general counsel for legal assistance in investigative techniques, in applying legal standards regarding harassment, and in determining the Institute’s legal duties and obligations.
- The complainant and respondent will be informed of the relevant procedures and will have an opportunity to comment on the suitability of the investigator(s).
- The Institute’s Equal Employment Opportunity (EEO) and harassment policies, and the Institute’s policy against retaliation will be reviewed with both parties. The complainant and respondent shall be given the opportunity to present their cases separately to the investigator(s) and to suggest others who might be interviewed. Subsequently the investigator(s) can, if appropriate, interview other parties to reach findings and conclusions.
- All parties who participate in investigative interviews may submit written statements. Investigatory meetings will not be recorded.
- The investigator(s) will summarize for the respondent the evidence in support of the complaint to allow the respondent the opportunity to reply. The investigation will remain confidential to the extent possible.
- Findings and conclusions in the case will be reported to the respondent’s manager or dean, or the provost, as
D. Resolution
As soon as practicable after receiving the findings of the investiga-
tor(s), management or administration shall review the findings with
the dean(s), managers, division chairs, and others as necessary.
Both the complainant and respondent shall be informed of the
results.
If a violation of the Institute EEO and/or harassment policies
occurred, sanctions shall be imposed. Depending on the severity of
the case and role at Caltech, possible sanctions include, but are not
limited to
• Verbal counseling/training
• A formal written warning placed in the respondent’s file
• Suspension of the right to accept new graduate students or
 postdoctoral scholars
• Transfer of advisees and/or removal from positions of
 administrative responsibility
• Removal from student housing
• Removal from a supervisory position

E. Appeals
Appeals must be in writing and within 30 days of notification of
the decision.
Appeals by a faculty member of decisions or actions by the
provost that affect academic freedom and tenure can be made to
the Faculty Committee on Academic Freedom and Tenure as indi-
cated in Chapter 4 of the Faculty Handbook. Other appeals for fac-
culty and appeals by postdoctoral scholars can be made to the
president.
Student appeals can be made to the vice president for student
affairs or his or her designee. Staff appeals can be made to the
associate vice president for human resources or his or her designee.

F. Further Complaints
The complainant should notify the provost or division chair, the
dean(s), or director of employee relations immediately if the cor-
rective action does not end the harassment, or if any retaliatory
action occurs. In such cases, the complainant has the right to file
another complaint.
Areas of Study and Research

Aeronautics

The Guggenheim Aeronautical Laboratory, the Karman Laboratory of Fluid Mechanics and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical Laboratories, widely known as GALCIT. In this complex are housed the applied and computational mathematics group and the hydrodynamics and solid and structural mechanics laboratories, as well as the various disciplines making up the broad field known as aeronautics.

Areas of Research

Aeronautics has evolved at Caltech from a field of basic research and engineering, primarily related to the development of the airplane, into a wide discipline encompassing a broad spectrum of basic as well as applied problems in fluid dynamics and mechanics of solids and materials. Research at GALCIT has traditionally pioneered exploration of new areas that have anticipated subsequent technological demands. This tradition places a high premium on an in-depth understanding of fields both closely and remotely related to the behavior of fluids, solids, and structures, such as physics, applied and computational mathematics, geophysics, materials science, electronics, and even astrophysics. As a consequence, GALCIT students are known and sought after for their broad yet intense education and for their ability to deal with new and challenging problems.

Major areas of study and research currently pursued by aeronautics students at Caltech are briefly described below.

- **Physics of Fluids.** Fluid dynamics as a discipline is as much a part of physics as of engineering. Physics of fluids refers to research in areas closer to applied physics than to direct technical applications. Present active research includes studies in gasdynamics and hypervelocity flows, diffraction of shock waves, detonation waves, shock-induced Rayleigh-Taylor instability, and transient supersonic jets, the development of laser scattering diagnostic techniques for fluid-flow measurements, study of structures and mechanics in transition and turbulence, and studies of two-phase flows and turbulent mixing.

- **Computational Fluid Dynamics.** Many of the subjects studied experimentally at GALCIT are also being investigated by numerical simulation. Present active research areas in computational techniques include direct numerical simulation, particle methods for flow simulation, subgrid-scale models for compressible and incompressible flows, large-eddy simulation methods, flows with shocks, high-explosive interactions with deformable boundaries, and detailed chemical reaction kinetics in flames and detonations.
Technical Fluid Mechanics. These areas are related to a variety of modern technological problems and, in addition, to the traditional aeronautical problems of drag, wing stall, and shear flow mixing. Additional areas of activity include bluff-body aerodynamics, fluid-structure interaction, turbulent combustion, laminar diffusion flames and their instabilities, explosions, hydrodynamics and two-phase flows, interaction of vorticity with free-surface, cardiac flows, swimming and flying, and active and passive control of transition and turbulence. Acoustics problems studied include jet noise, combustion noise, and instabilities such as the generation of organ pipe oscillations in large burners of electric generating plants.

Mechanics of Materials. Mechanics of materials research involves both the quasi-static and dynamic characterization of solids. In order to understand materials for applications in a wide range of structures germane to aeronautics as well as other engineering disciplines, both the physical foundations of that behavior as well as the mathematical or numerical representation of such behavior needs to be understood. Accordingly, studies involve material response at both the macroscopic (continuum) scales and the micro- and nanoscales. Of interest are the typical engineering metals, multiphase (composite) materials, polymers and ceramics, as well as active materials used in structural actuation and controls.

Computational Solid Mechanics. Computational solid mechanics addresses phenomena ranging from the atomistic scale, e.g., nanoindentation, to the structural scale, e.g., fracture of aircraft components. It provides an indispensable tool for understanding the relation between structure and mechanical properties of materials, for predicting the efficiency of such industrial processes as machining and metal forming, and for assessing the safety of such structures as airplanes, automobiles, and bridges. The goals and objectives of this activity are to provide a state-of-the-art environment for the development of numerical methods in solid mechanics, to provide the computational resources required for medium-scale simulations in solid mechanics, and to serve as an instructional facility for advanced courses.

Mechanics of Fracture. An active effort is being made to understand mechanisms in a wide range of fracture problems. Aspects that are studied include quasi-static and dynamic crack growth phenomena in brittle and plastically deforming solids, polymers and advanced composites, as well as fatigue and failure of adhesive bonds. Research areas adjacent to fracture studies in polymers are the nonlinearly viscoelastic behavior of polymeric solids and issues of durability in advanced aerospace structures.

Aeronautical Engineering and Propulsion. Research in the aeronautical engineering area includes studies of airplane trailing vortices and separated flows at high angles of attack. Research work in the propulsion area has centered on the fluid dynamic problems associated with combustion, solid propellant rocket motor instabilities, fluid dynamics of scramjets, and pulse detonation engines.

Aerospace Technology. The industrial utilization and exploration of space must address a wide range of engineering problems. Examples of research activities include light-weight structures for large aperture systems, material and structural behavior in extreme temperature and radiation environments, spacecraft shielding against hypervelocity impact threats, the mechanics of sample containment for planetary protection, low-g biomechanics, biomimetics of locomotion in planetary atmospheres, hypersonic re-entry into planetary atmospheres, spacecraft propulsion, guidance, navigation and control, and launch vehicle performance and safety. Opportunities exist for research in collaboration with the Jet Propulsion Laboratory.

Physical Facilities

The Graduate Aeronautical Laboratories contain a diversity of experimental facilities in support of the programs described above. Low-speed wind tunnels include the John W. Lucas Adaptive Wall Tunnel, the Merrill Wind Tunnel, which can be operated by a single person, and special-purpose flow facilities. Both a high-speed water tunnel (100 feet per second) and a free-surface water tunnel are housed in the hydrodynamics laboratory; they are used for studies of acoustics, laminar-turbulent flow transition, and the structure of turbulent shear flows. Smaller water channels and a tow tank for studies of wave motion and flow visualization are also available. For investigations of high-speed flows there is a Ludwieg tube, a supersonic shear layer facility, and the T5 shock tunnel for studying hypervelocity gas flows up to 7 km/s. Shock tubes and other special facilities are available for the study of extreme temperatures, shock waves, deflagrations, detonations, acoustics, and combustion at variable pressure conditions.

The solid mechanics laboratories contain standard as well as special testing facilities for research related to aircraft, spacecraft structures, and failure/fracture behavior of materials under static and dynamic loads, including three servohydraulic facilities, two of which operate on a “tension/torsion” mode. A range of digital and film high-speed cameras offering recording at rates from still to 2 million frames per second are available for the study of fast phenomena, such as wave propagation, dynamic buckling, and the mechanics of static and dynamic fracture. Dynamic testing facilities include specialized electromagnetic loading devices (stored energy ~120 KJ), a drop weight tower, split Hopkinson bars (axial/torsional), and plate impact apparatus. Diagnostic devices include full-field interferometric and temperature measurements, both for static and dynamic applications. State-of-the-art facilities are available.
for scanning microscopy (AFM, STM) and electromechanical characterization of materials.

State-of-the-art electronic instrumentation is being developed and used. Extensive use is made of computer systems for real-time control of experiments, for data acquisition, processing, and storage, and for digital image processing. Computational facilities include powerful workstations, on-campus parallel processing machines, and remote supercomputers such as those generally available at NSF, NASA, and DOE centers. Graphics workstations are available to support research in computational fluid dynamics and solid mechanics.

APPLIED AND COMPUTATIONAL MATHEMATICS

An interdisciplinary program of study in applied and computational mathematics that leads to the Ph.D. degree is offered by the Institute. In addition to various basic and advanced courses taught by the applied and computational mathematics faculty, broad selections are available in mathematics, physics, engineering, and other areas. Students are expected to become proficient in some special physical or nonmathematical field. A subject minor in applied computation is offered jointly with the computer science option.

In addition to the applied and computational mathematics faculty, professors from other disciplines such as mathematics, physics, engineering, biology, etc., supervise research and offer courses of special interest. Close contact is maintained with experimental programs in fluid and solid mechanics and with research groups in parallel computation. The applied and computational mathematics group has access to supercomputers and concurrent computers, and has a variety of its own computers, graphics terminals, and other equipment. Library facilities are excellent, comprising all the journals, a complete general library, and a special research library in engineering and applied science.

The present graduate program is one leading mainly to the Ph.D. degree. The curriculum consists of two types of courses: those that survey the methods used in applied and computational mathematics, and those that have a special applied and computational mathematics flavor and represent active research interests of the members of the faculty. Among the latter have been wave motion, perturbation theory, fluid mechanics, stochastic processes, wavelet analysis, signal processing, numerical analysis, and computational fluid dynamics. Through study outside of applied and computational mathematics, each student is expected to become competent in some special physical or nonmathematical field. In this way, subjects for research appear naturally, and a broad educational program is provided.

The group primarily interested in applied and computational mathematics currently consists of approximately 25 students and five professors. Also, each year many distinguished visitors come either to present lectures or remain in residence for large parts of the academic year.

Areas of Research

Research is particularly strong in theoretical and computational fluid mechanics, theoretical and computational materials science, numerical analysis, ordinary and partial differential equations, integral equations, linear and nonlinear wave propagation, water waves, bifurcation theory, perturbation and asymptotic methods, stability theory, variational methods, approximation theory, statistical estimation, computational harmonic analysis, stochastic processes, signal and imaging processing, inverse problems, mathematical biology, large-scale scientific computing, and related branches of analysis.

APPLIED MECHANICS

Areas of Research

Advanced instruction and research leading to degrees of Master of Science and Doctor of Philosophy in applied mechanics are offered in such fields as elasticity; plasticity; wave propagation in solid media; mechanics of quasi-static and dynamic fracture; dynamics and vibrations; finite element analysis; and stability, control, and system identification of mechanical and structural systems.

Research studies in these areas that illustrate current interests include linear and nonlinear random vibrations of uncertain dynamical systems; structural dynamics and control for earthquake and wind loads; linear and nonlinear problems in static and dynamic elasticity, plasticity, and viscoelasticity; computational mechanics; mechanics of time-dependent fracture; chaotic behavior of dynamical systems; and material instabilities and phase transformations in solids.

Physical Facilities

In addition to the regular facilities in the Division of Engineering and Applied Science, which include extensive computing facilities, certain special facilities have been developed in connection with applied mechanics activities. The vibration laboratory is equipped with a good selection of modern laboratory apparatus and instrumentation for experimental research in shock and vibration, and the earthquake engineering research laboratory contains specialized equipment for vibration tests of buildings, dams, and other structures, and for the recording and analysis of strong-motion earthquakes. The solid mechanics laboratory located in the
Graduate Aeronautical Laboratories contains extensive testing equipment for the study of fracture and structural failure. Excellent computing facilities are available through the campus computing network and in the specialized centers of various research groups.

APPLIED PHYSICS

An interdivisional program in applied physics for both undergraduate and graduate study was initiated in 1970. Applied physics at Caltech is in a fortunate position: The comparatively small size of Caltech coupled with its great strength in both the pure sciences and engineering make it possible to have a faculty with a wide interest in the application of modern physics to technology, without losing close interaction with “pure subjects.” At present, members of four divisions—Engineering and Applied Science; Physics, Mathematics and Astronomy; Chemistry and Chemical Engineering; and Geological and Planetary Sciences—participate in instruction and research in applied physics leading to a B.S. degree as well as to M.S. and Ph.D. degrees.

The program is designed for students who are deeply interested in physics but at the same time are fascinated by the interrelation of physical problems and technological development; i.e., students who like to work with problems in physics that originate from or result in applications. A sharp division between “pure” and “applied” physics or between applied physics and engineering cannot be drawn, and the option of applied physics should be considered a bridge rather than a divider. A student is expected to have a thorough background in physics, as well as a broad background in related fields of technology.

Members of the faculty involved with the educational and research activities in applied physics remain members of their respective divisions. Graduate students who choose the applied physics option will do research in one of the cooperating divisions.

In setting up the undergraduate curriculum, every effort has been made to facilitate the transition into and out of the option. In general an undergraduate student in applied physics will devote somewhat more time to the study of condensed matter than will the “pure” physicist. Since it is expected that most students will be interested in experimental research, a special effort has been made to set up challenging laboratory courses and to provide an opportunity to do a senior thesis.

For first-year graduate students and adventurous seniors, a set of basic courses covering broad areas in applied physics is available, supplemented by a set of more specialized courses often closely related to a specific research effort.

Areas of Study and Research

APPLIED PHYSICS

Research in applied physics covers a broad spectrum of activities, ranging from nanostructured materials, solid state devices, and photonics to biophysics and plasma physics. There is research in progress in single-molecule biophysics, microfluidics, nanofabrication and application in photonics and electronics, ultra-high-speed fiber optic devices and communications systems, compound semiconductor materials and device physics, spin-dependent transport, photovoltaics, chemical vapor deposition processes, and fluid dynamics. The research program is centered in the Thomas J. Watson, Sr., Laboratories of Applied Physics. This 40,000-square-foot building contains research laboratories including a central micro/nano fabrication facility as well as offices, conference rooms, and a classroom, nestled around an attractive courtyard.

ASTROPHYSICS

The astronomical observatories at Palomar and Mauna Kea, and the Owens Valley Radio Observatory and the Caltech Submillimeter Observatory, together constitute a unique and unprecedented concentration of ground-based facilities in astronomy.

Access to satellite-based infrared observations is provided by Caltech’s Infrared Processing and Analysis Center (IPAC) and the Spitzer Science Center (SSC). For example, IPAC currently supports a number of NASA missions: 2MASS, an all-sky survey at 2 microns, and the Infrared Space Observatory (a mission of the European Space Agency). The SSC will conduct the science operations of the Spitzer Space Telescope—one of the great space observatories. The GALEX mission, an upcoming space UV survey of the sky, is also used by Caltech.

The Division of Physics, Mathematics and Astronomy also conducts work in theoretical astrophysics, laboratory astrophysics, gravitational-wave physics, and infrared and submillimeter astronomy, as well as studies of the cosmic microwave background (CMBR). The radio astronomy group works in close collaboration with the optical astronomers in Pasadena. There is close cooperation between these groups and the students and astronomers interested in planetary physics and space science. Caltech is also among the leaders in the development of the National Virtual Observatory.

As a result of the cooperation possible over a broad range of astronomy and theoretical astrophysics, unsurpassed opportunities exist at Caltech for advanced study and research. Courses of study depend upon a broad and thorough preparation in physics, mathematics, and other relevant subjects; the faculty offers advanced...
Areas of Research

Both observational and theoretical astrophysics are actively pursued. Topics of current interest in optical and infrared astronomy include observational cosmology; spectroscopic and spectrophotometric studies of quasars and galaxies; studies of the dynamics and composition of galaxies and clusters, nebulae, and interstellar matter; planet and star formation; statistical studies pertinent to the structure of the galaxy; globular clusters; gamma-ray bursts; neutron stars; digital sky surveys; the physics of solar phenomena; and many others.

Research in planetary and solar system astronomy is pursued in cooperation with groups in the Division of Geological and Planetary Sciences.

The research in radio astronomy covers cosmology, via observations of the microwave background radiation, and the physical properties of galactic and extragalactic radio sources, including quasars, pulsars, radio galaxies, stellar envelopes, and the planets. The properties of the interstellar medium in our own and other nearby galaxies are investigated in spectroscopic studies of various atomic and molecular spectral lines.

Theoretical astrophysics is pursued not only in the astrophysics department, but in physics and geology as well, and at Caltech includes work on supernovae, pulsars, stellar structure and evolution, stellar and planetary atmospheres, interstellar and intergalactic matter, the physics of radio sources, nucleosynthesis, relativity, and cosmology.

Physical Facilities

The Rockefeller Boards provided, in 1928, for the construction by the Institute of an astronomical observatory on Palomar Mountain, equipped with a 200-inch reflecting telescope, 48-inch Samuel Oschin and 18-inch Schmidt wide-angle telescopes, and other auxiliary instruments, together with an astrophysical laboratory on the Institute campus. The 48-inch Samuel Oschin Telescope has made possible complete surveys of the northern sky. It is now being equipped with a major new digital camera, which will lead to a new generation of sky surveys. The Palomar telescopes have modern instrumentation and detectors designed for both optical and infrared wavelengths. The 200-inch Hale Telescope has been used to make many historical, fundamental discoveries ever since its commissioning in 1948, and through the present day. It is now also used for pioneering advances in adaptive optics.

A multipurpose solar equatorial telescope at an observing station at Big Bear Lake is now run jointly with the New Jersey Institute of Technology. The unique atmospheric conditions in this area make possible investigations of the fine structure of the solar atmosphere. Emphasis is on high-resolution spectroscopy, magnetography, and cinematography. A major effort is the study of solar oscillations.

The Owens Valley Radio Observatory is in a radio-quiet location 400 km north of Pasadena, near Big Pine, California. Its facilities include a 40-meter telescope, a six-element millimeter-wave synthesis interferometer array, a five-element interferometer for solar studies, and a 5.5-meter telescope dedicated to observations of the microwave background radiation. The high-precision 10-meter telescopes of the millimeter array are used at wavelengths of 1.3 to 4 mm to map the distribution of interstellar gas and dust in star-forming regions of our own and other galaxies. The array also enables detailed studies of the sun, planetary atmospheres, and the envelopes around evolved stars. These telescopes, which are equipped with very sensitive cryogenically cooled receivers and sophisticated signal-processing and data-recording systems, give Caltech staff and students the widest range of observing opportunities available at any university-related radio observatory in the world.

The Caltech 10-meter Submillimeter Observatory, located on Mauna Kea, Hawaii, was completed in 1986 for the study of the chemistry and physics of planets and cool regions of the interstellar medium.

A special purpose instrument for imaging the microwave background, located in Chile, is now operational.

The Keck Foundation funded the construction of two 10-meter optical-infrared telescopes, operated jointly with the University of California as part of an interferometer. Each Keck Telescope has four times the power of the Palomar 200-inch. They can be combined as an interferometer of unprecedented power. These are the two largest optical-infrared telescopes in the world, equipped with adaptive optics and state-of-the-art optical and infrared instrumentation, and they have made numerous fundamental advances in astronomy and cosmology.

BIOCHEMISTRY AND MOLECULAR BIOPHYSICS

Biochemistry and molecular biophysics has been established as an interdisciplinary program, at the interface of biology, chemistry, and physics, that seeks to understand the chemistry of life. Thus, biochemists and molecular biophysicists study the atomic structure and folding of biopolymers; their interactions with each other and with small molecules; and the roles of particular biopolymers and biopolymer assemblies in cellular physiology. The basic building block of life is the cell; the intellectual focus of modern biochem-
istry and molecular biophysics is to understand how individual parts interact to give cells their wide spectrum of functions. In particular, biochemistry and molecular biophysics addresses the principles through which the individual components of cells combine in an orderly self-association to produce their form, their function, and their dynamic behavior.

Areas of Research

General areas of research represented within the option include signal transduction, cell cycle, DNA and RNA structure and metabolism, control of gene transcription during development, electron transport proteins and bioenergetics, biological catalysis, macromolecular structure, membrane proteins, and biotechnology and biomolecular engineering. More specific examples of biological phenomena currently under study include the transduction of signals received by cell surface receptors into an appropriate response, as in chemotaxis or transmission of signals across synapses in the nervous system; the replication of DNA; the biochemical networks that control initiation and termination of cell division; the controlled transcription of DNA sequences in the genome into RNA and the processing of this RNA into mRNA and the subsequent translation into protein; the molecular mechanisms controlling the differentiation of precursor cells into specialized cells such as neurons, lymphocytes, and muscle cells; the mechanisms by which synaptic transmission in the brain is regulated during thinking and the formation of memories; the processes, driven by fundamental principles of chemical bonding and molecular energetics, by which a given linear sequence of amino acids folds into a specific three-dimensional structure in the appropriate cellular environment; how electrons move within a cell to accomplish the many redox reactions necessary for life; how light is harvested by photopigments and is perceived in vision; the function of integral membrane proteins in energy and signal transduction processes; and the mechanisms by which enzymes both efficiently and specifically catalyze biochemical interconversions. This fundamental understanding of the molecular basis of biological processes provides a powerful base for the development of applications in medicine, including biotechnology and rational drug design, and in the chemical industry, where nucleic acids, proteins, and their analogs are now being used in the development of chemical systems for novel applications, and where mutagenesis and selection systems are used to produce novel materials.
A comprehensive program of research and instruction in neurobiology has been formulated to span from molecular and cellular neurobiology to the study of animal and human behavior including the computational modeling of neural processes.

A new geobiology option is described in the Geological and Planetary Sciences section.

Physical Facilities
The campus biological laboratories are housed in six buildings: the William G. Kerckhoff Laboratories of the Biological Sciences, the Gordon A. Alles Laboratory for Molecular Biology, the Norman W. Church Laboratory for Chemical Biology, the Mabel and Arnold Beckman Laboratories of Behavioral Biology, the Braun Laboratories in Memory of Carl F and Winifred H Braun, the Beckman Institute, and the Broad Center for the Biological Sciences. They contain classrooms and undergraduate laboratories, as well as research laboratories where both undergraduate and graduate students work in collaboration with faculty members. Special facilities include rooms for the culturing of mutant types of Drosophila, a monoclonal antibody production facility, a fluorescence-activated cell sorter, scanning and transmission electron microscopes, a confocal microscope facility, a magnetic resonance imaging center, a transgenic mouse facility, a state-of-the-art microchemical facility for sequencing and synthesizing biologically important macromolecules, and a protein expression and purification center.

About 50 miles from Pasadena, in Corona del Mar, is the William G. Kerckhoff Marine Laboratory. This laboratory provides facilities for research in cellular and molecular biology using marine animals, and for collecting and maintaining these animals.

BIOTECHNOLOGY

Biotechnology is a growing area of interdisciplinary research with a long tradition at Caltech. It includes a wide range of research opportunities in the Divisions of Biology, Chemistry and Chemical Engineering, and Engineering and Applied Science. Areas of emphasis include the development and application of new methods and instruments for studying a spectrum of biological problems ranging from the structure, function, and chemistry of key macromolecules such as proteins and DNA to the imaging of cellular processes or the complex problems of neural systems. Other programs focus on the creation, study, and use of novel microorganisms and proteins, combining classical and molecular genetic approaches with modern chemistry and engineering science. New challenges in data analysis and molecular modeling bring together

- Microsensors for clinical and research applications;
- Biological and biomedical imaging;
- Metabolic and protein design and engineering;
- Principles of evolutionary design;
- Neural prostheses;
- Optical trapping and manipulation of molecules and particles;
- Biomechanics of the musculoskeletal system;
- Biomimetics (mechanophysicsiology of swimming, walking, undulating, and flying);
- Transport phenomena in biological systems;
- Robotic technology for minimally invasive surgery;
- Systems biology;
- Modeling of regulatory networks.

BIOLOGY

Recent dramatic progress in our understanding of the nature of life has revolutionized the science of biology. Applications of the methods, concepts, and approaches of modern mathematics, physics, chemistry, and information science are providing deep insight into basic biological problems such as the manner in which genes and viruses replicate themselves; the control of gene expression in cells; the regulation of cellular activity; the mechanisms of growth and development; and the nature and interactions of nerve activity, brain function, and behavior. Qualified experimental and computational biologists will find opportunities for challenging work in basic research as well as in medicine and in biotechnology.

Because of the eminent position of the California Institute of Technology in both the physical and biological sciences, students at the Institute have an unusual opportunity to be introduced to modern biology.

Areas of Research
Research (and graduate work leading to the Ph.D. degree) is chiefly in the following fields: biochemistry, biophysics, cell biology, developmental biology, genetics, immunology, molecular biology, structural biology, neurobiology, and virology. Biochemical methodology plays an important role in many of these fields, and there is extensive interaction with related programs in biochemistry within the Division of Chemistry and Chemical Engineering, notably the new biochemistry and molecular biophysics option.

The programs in cellular, molecular, and developmental biology are based upon approaches derived from biochemistry, biophysics, and genetics that offer new possibilities for expanded insight into long-standing problems. Neurobiology is a major area of emphasis within the Division of Biology. A comprehensive program of research and instruction in neurobiology has been formulated to span from molecular and cellular neurobiology to the study of animal and human behavior including the computational modeling of neural processes.

A new geobiology option is described in the Geological and Planetary Sciences section.
research in biology and chemistry with computer science and applied and computational mathematics. Research in these areas leading to the Ph.D. may be pursued by entry into one of the relevant graduate options in the divisions listed above. The interdisciplinary nature of biotechnology often includes course work and research collaborations that embrace more than one division. Each graduate option specifies the emphasis of the educational program and its degree requirements.

Excellent facilities for biotechnology research are available in each of the participating divisions. For example, the Beckman Institute provides extraordinary resources for development and application of new instruments and methods.

CHEMICAL ENGINEERING

The chemical engineering faculty teach and conduct research on fundamental chemical, biological, and transport processes and their application in understanding, designing, and controlling a broad spectrum of complex chemical, biochemical, and environmental processes. The faculty and students utilize their analytical skills and laboratory resources to study diverse processes and to synthesize new materials. The combination of engineering principles, chemistry, biology, physics, and mathematics that characterizes chemical engineering at Caltech enables students and faculty to contribute to the solution of a wide range of critical problems and to aid in creating new areas of science and technology.

Areas of Research
Many different research areas are offered to students seeking the degrees of Master of Science or Doctor of Philosophy in chemical engineering. Particular research fields emphasized in the department include

- **Biological Design and Engineering.** Engineering of proteins, metabolic pathways, genetic regulatory networks, and synthetic ecosystems by computational and laboratory evolution approaches.
- **Fluid Mechanics and Transport Processes.** Mechanics of polymeric liquids, microstructured fluids, colloidal dispersions, and suspensions and granular media. Transport in heterogeneous media.
- **Biomaterials.** Synthesis and properties of organic materials compatible for use in living systems.

- **Cellular Engineering.** Quantitative analysis and redesign of molecular events governing cell behavior.
- **Catalysis and Biochemistry.** Synthesis of molecular sieves and organic-inorganic hybrid materials. Synthesis of inorganic membranes for gas separations and catalysis. Biological routes to the synthesis of chemicals.
- **Plasma Processing of Semiconductors.** Pattern etching and deposition. Modeling and simulation of pattern-dependent effects. Chemical reaction dynamics of plasma-surface interactions.
- **Microplasmas.** Sources of reactive radicals and ions at high pressures. Micoreactors for gas conversion/pollutant destruction. Synthesis of nanocrystals. VUV-excimer radiation emitters.
- **Environmental Chemical Engineering.** Physics and chemistry of atmospheric gases and aerosols.
- **Aerosols and Colloids.** Nucleation and growth of particles. Particle formation and reactions. Structure and properties of colloidal dispersions.
- **Physics of Complex Fluids.** Structures, phase transitions, and dynamics of polymers, liquid crystals, surfactant solutions, and suspensions.

Physical Facilities
The chemical engineering laboratories, mainly housed in the Eudora Hull Spalding Laboratory of Engineering, are well equipped. The facilities include experimental reactors, computational facilities, NMR spectrometers, and numerous special research equipment for molecular simulations, DNA synthesis, and electronic, optical, and chemical measurements.

CHEMISTRY

Caltech’s chemistry program offers exciting opportunities for study and research in many areas of chemical science. Eminent faculty and strong programs are available in chemical synthesis, chemical dynamics and reaction mechanisms, theoretical chemistry, biochemistry, bioinorganic, bioorganic, and biophysical chemistry, materials chemistry, and molecular engineering. Active interaction
exists between chemistry and other disciplines at Caltech, especially applied physics, biology, chemical engineering, environmental engineering, geological and planetary sciences, and materials science. There is strong interest on the part of the faculty in both teaching and research, and the undergraduate and graduate programs are designed to encourage the greatest possible amount of freedom, creativity, and flexibility.

Areas of Research
Caltech has a long and continuing reputation for excellence in chemistry in the areas of molecular structure and the nature of chemical bonding. Much of the current research in chemistry is directed at establishing and manipulating the mechanisms of reactions of fundamental chemical and biological significance.

Programs in chemical physics emphasize studies of molecular dynamics and structure using techniques that include femtosecond lasers, molecular beams, single-molecule spectroscopy, and ion cyclotron resonance, while novel methods such as ultrafast electron diffraction and force-detected magnetic resonance are being developed and applied to systems of increasing complexity. In chemical biology, research focuses on fundamental issues relevant to biological electron transfer processes; the chemical basis of synaptic transmission by ion channels; analysis of the kinetics, thermodynamics, and mechanism of the sequence-specific ligand binding to DNA; the mechanism of glycosylation in biological systems; and mechanistic enzymology. Catalysis by transition metals represents a central area of research in the inorganic and organometallic areas. Current research interests include the uses of transition metal complexes as homogeneous and heterogeneous catalysts for polymer synthesis, solar energy conversion and storage, and methane and water oxidation. Reactions of molecules on surfaces are an important focus, especially on semiconductors.

In addition to the significant amount of synthetic chemistry involved in the above projects, several groups have chemical synthesis as a primary research goal. This research includes projects aimed at the synthesis of complex organic molecules of importance in biology and human medicine. These efforts include development of new and synthetically useful chemical transformations mediated by novel organic and transition metal-based catalysts. The division has an exceptional program in polymer science, with emphasis on the development of strategies and methodologies for the synthesis of designed polymers using chemical and biological-based approaches. On even larger molecular scales, powerful approaches are being pursued to fabricate, assemble, and utilize nanometer-scale structures.

The theoretical chemistry program ranges from fundamental studies of electron transfer to excited states and reaction dynamics of small molecules, to simulations of biological systems and materials. In these studies, theoretical techniques are being developed to provide detailed understanding of electron transfer processes, proton transfer reactions, energy randomization processes within molecules, and the dynamics of reacting systems. Computer simulations are addressing even more complicated systems, from solid-state materials to complex biomolecules.

Research in biochemistry and molecular biology within the chemistry division exists within the larger framework of biochemical studies at Caltech, and includes crystallographic and spectroscopic analyses of macromolecule structures; studies on the design, folding, and stability of macromolecules; the mechanisms of enzyme catalysis and allosteric transitions; interactions between proteins and nucleic acids; macromolecular assemblies mediating replication and transcription; the role of protein glycosylation in neurobiology; and mechanisms of ion and electron transport in biological membranes.

Physical Facilities
The laboratories of chemistry consist of seven units providing space for about 25 research groups, including 300 graduate students and postdoctoral research fellows. Crellin and Gates Laboratories house several research groups, the divisional instrumentation facilities, and the divisional administrative offices. Synthetic research groups occupy the Arnold and Mabel Beckman Laboratory of Chemical Synthesis and Church Laboratories. The Braun Laboratories and the Broad Center house biochemical groups and are shared with the Division of Biology. The Arthur Amos Noyes Laboratory of Chemical Physics, one of the major laboratories serving researchers of the division are located in the Beckman Institute.

CIVIL ENGINEERING

Civil engineering includes the research, development, planning, design, and construction associated with urban development, water supply, energy generation and transmission, water treatment and disposal, transportation, and space development. Dealing with the function and safety of such facilities as buildings, bridges, pipelines, dams, rivers, power plants, and harbors, it is concerned with the protection of the public against natural hazards such as earthquakes, winds, floods, landslides, water waves, and fires.

Recent advances in technology, the escalation of urban problems, and the exploration of space have broadened the applications
of civil engineering, increasing the scope of research. New problems have presented special challenges to the civil engineer well-trained in the fundamentals of his or her profession. For this reason, in the advanced study of civil engineering at the Institute, the application of basic scientific principles and mathematics is emphasized for the solution of engineering problems.

Areas of Research
Graduate work leading to advanced degrees lies chiefly in the following fields: structural engineering and structural dynamics; applied mechanics; earthquake engineering; soil mechanics and foundation engineering; finite element analysis; and environmental engineering (see also environmental science and engineering). In the past few years, graduate students and members of the faculty have pursued a variety of research programs, including the analysis of structures subjected to earthquakes and other dynamic loadings; optimal performance-based structural design; system identification and control of structures; structural health monitoring; the use of finite element methods for structural analysis; and seismic risk and structural reliability.

Students whose interests are in environmental problems may enroll for graduate degrees in either civil engineering or environmental science and engineering.

Physical Facilities
Civil engineering activities are housed in two buildings: the Franklin Thomas Laboratory, which contains the soil mechanics laboratory and centrifuge, the earthquake engineering research laboratory and library, and the vibration laboratory; and the W. M. Keck Engineering Laboratories, which contains the environmental science and engineering laboratories. Excellent computing facilities are available through the campus computing network and in the specialized computing centers of various research groups.

COMPUTATION AND NEURAL SYSTEMS

CNS is an interdisciplinary option that studies problems arising at the interface between molecular, cellular, neural and systems biology, electrical engineering, computer science, psychology, and cognition. The unifying theme of the program is the relationship between the physical structure of a computational system (synthetic or natural hardware), the dynamics of its operation, and the computational problems that it can efficiently solve. The creation of this multidisciplinary program stems from continuing progress on several fronts: the analysis of neuronal networks using single- and multi-unit recording techniques in behaving animals, functional brain imaging of subjects engaging in a range of tasks (from visual perception to moral decision-making and gambling), and powerful analytical and numerical methods to model and understand complex networks, from protein regulatory networks to the brain, as well as data flooding in from genomic analysis. Faculty in the program belong to the Divisions of Biology; Engineering and Applied Science; and Humanities and Social Sciences. They have an interest in developing conceptual frameworks and analytical approaches for tackling seemingly disparate problems that share a common deep structure at the computational level. Students in the program will partake of a wide-ranging curriculum that will promote a broad understanding of neurobiology, sensory psychology, cognitive science, computational hardware and software, and information theory.

Areas of Research
Areas of research include experimental and modeling studies of vision and the visual system on the basis of electrophysiology, psychophysics, and functional imaging techniques; cognitive psychology; the analysis of olfactory coding in insects and mammals; the theory of collective neural circuits for biological and machine computations; modeling and representation of physical objects for the general analysis of images; the neuron as a computational device; computational modeling and analysis of information processing in biochemical and neural networks; the design and use of synthetic macromolecules as computational devices; the study of evolution in natural and artificial systems; the study of the auditory system of birds; learning and plasticity in rodent and human medial temporal lobe; memory-related activity in the human hippocampus; visual motion perception, movement planning, attention, awareness, and consciousness in the primate brain using a combination of neurophysiological, psychophysical, and computer modeling techniques; multiunit recordings in behaving animals; neuroprosthetic devices and recording methods in humans; light and magnetic resonance imaging of cell lineages, cell migrations, and axonal connections in the forming nervous system; functional MRI imaging of cortical areas in humans and other primates; design and implementation of novel algorithms and architectures that enable efficient fault-tolerant parallel and distributed computing; and learning theory and systems, pattern recognition, information theory, and computational complexity.
Although computing is a ubiquitous tool in all areas of study and research at Caltech, computer science is directed at the theory and technology of computation itself. Computer science is the study of information, and of the structures that communicate, store, and process information. Whether these structures are expressed in hardware and called machines, in software and called programs, or in nature or society, the fundamental concepts are similar. The student of computer science at Caltech does not specialize along traditional lines that divide hardware and software, systems and applications, or theory and experiment. Rather, a unified approach to the design and analysis of computing structures is taken both in courses and in research.

Unlike the study of physical and natural sciences, the objects of study by computer scientists are artificial systems; that is, structures that are purposefully designed, taking into account constraints imposed by our building blocks in the physical world and fundamental requirements of the computation itself. Thus, design assumes a role equal in importance to analysis, and is a term found frequently in the curriculum and research. Design is not only a creative activity but is also formal and systematic. Managing the great complexity of useful systems requires that one represent computations in a way that is amenable to mathematical treatment, as well as to implementation.

Areas of Research
Research and advanced courses leading to the Ph.D. degree in computer science are concentrated in the following areas: VLSI systems; quantum and molecular computation; computer architecture; parallel and distributed computation; theory of computation; programming languages; semantics; programming methods and correctness; information theory; machine learning and computational finance; computer vision; computer graphics; computer-aided design; and networking. Research projects frequently involve work in several of these areas, with both the theoretical and experimental aspects, as well as connections with such fields as mathematics, physics, biology, economics, and electrical engineering.

Physical Implementation of Computations. Computations must ultimately be implemented in some physical medium (e.g., semiconductor electronics, DNA self-assembly, quantum states of elementary particles, molecular electronics). Developing robust disciplines, abstractions, and methodologies that allow the design of reliable computing substrates has been a focus of the department since its inception. Caltech has been a leader in the development, engineering, and design of very large scale integrated (VLSI) circuits, and this remains a core part of the research and education. Beyond VLSI, efforts are under way to understand quantum, biomolecular, and molecular electronic substrates as possible media for future computing machines. As was the case with semiconductor electronics, Caltech computing can draw on the world-class expertise of its biology, physics, and chemistry departments as it tackles the many challenging opportunities that these new substrates present.

Systematic Design. A key theme in the Caltech computer science department is systematic design of systems at all levels. This shows up in the design of numerical algorithms for physical simulation and computer graphics, design of concurrent and distributed systems, abstractions for physical computing substrates, design of learning systems, the design of programming languages, the automated optimization of computations for both software and hardware implementation, and the control and optimization of networks. The success of computer systems has allowed the building of systems of unprecedented scale and complexity. These systems can only be understood and managed if we are careful to contain the complexity involved. We can only hope to create and optimize efficient computing artifacts by systematically defining and exploring their design space. This does not say that system design is not a creative endeavor, but rather that careful design allows us to expose the places where creativity is most needed, and to carefully assess the impact of new ideas and techniques.

Concurrency. The physical world is highly parallel. Caltech computer science has embraced concurrency as a fundamental feature of computing systems from its inception. Within the department, parallelism is a theme at all levels, from physical circuits, through tightly coupled concurrent multiprocessors, through distributed systems, up to Internet-wide computing systems and beyond. Disciplines and systematic design for defining and managing the potentially complex interactions in parallel systems is a key focus.

Robust Modeling of Physical Systems. Caltech computer science also has a unique focus in developing rigorous and robust models of the physical world. These models are mathematically and physically sound, and serve as a basis for computer graphics and vision research, as well as the simulation of mechanical, optical, and biological systems.

Theory. A key component of systematic design is a strong theoretical understanding, which provides a basis for synthesis, analysis, and verification. The theory of computation focuses on deep mathematical problems, many of which have substantial technological impact. Theory is not relegated to a single group at Caltech, but rather forms an integral part of all disciplines (learning, VLSI, systems, graphics, programming languages, cryptography, etc.). As such, it has a strong connection to actual practice in each domain. Theory in computer science at Caltech...
includes traditional fields such as complexity analysis and semantics, and also theories of numerical computation, optimization, probability, and game theory.

- **Interdisciplinary Research**: Computation enables better control and understanding of the physical world. These are ubiquitous themes at Caltech. We’ve already noted the intimate way in which computer science interacts with the physical sciences to physically build computations. Computer simulations, modeling, and analysis are now key enablers, allowing all fields of science to advance rapidly. Modern mechanical and aeronautical systems are enabled by vast computational processing for sensing and control. Further, insights into computational management of information helps us understand information processing issues in natural systems (e.g., cells and neurons) and build hypothetical models that advance our understanding of natural cognition. Economic analyses play an important role in the design of computing systems and, in addition, research on information systems impacts business and economics. These relations provide many opportunities for scholars in computer science to work closely with colleagues throughout Caltech. The centers for information science and technology facilitate interdisciplinary research (see http://www.ist.caltech.edu).

Physical Facilities

The computer science department has excellent computing facilities ranging from high-performance workstations to multiprocessors and supercomputers. The inventory of computers is upgraded frequently, and students have easy access to state-of-the-art equipment. The department has two semi-immersive 3-D displays and numerous graphics workstations, and maintains VLSI laboratories equipped with complete facilities for the construction and testing of experimental systems. The department maintains several laboratories open to students and has a wide collection of software for a range of applications. The Institute libraries maintain a large collection of journals in computer science and related fields.

CONTROL AND DYNAMICAL SYSTEMS

Some of the most exciting interactions between mathematics and engineering are occurring in the area of analysis and control of uncertain, multivariable, and nonlinear dynamical systems. While changing technology has made control and dynamical systems theory increasingly relevant to a much broader class of problems, the interdisciplinary nature of this area means that it no longer has a natural home exclusively or even primarily within any one of the traditional engineering disciplines. The CDS option is designed to meet the challenge of educating students both in the mathematical methods of control and dynamical systems theory and their applications to engineering problems.

Automatic control is an enormously successful field that affects every aspect of our lives. A combination of technological developments, economic pressures, and research advances has promoted control into a central position in technology, and over the next several decades, the impact of automatic control systems will continue to grow. The applications we have seen so far—such as cheap and fast computer disk drives, active vehicle suspension control, fly-by-wire aircraft, highly integrated manufacturing facilities, and manned and unmanned space systems—are only the beginning of this trend.

The rapid development of dynamical systems theory as an intellectual discipline over the past 10 years has been equally striking. Stimulated by the discovery of the phenomenon of “deterministic chaos,” the “dynamical systems approach” has been adopted in a variety of diverse engineering disciplines (e.g., chemical, mechanical, electrical, civil, and aeronautics), as well as the physical, biological, and social sciences. At the same time, dynamical systems continues to enjoy strong links with pure and applied computational mathematics. While research in both control and dynamical systems is inherently interdisciplinary and crosses many traditional engineering and scientific boundaries, their relationship is much deeper. As theoretical disciplines, they are moving together rapidly. The mathematical background required to do research in either control or dynamical systems is nearly identical and can be difficult to obtain within traditional curricula in engineering and mathematics. The CDS option provides a coherent and complete graduate curriculum with corresponding research opportunities, both theoretical and applied.

Areas of Research

Theoretical research is conducted in all aspects of control, with emphasis on robustness; multivariable and nonlinear systems; optimal control; decentralized control; modeling and system identification for robust control; control of Hamiltonian and Lagrangian systems; and control of nonholonomic mechanical systems. Techniques from operator theory, differential geometry, dynamical systems, and computer science are combined to study control problems in a wide variety of areas. A central theme is the role of uncertainty and robustness, and the development of a unified theory for modeling, system identification, analysis, and synthesis of nonlinear control systems.

The CDS research program in nonlinear dynamics has two components: one mathematical and the other driven by specific areas of applications in science and engineering. The main thrust of the mathematical research is to develop mathematical methods
for studying the dynamics of the types of nonlinear dynamical systems that arise in science and engineering. Active areas include developing methods for detecting and describing chaotic phenomena; local and global bifurcation theory; homoclinic and heteroclinic motions; Hamiltonian dynamics; geometric mechanics and mechanical systems with symmetry; phase space transport theory; geometrical dynamical systems theory for infinite dimensional systems; computational methods for visualizing higher dimensional phase space structures; and statistical methods for the description of chaotic dynamics.

Active application areas at Caltech include complex systems in networks and biology; multiscale modeling and simulation applied to biological systems, fluids, and solids; vortex structures in complex fluid flows; mixing and transport processes in fluids; classical dynamics of molecules; phase space structure and mechanisms that enhance and inhibit transport and energy flow; turbomachines and complex combustion systems; nonlinear flight dynamics for highly maneuverable aircraft; robotic locomotion and manipulation; and the design of autonomous systems.

ELECTRICAL ENGINEERING

Electrical engineering at Caltech emphasizes both electronics and systems. Closely allied with computation and neural systems, applied physics, computer science, and control and dynamical systems, it offers students the opportunity for study and research, both theoretical and experimental, in a wide variety of subjects, including wireless systems, quantum electronics, modern optics, biophotonics, solid-state materials and devices, power electronics, control theory, nanoscale systems, signal processing, data compression, and communications.

The Lee Center for Advanced Networking sponsors a wide range of long-term research efforts in ubiquitous communications and computing technologies. Several electrical engineering faculty participate, and faculty from computer science, applied physics, control and dynamical systems, and economics are also involved. More information is available at http://lee.caltech.edu.

Areas of Research and Physical Facilities

Substantial experimental laboratory facilities, housed mainly in the Moore Laboratory of Engineering, are associated with each of the research fields described below.

1. **Quantum Electronics and Optical Communication** (Yariv)—

 Research projects in progress include the generation and control of ultrashort pulses, integrated optoelectronic semiconductor circuits, semiconductor injection lasers, molecular beam epitaxy growth of submicron GaAs/GaAlAs structures for opto-

 electronics and electronics, ultrafast (\(<10^{-12}\)s) semiconductor lasers, theoretical and experimental quantum optics–light squeezing, studies of noise and pulse propagation in optical fibers, and theoretical and experimental studies of new devices and phenomena involving fiber grating, with special emphasis on optical filters for wavelength division multiplexing in optical fiber communication. A new direction being launched is to develop the use of semiconductor lasers in optical phase-lock loops for phase demodulation of optical beams and for a variety of phase-coherent applications in optical communications.

2. **Lasers and Guided Waves** (Bridges)—Experimental and theoretical studies in optical-, submillimeter-, and millimeter-wave technology and applications; EHF electro-optic modulation, dielectric waveguides and fiber optics, gas lasers; optical communication and measurement systems. Having retired in 2002, Dr. Bridges is not accepting new graduate students.

3. **Communications and Signal Processing** (Effros, Hassibi, Low, McEliece, Vaidyanathan)—Theoretical and computer experimental work in a wide range of information, communication, and signaling problems. Current research emphases are in error control coding, modulation, and capacity calculations for channels that occur in communication networks, multiuser mobile and cellular radio, and deep-space communications; network communications, including general network reliability studies and ATM networks in particular; access, spectral sharing, dynamic channel allocation, and multiuser detection in wireless systems; multiple-antenna systems and space-time codes; information content and data compression; applications of neural networks to communication and signal processing problems; traffic modeling, routing, and network architectures for mobile services and ISDN; and design and simulation of single-rate and multirate digital filters and filter banks to minimize the number of computational operations for a given accuracy. Digital filter banks, subband coding, wavelet transforms, multidimensional multirate signal processing. Possibilities exist for joint work with microsystems, wireless communication, digital signal processing, and data compression.

4. **Control** (Doyle)—Theoretical research is conducted in all aspects of control, with emphasis on robustness, multivariable and nonlinear systems, and optimal control. Theoretical developments are tested using the latest in computer and experimental facilities in a wide variety of application areas. Opportunities on campus, at Caltech’s Jet Propulsion Laboratory, with industrial sponsors, and at NASA laboratories include control problems associated with large flexible space structures, refinery systems, flight control, robotics, control of unsteady flows, and various other aerospace and process control applications.
5. **Wireless Engineering** (Hajimiri, Rutledge)—Circuits and system design for wireless communication using integrated circuit technology, including analysis and design of communication building blocks, such as monolithic low-noise amplifiers (LNA), active and passive mixers, local oscillators and frequency synthesizers, frequency dividers and multipliers, power amplifiers, integrated filters, intermediate frequency amplifiers, and baseband digital signal processing. These building blocks are used in the design of complete transceiver circuits with new architectures for various applications. The group also has interests in devices for radar, remote sensing, broadcasting, and industrial power from 1MHz to 1THz. Current projects include phased-array radars, quasi-optical amplifiers and oscillators for millimeter-waves, multiplier grids for 1THz and high-frequency Class-E amplifiers. For more information see http://mmic.caltech.edu.

6. **Learning Systems and Computational Finance** (Abu-Mostafa)—The Learning Systems Group at Caltech studies the theory, algorithms, and applications of automated learning. The theory of learning uses mathematical and statistical tools to estimate the information (data and hints) needed to learn a given task, and the computational aspects of learning. The algorithms deal with learning mechanisms in different models, such as neural networks, and different learning protocols. The applications of learning are very diverse. The group has emphasized computational finance applications, where learning is used in financial forecasting, risk analysis, and derivative pricing. Other recent applications include pattern recognition and medical diagnosis.

7. **Optical Information Processing** (Psaltis)—Research to develop optical techniques and devices for information processing. Current areas of interest include holography, optical networks, optical memories, optical sensors, image processing, and photorefractive materials.

8. **Microsensors and Microactuators** (Tai)—Silicon micromachining technology is used to fabricate miniature solid-state microelectromechanical devices. Current research includes pressure sensors, flow sensors, IR sensors, accelerometers, microphones, micromotors, microvalves and micropumps, neuro-probes, and microsurgical tools. Device research requires broad exercise covering physics, design, fabrication, and testing. Hands-on training is especially emphasized in the Micromachining Laboratory.

9. **Digital Signal Processing** (Hassibi, Vaidyanathan)—Theoretical and computer oriented work on a wide variety of problems in digital signal processing. Multirate systems and filter banks, wavelets, filter design, quantization in signal processors, adaptive signal processing, statistical signal processing, robust filtering, multidimensional multirate systems, and wavelet transforms. Digital filter banks, digital communication systems, multidimensional multirate signal processing, Image processing, digital halftoning, and denoising.

10. **Computational Vision** (Perona)—Theoretical and experimental research on the computational principles underlying vision processes. Psychophysics and modeling of the human visual system. Theory and applications of computer vision. Current emphasis on visual object recognition; vision-based human-computer interfaces; perception and modeling of human motion and activities; 3-D photography, perception, and modeling of shapes. Areas of collaboration include learning theory, computer graphics, neurophysiology, psychology, applied probability, robotics, geometry, and signal processing.

11. **Nanofabrication and Design of Ultrasmall Devices** (Scherer)—High-resolution lithography and dry etching allow the miniaturization of structures to below 10 nanometers. Using these techniques, ultrasmall optical, magnetic, and fluidic structures can be constructed. Current research includes the design and fabrication of nanocavity lasers; photonic-crystal waveguides and modulators; nanomagnet arrays; nonmechanical oscillators; and microfluidic pumps, valves, and networks on biochips.

12. **Distributed Information Systems** (Bruck)—Theoretical and experimental research on a number of fundamental issues related to novel algorithms, protocols, and architectures that enable the creation of reliable and scalable distributed computing, communications, and storage systems. Past projects include RAIN (Reliable Array of Independent Nodes) that focused on creation of reliable space-borne systems in collaboration with NASA/JPL. This RAIN technology resulted in a spin-off called Rainfinity (www.rainfinity.com) that is focusing on creating software for Internet reliability. The current key project in the lab focuses on fundamental issues associated with the infrastructure for wireless Internet. The project called MANGO (Mobile Array of Network Gateways) is part of the Caltech’s Lee Center for Advanced Networking. More information can be found at http://paradise.caltech.edu.

13. **Data Compression** (Effros)—Theoretical analysis and practical design of algorithms for efficiently representing information for communication, storage, and processing. Current work focuses on the special challenges introduced by emerging applications such as network communication systems. Examples of areas of investigation include the theory and practice of optimal data compression for systems containing multiple encoders, multiple decoders, or both, and adaptive or universal compression systems. Results range from theoretical performance bounds to practical coding algorithms. Tools useful to these investigations include information theory, probability theory, graph theory, optimization, and signal processing. Possible areas of collaboration include networking, distributed...
14. Integrated Circuits (Hajimiri)—Analysis, design, simulation, verification, and testing of integrated circuits for various applications, such as high-speed and wireless communications, wireless local-area networks, highly stable frequency sources, distributed integrated circuit design techniques for ultrahigh-speed silicon-based circuits, system and circuit design for multiband systems, single-chip spectrum analyzers, performance limitation of A/D and D/A data converters, and robust circuit design techniques. Projects also include modeling of the effect of substrate and supply noise in large integrated circuits and design techniques to minimize their effect, examination of integrated passive structures and their fundamental performance limits, and noise modeling in amplifiers, mixers, and oscillators. More information can be found at http://www.chic.caltech.edu.

16. Wireless Communications (Hassibi)—Theoretical research on link, system, and network aspects of wireless communications. Current areas of interest include time-varying channel modeling; capacity computations for wireless channels; channel estimation, identification, and equalization; multiple-antenna systems and diversity techniques; space-time codes; modulation techniques; channel access and spectral sharing through various TDMA, FDMA, CDMA, and hybrid techniques; multiuser detection and interference cancellation; dynamic channel allocation; models and performance analysis of wireless networks; ad hoc networks; signal processing for wireless. The research encompasses various areas of information theory, coding theory, stochastic processes, statistical and adaptive signal processing, and network theory.

17. Biophotonics (C. Yang)—Experimental research on optical imaging and extraction of information from biological targets by exploiting the different interaction mechanisms of light with biological materials. Primary research interest focuses on the application of novel interferometric and nonlinear optical processes for nondestructive biomedical imaging. One present objective research is to use low-coherence interferometric phase technique to probe the small (nanometer-scale) and slow (nanometer/second) dynamics of living cells, and to study the physical response of cells to subtle changes in their environment and the physical manifestation of cell-to-cell interactions and synchronizations. The other major research focus is on the development of the next generation of optical coherence tomography systems that will have contrast agent imaging capability, greater sensitivity, and improved acquisition rates.

ENVIRONMENTAL SCIENCE AND ENGINEERING

This interdisciplinary graduate program is concerned with earth system science and engineering. Complete information is available at http://www.ese.caltech.edu.

At the heart of the ESE program are three core areas of research expertise: environmental physics, environmental chemistry, and environmental biology. Research and instruction emphasize basic scientific studies that underlie new solutions to challenging environmental problems from atomic to global scale. These include urban, regional, and global air quality; water supply and water quality control; hazardous waste treatment; microbial ecology; and global environmental and climate change.

Among the academic disciplines central to the program are atmospheric and aquatic chemistry; environmental fluid mechanics; environmental and geochemical microbiology; dynamic meteorology; oceanography and hydrology; aerosol physics and chemistry, chemical reaction engineering, and chemical kinetics and photochemistry. Courses are offered in the environmental science and engineering program and in other related programs of the Institute. Faculty members participating in this interdisciplinary program are from the Divisions of Engineering and Applied Science, Chemistry and Chemical Engineering, and Geological and Planetary Sciences.

Areas of Research

Examples of recent and current research are theoretical and experimental studies on trace elements and individual chemical compounds in the environment; chemistry of the mineral-water interface; coagulation and filtration of particles; advanced oxidation processes for water treatment; biogeochemical cycling of arsenic; disinfection of water; aerosol chemistry and physics; cloud chemistry and global climate change; measurement of free radical species in the stratosphere and upper troposphere; photochemistry of important trace gases; novel treatment processes for hazardous materials; e.g., ultrasound, pulsed-power plasmas, semiconductor photochemistry; environmental photochemistry; oxidation processes in aqueous systems; pollutant and particle transport in alluvial streams and groundwaters; studies of the emissions sources and fate of organic chemicals in the atmosphere; regional air pollution...
modeling and control; global-scale modeling of tropospheric chemistry and the carbon cycle; marine geochemistry; geochemical studies of paleo ocean circulation; trace-gas geochemistry; microbiology of arctic in natural waters; microbiology of iron-reducing organisms; termite-microbe symbiosis and its impact on trace-gas dynamics; cultivation of novel microbes with novel properties; antagonistic interactions among competing soil microbes.

Physical Facilities

The laboratory experimental work in environmental science and engineering is carried out across the Caltech campus with a wide variety of modern instrumentation in the various laboratories described below.

The atmospheric chemistry and aerosol laboratory includes a state-of-the-art facility located on the roof of the Keck Laboratory that has been specially designed for studies of the photochemical reactions of gaseous and particulate pollutants. Dual 28 m³ indoor irradiated reaction chambers are used for direct simulations of atmospheric conditions using carefully prepared mixtures of hydrocarbons, nitrogen oxides, and aerosols. Both gas-phase chemistry and the formation of aerosol particles are probed with this system.

Analytical instrumentation includes monitors for major gas-phase trace gases, gas chromatography, gas chromatography with mass spectrometry, and the resources of the Environmental Analysis Center for detailed chemical analysis of gas and aerosol samples. Measurements of aerosol particle formation and growth in the smog chamber experiments and in field studies are performed using the scanning electrical mobility spectrometer, a fast-response high-resolution particle-sizing instrument developed at Caltech, along with more conventional particle measurement techniques (optical particle counters, cascade impactors, condensation nuclei counters, and filter samplers). A novel aerosol mass spectrometer is used for molecular speciation of aerosols.

Flow reactors are used for controlled studies of nucleation processes, and to probe the dynamics of agglomerate aerosols. Equipment is available sufficient to conduct field experiments involving the measurement of atmospheric particulate matter concentration, chemical composition and size distribution, and gaseous pollutant concentration, simultaneously at up to 10 monitoring sites.

Caltech, in conjunction with the Naval Postgraduate School in Monterey, California, operates the Center for Interdisciplinary Remotely Piloted Aircraft Studies. This center operates research aircraft for atmosphere science studies, including a Twin Otter aircraft instrumented to carry out state-of-the-art measurements of atmospheric aerosol and cloud properties and composition. Caltech faculty and graduate students regularly participate in large, international field programs in atmospheric chemistry and aerosols using the aircraft available in the Center.

The environmental chemistry and aquatic chemistry laboratories and the Environmental Analysis Center are equipped for chemical analysis by electrochemistry, plasma emission mass spectrometry, gas chromatography, high-performance liquid chromatography, fluorescence spectroscopy, infrared spectrometry, gas chromatography–mass spectrometry (GC-MS), liquid chromatography–mass spectrometry (LC-MS), high-resolution MS/MS/MS, ATR-FTIR, electrospray mass spectrometry, supercritical fluid extraction (SCF/MS), multicomponent UV-visible spectrophotometry, electrophoresis chromatography, gradient-elution ion chromatography, gel permeation chromatography, total organic carbon analysis, and, for physical characterization of aqueous particles by light scattering, electrophoresis and electrical particle size analysis. The Environmental Analysis Center operates 14 mass spectrometry systems.

The atmospheric photochemistry laboratory has a number of lightsources and detectors for investigation of atmospheric chemistry. Instrumentation development activities include design of optical and mass spectrometers for environmental analytical chemistry.

The environmental microbiology laboratory includes a facility for the preparation of bacterial media, as well as equipment for the isolation, cultivation, and physiological characterization of fastidious and anaerobic microbes, DNA isolation and manipulation, DNA sequence data manipulation and analysis, protein purification and enzyme assays, and culture field analyses. In addition, access is available to several electron microscope facilities on campus, as well as the oligonucleotide probe synthesizer and the microprotein sequenator.

The option provides students with access to scientific computing and word processing through various departmental and personal computers and advanced supercomputers operated by the Institute.

GEOL OLOGICAL AND PLANETARY SCIENCES

Students and faculty in the Division of Geological and Planetary Sciences study the earth and planets to understand their origin, constitution, and development, and the effect of the resulting physical and chemical environments on the history of life, and on humanity. The approach to these problems relies strongly on the basic sciences. Programs of study and research are pursued in environmental science and engineering, geology, geobiology, geochemistry, geophysics, and planetary science. The curriculum is flexible so that students with degrees in biology, chemistry, engineering, or physics may carry out graduate work within the division. Interdisciplinary studies are encouraged and students may carry out
Sources for field study and research in the earth sciences in Southern California are excellent. A great variety of rock types, geologic structures, active geologic processes, physiographic forms, and geologic environments exist within convenient reach of the Institute. The relatively mild climate permits field studies throughout the year; consequently, year-round field work is an important part of both the educational and research programs. There are active field programs in diverse areas in North America and throughout the world.

Physical Facilities

The division is housed in three adjacent buildings, which are well equipped for modern instruction and laboratory work. They contain several comfortable seminar rooms and the library as well as student and faculty offices. Numerous computers are distributed throughout the division, including a facility for geographic information systems, remote sensing, and 3-D modeling. There is an analytical facility, which includes an electron microprobe and a scanning electron microscope. Rock and mineral collections and sample preparation areas are available. There are modern laboratories for the chemical analysis of solids, liquids, and gases. A variety of mass spectrometers (electron impact, thermal ionization, laser ablation, and inductively coupled plasma) provide analyses at the trace and ultratrace levels. Optical, infrared, and Raman spectroscopies are available for the characterization and analysis of samples. State-of-the-art tunable laser spectrometers are available for the study of gas phase and surface processes of importance in cosmochemical and geochemical environments. This facility is used to study the mechanisms of chemical reactions that govern the formation of the protosolar nebula and the earth’s upper atmosphere.

Laboratories for experimental petrology contain high-temperature furnaces and presses for work up to 25 GPa. In addition, there is a laboratory for the study of the behavior of rocks and minerals and their elastic constants in the pressure and temperature environments of planetary interiors. This includes a shock-wave laboratory for studying ultrahigh-pressure equations of state and shock effects. Cooperation with other divisions on campus provides access to additional instrumentation for sample preparation and analysis; see the Catalog sections for materials science and environmental science and engineering.

A laboratory for molecular geobiology specializes in the culturing and the biochemical and genetic study of anaerobic bacteria. A sensitive magnetometer facility is designed for the study of both biomagnetism and paleomagnetics.

The Seismological Laboratory of the Institute is housed in the Seeley G. Mudd Building. This has excellent computer facilities and maintains a seismological observatory, which includes the Kresge Laboratory, located about three miles west of the campus on crystalline bedrock, affording a firm foundation for the instrument piers and tunnels. The Seismological Laboratory carries on a vigorous program of geophysical research and education and is headquarters for a modern 200-station broadband array called TriNet. This array provides an excellent research facility for the study of earthquakes and earth structure.

The Jet Propulsion Laboratory, NASA’s lead center for planetary exploration, is located seven miles from campus and is administered by the Institute. Students and faculty participate in JPL activities through joint research, instrument development, mission
operations, and data analysis. Planetary science minicomputers and image processing systems are linked, through the campus network, to the Image Processing Laboratory at JPL and to supercomputers across the country. In addition, Caltech owns and operates several optical and radio observatories that are used partly for planetary research. Active programs of planetary studies are pursued at the Owens Valley Radio Observatory, Palomar Mountain, and the Keck Telescopes.

HISTORY AND PHILOSOPHY OF SCIENCE

The program in history and philosophy of science is devoted to the study of the historical evolution and philosophical underpinnings of the physical and biological sciences. Work in history and philosophy of science may be pursued as an undergraduate option, a graduate minor, or on a course-by-course basis.

Historical research in the program includes the origins of experimental practice, the social and institutional contexts of science, the origins and applications of quantitative methods, specific developments since antiquity in physics, biology, and chemistry, as well as biographical and comparative studies. Philosophical research in the program deals with issues in causation, explanation, scientific inference, the foundations of probability and decision theory, philosophy of mind, psychology and neuroscience, and scientific fraud and misconduct.

HUMANITIES

English at Caltech spans the major periods of American and British writing. Students can pursue interests ranging from Shakespeare and a survey of drama to romantic and modern poetry; from early fiction to the postmodern novel.

History at Caltech examines the Western and non-Western past to understand the evolution of culture, science, institutions, and behavior. Courses span the medieval, Renaissance, and modern periods; the United States, Europe, and Asia; and special topics such as radicalism and demography. In certain courses, quantitative methods drawn from the social sciences are applied to historical studies.

Philosophy is concerned with the most fundamental issues involving the nature of the world and of human knowledge, values, and judgment. At Caltech, particular emphasis is placed on philosophy of the natural and social sciences, scientific inference, moral and political philosophy, and philosophy of mind, psychology, and the neurosciences. Members of the faculty have a variety of other interests, including philosophical logic, moral psychology, and the history of philosophy. Courses in English, history, and philosophy are given at both introductory and advanced levels.

A variety of courses in classical and modern European languages and in music and art history are available. Art history classes make use of the resources of the Huntington Library, Art Collections, and Botanical Gardens; the Los Angeles County Museum of Art; and other museums in the area.

Areas of Research

The English faculty, interested in new approaches to studying their subject, engage in research into the relationships between literature and the pictorial arts, literature and history, and the material production of literature.

Research in history covers a wide range of historical fields and methodologies. Topics include an examination of the development of racial attitudes and behavior in the 19th-century United States; the history of the physical and biological sciences and of science in relationship to society; history and film; and political and economic development in early modern Europe. A number of faculty carry out research and teaching in the interrelated subjects of science, ethics, and public policy.

Research in philosophy includes work in philosophy of science, philosophy of mind, history of philosophy, ethics, and political philosophy.

INDEPENDENT STUDIES PROGRAM

Independent Studies is an educational alternative for undergraduates whose goals cannot be satisfied with a normal undergraduate option. The student gathers a three-person faculty committee, representing at least two divisions of the Institute, and chooses his or her own scholastic requirements under this committee’s supervision. Approval must also be obtained from the Curriculum Committee, a standing committee of the faculty. The independent studies program has no facilities of its own. Areas of study and research may be selected from any part of the Institute. (For a complete description see page 214.)
MATHEMATICS

Areas of Research

Students in mathematics have the opportunity to work in many fields of current research. The main active areas of research by the faculty include the following:

- **Algebra.** Finite group theory, algebraic group theory, representation theory, symmetric functions, algebraic K-theory.
- **Algebraic Geometry.** Hodge theory, Calabi-Yau varieties, arithmetic geometry.
- **Analysis.** Classical real and complex analysis, harmonic analysis, functional analysis and operator theory, orthogonal polynomials; complex, smooth, and random dynamical and Hamiltonian systems, fractals, integrable systems, partial differential equations.
- **Combinatorics.** Combinatorial designs, matrix theory, and coding theory.
- **Geometry and Topology.** Low-dimensional topology, hyperbolic geometry, Lie groups, and ergodic theory; applications to number theory, group actions on homogeneous spaces, geometric group theory, and foliations; symplectic geometry and topology, their applications to mathematical physics.
- **Mathematical Logic.** Set theory, and its interactions with analysis and dynamical systems.
- **Mathematical Physics.** Schrödinger operators, random matrices.
- **Mathematical Statistics.** Sequential analysis, decision theory.
- **Number Theory.** Algebraic number theory, automorphic forms, Galois representations, and L-functions.

Physical Facilities

Research by the faculty, graduate students, and a few advanced undergraduates is conducted in the W. M. Keck Laboratory and the Steele Laboratory. Material-preparation facilities include equipment for physical vapor deposition under ultrahigh vacuum conditions, shock-wave consolidation of powders, melting and rapid solidification, equipment for the processing of ceramic powders, and high-energy ball milling. Facilities for the characterization of materials include an extensive array of X-ray diffraction instruments including a single crystal diffractometer, three X-ray powder diffractometers with high-performance, position-sensitive detectors, impedance spectrometers for transport and dielectric measurements, Mössbauer spectrometers, differential scanning calorimeters and differential thermal analyzers, thermogravimetric analyzers, and several test systems for the measurement of mechanical properties. A microscopy facility has been built around a Philips EM 430 300-keV transmission electron microscope with high resolution and analytical capabilities. Another analytical 120-keV transmission electron microscope is dedicated to materials research. In addition to the equipment within materials science, a wide range of mechanical and microstructural characterization facilities are available elsewhere at Caltech.

MATERIALS SCIENCE

Materials scientists study relationships between the properties of materials and their internal structure, and how this structure can be controlled. The field of materials science at the California Institute of Technology emphasizes fundamental issues in metals, oxides, semiconductors, ceramics, and composites. Additional faculty in electrical engineering, applied physics, and chemistry are also concerned with semiconductors and superconductors. Work in polymers is carried out in aeronautics, chemistry, and chemical engineering.

Areas of Research

The current areas of research by the materials science faculty include a wide variety of nontraditional materials, many far removed from their equilibrium thermodynamic states. Examples of such materials include metallic glasses, metal-matrix composites, energy-storage materials, nanocrystalline materials, proton-conducting solid acids and perovskites, materials for electronic devices, and ceramic-metal composites. The physical characteristics of interest span a wide range of mechanical, thermodynamic, electrical, and electrochemical properties. Materials science is a cross-disciplinary field, and graduate students in the materials science option can perform their thesis research with a supervisor or cosupervisor in a different option at Caltech.

Physical Facilities

Research by the faculty, graduate students, and a few advanced undergraduates is conducted in the W. M. Keck Laboratory and the Steele Laboratory. Material-preparation facilities include equipment for physical vapor deposition under ultrahigh vacuum conditions, shock-wave consolidation of powders, melting and rapid solidification, equipment for the processing of ceramic powders, and high-energy ball milling. Facilities for the characterization of materials include an extensive array of X-ray diffraction instruments including a single crystal diffractometer, three X-ray powder diffractometers with high-performance, position-sensitive detectors, impedance spectrometers for transport and dielectric measurements, Mössbauer spectrometers, differential scanning calorimeters and differential thermal analyzers, thermogravimetric analyzers, and several test systems for the measurement of mechanical properties. A microscopy facility has been built around a Philips EM 430 300-keV transmission electron microscope with high resolution and analytical capabilities. Another analytical 120-keV transmission electron microscope is dedicated to materials research. In addition to the equipment within materials science, a wide range of mechanical and microstructural characterization facilities are available elsewhere at Caltech.

MECHANICAL ENGINEERING

Mechanical engineering at Caltech concerns itself with the boundaries between traditional disciplines of science and engineering in order to develop new understanding and advanced technology to address contemporary problems. Mechanical engineering encompasses three broad areas: mechanics (including active materials, fracture mechanics, and mechanics of materials), mechanical systems (including control and analysis of dynamic systems, engineering design of electromechanical systems, kinematics, optimization,
robotics, and structural design), and fluid and thermal systems (including acoustics, cavitation, chemical vapor deposition, combustion, fluid flow, heat and mass transport, multiphase and multicomponent flows, propulsion, and turbulence). These areas are applied to a rich diversity of problems including bioengineering, control of aircraft engines, design of vehicle structures, granular flows, earthquake occurrence, hyper-redundant robots, jet noise reduction, locomotion and grasping, medical applications of robotics, navigation algorithms, structured design of micro-electromechanical systems (MEMS), thin-film deposition, transportation systems, propulsion systems, and rapid assessment of early designs.

The educational program in mechanical engineering at Caltech prepares students for professional practice and research in an era of rapidly advancing technology. It combines a strong background in the basic and engineering sciences with laboratory and design experience. It strives to develop professional independence, creativity, leadership, and the capacity for continuing professional and intellectual growth.

Areas of Research

- **Mechanics of Materials.** Studies in the field of mechanics of materials are an integral part of the mechanical engineering option. In general, work pursued within the mechanical engineering option emphasizes aspects of mechanics that are concerned with mechanical behavior of homogeneous and heterogeneous solids, bridging temporal and spatial scales, thin film, MEMS, active materials, composites, dynamic deformation, fracture and frictional sliding of solids, computational modeling, and advanced experimental diagnostic techniques. Additional interests include the mechanics of heterogeneous geological systems.

- **Mechanical Systems and Engineering Design.** Activities in these areas encompass a broad range of traditional mechanical engineering fields, including control systems, dynamics, kinematics, and mechanical design, as well as cross-disciplinary areas such as signal processing, computer control, engineering computation, electromechanical design, micro-electro-mechanical systems (MEMS) design, and bioengineering. In the abstract, engineering design is the rigorous application of theory and analysis from traditional engineering disciplines to the synthesis of novel solutions to new problems. Analytical techniques from many fields are used to analyze the performance, stability, and robustness of complex systems. An imaginative, practical approach is emphasized for the solution of real problems involving many areas of technology. General areas of interest include design theory and methodology, imprecision in engineering design, engineering system design, MEMS design, kinematics, robotics, autonomous systems, control of mechanical systems, computer-aided design, and simulation.

- **Thermal Systems and Fluid Dynamics.** This area encompasses a broad spectrum of research activities, including convective heat transfer (packed beds, moving granular media, rotating flows), chemical vapor deposition of thin films, computational fluid dynamics, acoustics of turbulent flows, two-phase flow including colloidal dispersions, cavitation, and turbomachines for flow of liquids and rocket propellants and combustion.

Physical Facilities

Laboratory facilities are available in a number of areas, including control of mechanical systems, computer-aided design, heat transfer, liquid phase turbomachines, thin-film deposition, pump dynamics, robotics, and hydrodynamic water tunnels. These facilities are shared by research groups collaborating with applied mechanics, applied physics, civil engineering, and control and dynamical systems.

Physics

Areas of Research

Graduate students in physics will find opportunities for research in the following areas where members of the staff are currently active.

- **Particle Physics.** Experiments in elementary particle physics are carried out with accelerators at the European Center for Nuclear Research (CERN), Cornell, and Beijing. Activities include studies of Z^0 decay at the LEP storage ring at CERN, studies of charmed quarks and τ leptons at IHEP, and studies of τ leptons at Cornell. In addition, a large project to search for magnetic monopoles and other phenomena in particle astrophysics is under way at the Gran Sasso underground laboratory in Italy. An active program is aimed at a future experiment to study CP-violation and rare B decays at a new accelerator at SLAC.

- **Kellogg Radiation Laboratory.** Present research includes studies of nucleon properties and searches for new physics beyond the standard electroweak model, through precision measurements of parity violating asymmetries; investigation of neutrino masses and mixing; and the study of extended air showers from ultra-high-energy cosmic rays. These research topics involve both experimental and theoretical activities in our laboratory.

- **Nuclear and Neutrino Physics.** This group focuses on fundamental properties of nuclei and elementary particles, particularly neutrinos and neutrino oscillations. The experimental program, which also includes symmetry tests with polarized nuclei using a dilution refrigerator, is complemented by theoretical studies of nuclear structure and particle properties.
• **Experimental High-Energy Astrophysics.** Research in this field encompasses X-ray and gamma-ray astronomy, compact object and gamma-ray burst astrophysics, cosmic-ray astrophysics, and magnetospheric and heliospheric physics. The Space Radiation Laboratory (SRL) is actively developing new instrumentation for hard X-ray and gamma-ray balloon and satellite experiments which will study compact objects, Active Galactic Nuclei, gamma-ray bursts, and supernova remnants. An observational program concentrated on high-energy observations of neutron star and black hole systems using the Compton Gamma-Ray Observatory, the ROSAT and ASCA X-ray satellites, and the X-ray Timing Explorer is also a major effort in the group. SRL is also using instruments developed for launch on spacecraft and balloons to measure the composition of energetic nuclei arriving from the sun, the local interstellar medium, and nearby regions of the galaxy in order to study how these nuclei were synthesized and accelerated to high energies. There are a total of five SRL instruments currently active on Voyager, Galileo, and SAMPEX missions, with two on the Advanced Composition Explorer. The SAMPEX and Galileo missions are also supporting studies of trapped radiation in the magnetospheres of Earth and Jupiter, while the Voyager instruments are approaching the solar wind termination shock.

• **Experimental Ultraviolet and Optical Astrophysics.** A sounding rocket program is developing novel telescopes and detectors for mapping the far cosmic ultraviolet background. New spectroscopic techniques are being exploited to study the dynamics and ionization of the violent interstellar medium. Ground- and space-based observations are being made to study the halos of galaxies, the history of star formation in the universe, the nature of UV bright objects, and the evolution of supernova shock waves in a heterogeneous interstellar medium. The first far-UV all-sky imaging survey mission is currently under study. A new ground-based instrument for diffraction-limited imaging is being developed for the Palomar 5-meter telescope.

• **Infrared Astronomy.** Astrophysical observations from 1-micron to 1-millimeter wavelengths are carried out with ground-based telescopes at the Palomar and Keck observatories. The infrared group constructs instruments for use on the 5-meter Hale and 10-meter Keck telescopes. Caltech has been a major participant in a survey of the infrared sky conducted by the IRAS satellite.

• **Submillimeter Astronomy.** Star formation, interstellar gas, galaxies, and quasars are studied using the 10-meter telescope at the Caltech Submillimeter Observatory on 14,000-foot Mauna Kea in Hawaii. Far-infrared observations are made from NASA's Kuiper Airborne Observatory. Research is conducted on superconducting tunnel junction and bolometer detectors for use in future telescopes, both on the ground and in space.

• **Computational Astronomy.** High-performance parallel computers are applied to computation-intensive problems in astronomy. Topics include radio pulsar searches, diffraction-limited imaging with ground-based optical/IR telescopes, and large N-body simulations.

• **Condensed-Matter Physics.** Two-dimensional matter, phase transitions in two and three dimensions, phonon physics, and high-temperature superconductivity are areas of interest. Extensive new facilities for nanostucture fabrication and ultra-low-temperature physics have been established in Sloan Laboratory for exploration of mesoscopic systems. These facilities are complemented by the Microdevices Laboratory of the Jet Propulsion Laboratory (JPL), which plays a central role in a number of collaborative research efforts. Very recently, a new effort has been launched on the fractional quantum Hall effect and other strong correlation phenomena in semiconductor heterostructures.

• **Applied Physics.** Techniques of theoretical and experimental physics are applied to problems in surfaces, materials, and planets. Work is done with on-campus facilities, as well as off campus, at both industrial and other academic laboratories. Recent studies include sputtering, damage by high-energy ions, modification of semiconductors by ion implantation, the behavior of granular materials, and light-emission mechanisms in phosphors and scintillators.

• **Quantum Optics.** Investigations of quantum dynamical processes in nonlinear dissipative systems are carried out in a number of fundamental optical experiments. Specific areas of research include quantum computing, the generation and application of squeezed and antibunched states of light, the realization of ideal quantum measurement and amplification schemes, and the investigation of nonperturbative radiative processes in cavity quantum electrodynamics. Facilities in support of this work are located in the East Bridge Laboratory.

• **Experimental Gravitational Physics.** Research is currently focused on the detection of gravitational radiation using both ground- and space-based detectors. The Laser Interferometer Gravitational-Wave Observatory (LIGO) is the world's largest ground-based detector and has begun scientific observations in 2003. The Laser Interferometer Space Antenna (LISA) is currently in the planning stages. On-campus research facilities include the 40-meter interferometer and extensive laboratory and computational facilities. The experimental program is complemented by work in the theoretical astrophysics group.

• **Laboratory for Molecular Sciences.** Multidisciplinary research focuses on fundamental processes in complex molecular systems with atomic resolution. These efforts draw upon participation of research groups from chemistry disciplines as well as from groups in physics, biology, and engineering. The laboratory is...
equipped with state-of-the-art resources for structural and
dynamical studies, including lasers, X-ray diffraction, high-
speed computing, electrochemistry, and biochemistry. Major
research areas are time-resolved imaging of structures, molecu-
lar recognition, solvation and weak interactions, electrocatalysts
and interfaces, time-resolved studies of biological systems, neu-
ronal receptor proteins, electron and energy transfer in molecu-
lar assemblies and networks, and dynamics of nanostructures
and single molecules using optical tweezers and cavities.

- **Neuroscience.** Some properties of neural networks that underlie
brain function are being investigated. The emphasis is on stud-
ies of neuronal networks grown in tissue culture, whose activity
and response to stimuli are recorded as they change in response
to imposed patterns of activity. Advanced biophysical and bio-
engineering technologies are used to obtain long-term electrical
and optical records of neural signals.

- **Theoretical Physics.** The particle theory group studies the unifica-
tion of interactions based on superstring theory, the properties
of hadrons described by QCD with an emphasis on heavy
quarks, the quantum properties of black holes, and quantum
cosmology. Theoretical studies also include nuclear structure
and reactions, quantum computing, condensed-matter physics,
including the quantum theory of solids and turbulent fluids, and
various aspects of mathematical physics.

- **Theoretical Astrophysics and Cosmology.** The TAPIR (Theoretical
Astrophysics including Relativity) group carries out theoretical
research on an ever changing list of topics, which currently
includes high-energy astrophysics and the physics of compact
objects, stellar astrophysics, accretion disks, relativistic astro-
physics, gravitational-wave astrophysics, the early universe,
physical cosmology, the cosmic microwave background and
large-scale structure, particle astrophysics, formal problems in
general relativity, the dynamics of stellar and planetary systems,
galaxy formation, helioseismology, and the interstellar medium.

Physical Facilities
The physics department is housed in six buildings grouped
together on the south side of the campus: the Norman Bridge
Laboratory, the Alfred P. Sloan Laboratory of Mathematics and
Physics, the W. K. Kellogg Radiation Laboratory, the George W.
Downs Laboratory of Physics, the C. C. Lauritsen Laboratory of
High Energy Physics, and the Synchrotron Laboratory. Members
of the staff also carry out research at the Palomar Observatory and
at the Owens Valley Radio Observatory. Several computers are
available for use in research, including the Intel Touchstone
DELT A System, a high-performance supercomputer with a
peak speed of 30 Gflop.

Caltech has been a major participant in several infrared astro-
physics missions and projects, including data processing support
for the Infrared Astronomical Satellite (IRAS) mission, and the
ground-based 2-micron all-sky survey (2MASS) in conjunction
with the University of Massachusetts. Caltech manages the Spitzer
Science Center, which supports science operations for the Spitzer
Space Telescope.

SOCIAL SCIENCE

Social science at Caltech integrates economics, law, political
science, quantitative history, anthropology, and psychology. The
program takes a practical but rigorous approach to social science—
designing institutions to solve problems—and involves extensive
use of empirical techniques and mathematical modeling. Particular
emphasis is placed on studying the relationships between econom-
ics, politics, and public policy in a rigorous scientific manner.
Students can use their considerable quantitative talents to great
advantage in these areas.

Areas of Research
The social science program is characterized by collaborative inter-
disciplinary research on the behavior of, and methods to improve
the performance of, political and economic institutions.

Among the areas of research in political science are theoretical
models of legislative behavior and of international relations, and
statistical analyses of campaign dynamics and of the effect of eco-

demic conditions on voting.

Caltech is a major center for the experimental investigation of
game theory as a basis for economic and political decision-making,
and the application of these methods to public policy.

An emerging area is exploration of the psychological and neural
foundations of decision-making and strategic thinking, including
learning, reward, and emotion, and the ways in which these neural
processes influence behavior in games and in markets.

Quantitative history incorporates economic and political models
with statistical analysis to address such issues as the extent of racial
discrimination in the United States, and the role of capital markets
in economic growth.

Economists study problems such as the design of institutions
for the efficient provision of public goods, with applications to
such diverse problems as railroad rights of way, space shuttle
resources, and the telecommunications industry. There is also
interdisciplinary research on improving the theoretical and statisti-
cal models of individual choice behavior.
The undergraduate program leads to a four-year Bachelor of Science degree. Admitted students matriculate in the fall term only. Caltech does not have a summer session or part-time program, and cannot consider you if you already have a bachelor’s degree from another college, university, or the equivalent. If you have matriculated at any college, university, or the equivalent in a program leading to any degree, you will probably be required to apply as a transfer student, and should read the requirements in the section titled “Transfer Admissions.”

ADMISSION TO THE FRESHMAN CLASS

Students are admitted to the freshman class on the basis of strong academic performance in a rigorous course of college preparatory study, especially in the areas of math and science; results of the SAT I or ACT; and two SAT II subject exams; teacher and counselor evaluations; personal characteristics; a demonstrated interest in math, science, or engineering; and information provided on the application.

Applying
An application for admission may be obtained by writing or calling the Office of Undergraduate Admissions, California Institute of Technology, Mail Code 1-94, Pasadena, CA 91125; (626) 395-6341; ugadmissions@caltech.edu. Students may also download a copy of the application or apply online at http://www.admissions.caltech.edu. To be considered for admission, applications to the freshman class must be postmarked by January 1.

Early Action
Students who have a preference for Caltech may want to consider application under the Early Action plan. The Early Action application process requires that the completed application be postmarked by November 1. Under this application plan, students will be notified in mid-December of the admission decision. Students admitted under Early Action have until May 1 to make their commitment to attend.

High School Requirements
Students are expected to prepare for Caltech by successfully completing the following curriculum:

- Four years of mathematics (including calculus)
- One year of physics
- One year of chemistry
- Three years of English (four years recommended)
- One year of U.S. history/government (waived for international students)
Deferral of Entrance

For reasons of travel or work, Caltech will consider requests from admitted students for a one-year deferral of entrance. Students who request a deferment must submit a written request stating the purpose of postponement.

Advanced Placement, International Baccalaureate, and College Credit

Caltech encourages all prospective undergraduate applicants to prepare by challenging themselves with the most rigorous course of study available, including the Advanced Placement (AP) and International Baccalaureate (IB) programs. However, college credit for AP or IB classes is not automatic. Course credit and/or placement in an accelerated program is sometimes granted as deemed appropriate by the department faculty. The awarding of Caltech course credit takes place at the time of registration each fall.

Biology

Prospective biology majors who pass both Bi 8 and Bi 9 in their freshman year are considered to have met the core requirement of Bi 1.

Chemistry

In exceptional cases, students with a particularly strong background in chemistry may elect to take Chemistry 21, the Physical Description of Chemical Systems, or Chemistry 41, Organic Chemistry, rather than Chemistry 1, General Chemistry. It is assumed that such students have reasonable competence in the following areas: 1) elementary theories of atomic structure and electronic theories of valence, 2) chemical stoichiometry, 3) computations based upon equilibrium relationships, and 4) elementary chemical thermodynamics. For those students who qualify for advanced placement in chemistry, the Institute requirement of 15 units of Ch 1 ab can be satisfied by completing with passing grades two terms of (i) Ch 21 abc (9 units each term), or (ii) Ch 41 abc (9 units each term). The student’s qualification for advanced placement in chemistry will be determined by performance on a placement examination to be administered in the summer prior to registration and on subsequent approval by the instructors of the courses to be taken and the courses to be substituted. Similarly, qualified students, with the instructor’s consent, are allowed to substitute either Ch 3 b or Ch 4 a for the “core” chemistry laboratory requirement (Ch 3 a).

Mathematics

During the summer before the freshman year, entering freshmen are asked to take a diagnostic exam in basic calculus that will determine which students will be placed in a special section of Ma 1 a for those with less complete preparation, and later take Ma 1 d;
and if they are interested in advanced placement, they may also take an examination to determine whether they will begin the mathematics core sequence at an advanced level.

Normally, an entering freshman takes Ma 1 abc, Calculus of One and Several Variables and Linear Algebra. This course covers the calculus of functions of one and several variables; infinite series; vector algebra; basic and advanced linear algebra; derivatives of vector functions, multiple integrals, line and path integrals; and theorems of Green and Stokes. The course is divided into a lecture part and a recitation part that focuses mainly on problem-solving.

Students in need of additional problem-solving practice may be advised to take Ma 8 (in addition to Ma 1 a) in the first quarter.

Physics
The required freshman physics course, Ph 1 abc, is considerably more rigorous than most advanced placement work, and entering freshmen are encouraged to take Ph 1. A test is administered during the summer to aid in the organization of Ph 1; students who have performed particularly well can discuss the possibilities for advanced placement with the physics representative during orientation. A second test may then be required.

New Student Orientation
All freshmen and transfer students are expected to attend the New Student Orientation as a part of the regular registration procedure. The orientation takes place the week prior to the beginning of classes. A large number of faculty members and upperclass student leaders participate, helping to introduce the new student to the Caltech community. The orientation period provides an opportunity for the new student to become acquainted with the campus, the Honor System governing personal conduct, and other aspects of life at Caltech. In addition, he or she can meet classmates, upperclass students, and faculty. Thus the new student can begin to feel at home at Caltech and to share in the common agreement on intellectual and moral standards before the pressure of academic work begins.

ADMISSION TO UPPER CLASSES BY TRANSFER

Transfer Admissions
Caltech admits transfer students for the fall term only. We require a completed application, letters of recommendation, an official transcript from the last secondary school attended and all colleges or universities attended, descriptions of all college-level math and science courses, and completion of the Caltech Transfer Entrance Examinations. Please review the section titled “Eligibility Criteria for Admission” to determine whether you meet the eligibility requirements for transfer admissions consideration.

Academic Preparation
The following is a list of the Caltech core curriculum, taken by all Caltech students during their first two years. It is expected that transfer students will have had exposure to mathematics and science courses on a comparable level prior to entry to Caltech. Any of the following core courses that have not been covered by incoming transfer students must be taken upon matriculation to Caltech. There are no specific topics expected to have been covered in humanities and social science classes.

An evaluation of each transfer student's written English is required prior to registration and may result in an additional course requirement.

Freshman courses:
- Mathematics 1 abc
- Physics 1 abc
- Chemistry 1 ab
- Chemistry 3 a
- Biology 1
- Humanities and Social Science electives
 - Menu science class (currently either Ay 1, Ch/APH 2, ESE 1, or Ge 1; can be taken freshman or sophomore year)

Sophomore courses:
- Mathematics 2 ab
- Physics 2 ab or Physics 12 abc
- Additional laboratory science
- Humanities and Social Science electives

Eligibility Criteria for Admission
The Institute admits to its sophomore and junior classes a small number of students who have excellent records at other institutions of collegiate rank and who perform satisfactorily on the Caltech Transfer Admissions Entrance Examinations.

- Students must have completed their secondary school education, and have subsequently enrolled at a college or university and earned credit, in order to be considered for transfer admission.
- Transfer students are not admitted to the senior year at Caltech.
- Students who have already completed a bachelor's degree in any subject are not eligible for transfer.

Standardized Test Requirements
Transfer applicants are not required to submit SAT scores. The Test of English as a Foreign Language (TOEFL) is required of transfer applicants whose native language is not English and who have not been studying in an English-speaking country for two
The 3/2 Dual Degree Plan

Caltech invites students from a select group of liberal arts colleges to transfer to Caltech upon completion of their junior year. After two years in residence at Caltech, and the successful completion of our requirements, 3/2 students will be granted a Bachelor of Science degree from Caltech and a second bachelor's degree from their liberal arts college. Students may transfer into any of the Caltech options.

Students from the following institutions are eligible to apply to the 3/2 program:

- Bowdoin College (ME)
- Ohio Wesleyan University
- Bryn Mawr (PA)
- (OH)
- Grinnell College (IA)
- Pomona College (CA)
- Haverford College (PA)
- Reed College (OR)
- Mt. Holyoke College (MA)
- Spelman College (GA)
- Oberlin College (OH)
- Wesleyan University (CT)
- Occidental College (CA)
- Whitman College (WA)

Applications and a program description are available from the 3/2 liaison at each of the liberal arts college partners and from the Caltech Office of Undergraduate Admissions. Deadline for submission of 3/2 applications and support materials is April 1.

Admission to the 3/2 program is not guaranteed and will be determined by the Caltech Faculty Upperclass Admissions Committee. Students applying should have a record of superior academic achievement at their home institutions, and strong letters of recommendation from their 3/2 liaison and an additional faculty member. They must have completed a minimum of one year of calculus-based physics and mathematics (two years are recommended) including multivariable calculus and differential equations, and one year of chemistry.

Exchange Programs

Exchange programs exist with Occidental College, Scripps College, and Art Center College of Design, permitting Caltech students to receive credit for courses taken at these colleges. Students from these colleges also may receive credit for courses taken at the Institute. Tuition payments are not required, but the student may have to pay any special fees. The student must obtain approval from the instructor of the exchange course. Exchange courses taken by Caltech students must have prior approval by the student's option, by the division providing courses most similar to the proposed course, and by the registrar. Students wishing to take such courses should obtain the appropriate form at the Registrar's Office, get the required signatures as above, and return it to the registrar. Freshmen at Caltech ordinarily cannot participate in this exchange.
Cambridge Scholars Program
The Caltech Cambridge Scholars Program offers qualified juniors and seniors the opportunity to spend a fall or winter term at the University of Cambridge in England. Students are admitted into one Cambridge department to take classes within the tripos, i.e., option, offered by that department. Students may only take courses in one tripos area. Students will find more information on the tripos structure in the Fellowships Advising and Study Abroad Office.

During their term at Cambridge, students take the equivalent of at least 36 Caltech units, usually four Cambridge courses, but the exact number of courses depends on Cambridge departmental tripos requirements. For this work, students receive a minimum of 36 Caltech units that can be used for general or option credit. Note that the final number of units and whether the units can be used to fulfill departmental requirements will be determined after faculty review upon a student's return to Caltech.

Caltech students have the use of all Cambridge facilities and are matriculated into the university for the term. A minimum 3.2 GPA is required to apply. Eligible sophomores and juniors interested in either the fall or winter term apply in February for the next academic year.

Copenhagen Scholars Program
The Caltech Copenhagen Scholars Program offers qualified juniors and seniors the opportunity to spend the fall at the University of Copenhagen (KU) or the Danish Technical University (DTU). At KU, students may concentrate in the physical sciences, mathematics, biological sciences, or economics. At DTU, students can take courses in engineering or the applied sciences.

Both KU and DTU are on a semester system, and Caltech students attend from September 1 to mid-December. Students have a one-week vacation in mid-October, and many use this vacation week to travel in Denmark or Europe. All students live in University of Copenhagen dormitories. Students pay Caltech room and board, tuition, and other standard Caltech fees for the term.

Students take three or four courses in their Caltech option or a closely related subject (e.g., physics and mathematics) and a course in Danish language. Students may audit or take for credit a course in Danish culture that in addition to lectures has field trips to interesting cultural and historical sites in the city. All upper level undergraduate or beginning graduate level courses at KU and DTU can be taught in English.

For this work, students receive a minimum of 36 Caltech units that can be used for general or option credit. Note that the final number of units and whether the units can be used to fulfill departmental requirements will be determined after faculty review upon a student's return to Caltech.

A minimum 3.0 GPA is required to apply. Eligible sophomores and juniors apply in February for the fall semester at KU.

University College London Scholars Program
The Caltech University College London Scholars Program offers qualified juniors and seniors the opportunity to spend the fall at the University College London, which is located in the lovely Bloomsbury area of London. The University College London (UCL) is on a semester system, and Caltech students attend from about September 20 to mid-December. All students are required to attend a four-day orientation (Thursday through Sunday) before classes start. All students live in a UCL dormitory, which is located within a short walk of the academic buildings of the campus. Students pay Caltech room and board, tuition, and other standard Caltech fees for the term. There is a supplemental charged for housing due to the longer length of the term. The supplement varies yearly depending on prices and the exchange rate.

Students are admitted into one of UCL's academic departments in the physical, life, or engineering sciences. Note that students cannot be admitted into the economics department, but can be admitted into the statistical sciences department, which offers many economics courses; students can take two courses in the economics department.

Students take an additional two, or the equivalent of two, courses in their admitting department. Usually the admitting department is in a subject area that corresponds to the student's Caltech option, but this is not always the case if the student has enough academic or research background to gain admission to the admitting department.

Students take an additional two, or the equivalent of two, courses in either the admitting department, another area of the sciences or engineering, or the social sciences or humanities.

Students are also eligible with approval to take a fifth course in their option, a related area, or in the humanities or social sciences.

A typical UCL semester class is .5 course units or 4 credits. Caltech students must take a total of 16 credits or 2 course units during their semester at UCL. This would be equivalent to 36 Caltech units. For this work, students receive a minimum of 36 Caltech units that can be used for general or option credit. Note
that the final number of units and whether the units can be used to fulfill departmental requirements will be determined after faculty review upon a student’s return to Caltech.

A minimum 3.0 GPA is required to apply. Eligible sophomores and juniors apply in February for the fall semester at UCL.

University of Edinburgh Scholars Program
The Caltech University of Edinburgh Scholars Program offers qualified juniors and seniors the opportunity to spend the fall at the University of Edinburgh. The University of Edinburgh is on a semester system, and Caltech students attend from about September 20 to mid-December. All students are required to attend a weeklong orientation held the week before classes start. All students live in university dormitories, which are a short walk from the George Square (humanities and social sciences) and the King’s Buildings (science and engineering). Students pay Caltech room and board, tuition, and other standard Caltech fees for the term. There is a supplemental charged for housing due to the longer length of the term. The supplement varies yearly depending on prices and the exchange rate.

Students are admitted into one of Edinburgh’s academic departments in the College of Science and Engineering. Note that students cannot be admitted into the economics department, but can take 20 credits in that department. Students take a minimum of 60 Edinburgh credits per semester and may, with permission, be able to take up to 80 credits, but no more than five courses. Students will take a minimum of 40 credits in their option or another science or engineering subject and can take 20 credits (one course) in College of Humanities and Social Sciences. Economics or BEM option students may take up to, but no more than, 40 credits in the Edinburgh economics department. Sixty credits is the standard load.

A minimum 3.0 GPA is required to apply. Eligible sophomores and juniors apply in February for the fall semester at UCL.

Further information on these programs, including application procedures and the exact deadline dates, is available from the Fellowships Advising and Study Abroad Office.

Please see the Financial Aid When Studying Abroad section, page 152, for details on applying and eligibility for financial aid related to study abroad.

ROTC

Air Force Reserve Officer Training Corps (AFROTC) offers two-, three-, and four-year programs leading to a commission as a second lieutenant in the United States Air Force. The AFROTC program is open to almost all students pursuing baccalaureate and graduate degrees. Classes consist of one hour of academics and two hours of leadership laboratory per week for freshmen and sophomores, and three hours of academics and two hours of leadership laboratory per week for juniors and seniors. AFROTC offers a variety of one- to four-year scholarships valued at up to 100% of annual tuition, along with a nontaxable monthly stipend.

Air Force ROTC is offered on the campuses of the University of Southern California, California State University San Bernardino, Harvey Mudd College, Loyola Marymount University, and University of California—Los Angeles. You do not need to be a student at any of these colleges to attend AFROTC on their campuses. For more information contact the Department of Aerospace Studies at (213) 740-2670 or visit http://www.usc.edu/afrotc. No military commitment is incurred until entering the junior year of the program or receipt of a scholarship after freshman year.

The Army ROTC program at USC offers four-, three-, and two-year scholarships that pay tuition costs up to $17,000 a year. In addition, the program pays all contracted cadets a stipend of $2,500 to $4,000 a year and an annual book allowance of another $600. High-school students need to apply for the four-year scholarship during the fall of their senior year, and no later than November 15. All Caltech students interested in an Army ROTC three- or two-year on-campus scholarship need to apply early in their spring semester, and no later than March 15, for the next academic year. Completion of the program leads to a commission as a second lieutenant in one of 17 occupational branches in the Regular Army, Army Reserve, or the National Guard. These scholarship provisions are subject to change, and interested students are encouraged to contact the Department of Military Science at the University of Southern California for further information: PED 110, Los Angeles, CA 90098, (213) 740-1850.
Changes in Registration

All changes in registration must be reported to the Registrar's Office by the student prior to the published deadlines. A grade of F will be given in any course for which a student registers and which he or she does not either complete satisfactorily or drop. A course is considered dropped when a drop card is completed and returned to the Registrar's Office. A student may not at any time withdraw from a course that is required for graduation in his or her option, without permission of the registrar.

A student may not add a course after the last day for adding courses, or withdraw from a course after the last date for dropping courses, without the approval of the Undergraduate Academic Standards and Honors (UASH) Committee. Registration for added courses is complete when an add card, signed by the instructor and the student's adviser, has been filed in the Registrar's Office. No credit will be given for a course for which a student has not properly registered. The responsibility for submitting drop cards and add cards to the Registrar's Office before the deadlines for dropping or adding courses each term rests entirely with the student. Failure to fulfill the responsibility because of oversight or ignorance is not sufficient grounds to petition for permission to drop or add courses after the deadline. It is the policy of the UASH Committee that no petitions for the retroactive dropping or adding of courses will be considered except under very extenuating circumstances.

Summer Research or Summer Reading

Qualified undergraduate students who are regular students at the Institute are permitted to engage in research or reading during the summer, but in order to receive academic credit the student must have the approval of his or her division and must complete the registration process for such summer work before June 1. An undergraduate may not receive payment for research carried out for academic credit. Students who are registered for summer research or reading will not be required to pay tuition for the units. A student may apply up to 18 units of summer research per summer and 36 units in total toward Institute graduation requirements.

The Institute recognizes that students may want to take advantage of paid internships that provide unique off-campus educational opportunities that integrate and enhance the classroom experience. Students are encouraged to explore and discuss such opportunities with their academic adviser and the dean or associate dean of students. If appropriate, the adviser and dean or associate dean can approve such internships as integral to a Caltech educational experience. There is no academic credit for such work. The internships should commence after the end of the third term and end prior to the resumption of classes in the fall.

Undergraduate Student Sabbatical

An undergraduate student sabbatical must be sought by written petition, which must be accompanied by a completed withdrawal card. The dean or associate dean of students may grant a sabbatical provided: (a) the student is in good standing, in other words does not have to meet special academic requirements as a result of reinstatement, (b) the sabbatical is for one year or less, and (c) the sabbatical extends over a period that includes at least one full term.

The dean or associate dean may also grant a leave for medical reasons provided the petition is approved by the director of health services or the director of counseling services. Return from a leave for medical reasons also requires the recommendation of the director of health services or the director of counseling services, and the final approval of the dean or the associate dean. A student returning from a leave for medical reasons will maintain the same academic standing that he or she had previously.

Involuntary Leave

The dean of students may place a student on an involuntary leave if persuaded by the evidence that such action is necessary for the protection of the Institute community or for the personal safety or welfare of the student involved. The withdrawal card may state a specific date after which the student may return or it may be indefinite as to term. The dean of students may stipulate conditions that must be met before the student may return. These conditions might include a letter of approval from the director of health services or the director of counseling services. A decision by the dean to place a student on involuntary leave is subject to automatic review within seven days by the vice president for student affairs (or his or her designee).

All other petitions pertaining to leaves should be addressed to the UASH Committee.

Withdrawal from the Institute

Formal separation from the Institute is effected by filing a completed withdrawal card in the Dean of Students Office to be forwarded to the registrar and other appropriate offices. The effective date of a withdrawal is the date of the signature of the dean or associate dean of students. A student leaving the Institute at any time during the term without filing a formal withdrawal card will not be considered withdrawn. In such a case, any grades reported by the instructors will be recorded on the permanent record card, and the grade of F will be recorded for all other courses. A student who withdraws, or is absent for a term (or longer), without an
SCHOLASTIC REQUIREMENTS

All undergraduates are required to meet certain scholastic standards as outlined below.

Eligibility for Registration

Eligibility to register is determined by the student's record as of Registration Day of the term in which registration is sought. Undergraduates who register for programs that make it appear they are no longer candidates for a B.S. degree or who are not making satisfactory academic progress may be refused further registration by the Undergraduate Academic Standards and Honors (UASH) Committee.

- Freshmen are ineligible to register for subsequent terms if they have accumulated 24 or more units of E or F, exclusive of PE;
- if they have accumulated three or more course grades of E or F, exclusive of PE;
- if, in any term of their freshman year following a reinstatement, they obtain six or more units of E or F, exclusive of PE.

Ineligible freshmen must petition the UASH Committee for reinstatement if they wish to continue as students. The dean of students or associate dean may act on a petition if (i) it is the student's first ineligibility and (ii) the student has received fewer than 42 units of E or F, exclusive of PE. For other petitions, action must be taken by the UASH Committee.

Undergraduate students, except first- and second-term freshmen, are ineligible to register for another term if they fail during any one term to obtain a grade-point average of at least 1.4, or if they receive 27 or more units of E or F, exclusive of PE, during any one term;
- if they fail to obtain a grade-point average of at least 1.9 for the academic year, or if they accumulate 45 or more units of E or F, exclusive of PE, over the academic year (students who have completed at least three full terms of residence at the Institute and have been registered for their senior year shall no longer be subject to the requirement that they make a grade-point average of at least 1.9 for the academic year—seniors must, however, receive a grade-point average of at least 1.4 or receive fewer than 27 units of E or F each term);
- if they have completed fewer than 36 units in the previous term and fewer than 99 units in the previous three terms in residence;
- if, once reinstated, they fail to complete a full load of at least 36 units in the following term with a grade-point average of at least 1.9.

If a late grade makes a student ineligible after the start of the next term, the permanent record card shall show the ineligibility and a reinstatement. If the late grade is reported to the registrar before midterm deficiency notices are due for the subsequent term, the student shall be held to the requirement as above to complete a full load of at least 36 units with a grade-point average of at least 1.9.

If a late grade received on or before the last day for adding classes makes a reinstated student eligible, the ineligibility and the reinstatement will be removed from the student's record.

No student ineligible to register on the first day of classes will be permitted to register unless a petition for reinstatement has been submitted and acted upon.

Students ineligible for registration because of failure to meet the requirements stated in the preceding paragraphs may submit a petition to the UASH Committee for reinstatement, giving any reasons that may exist for their previous unsatisfactory work and stating any new conditions that may lead to better results. Each such petition will be considered on its merits. For the first such ineligibility, the petition may be acted on by the dean of undergraduate students, after consultation with the student and examination of the record. At the dean's discretion, such cases may be referred to the UASH Committee for action. *All subsequent reinstatements must be acted upon by the Committee.* A second reinstatement by UASH will be granted only under exceptional conditions.

Departmental and Option Regulations

Selection of Option

By the middle of the third term, freshmen must notify the Registrar's Office of their selection of an option in engineering, humanities, social sciences, or science to be pursued in subsequent years. Upon the selection of an option, a freshman will be assigned an adviser in that option, whose approval must then be obtained for registration for the following year.

In exceptional circumstances an undergraduate may be allowed to major in two options for the Bachelor of Science degree. In order to do so the student must present a rationale for the double option and a plan of study leading to completion of the degree in...
Continuing in an Option

Students whose grade-point averages are less than 1.9 at the end of an academic year in a specific group of subjects designated by their department or option may, at the discretion of their department, be refused permission to continue the work of that option. Such disbarment does not prevent the students from continuing in some other option or from taking additional courses to raise their average in their original option. Students without an option will fall under the direct jurisdiction of the dean of students. Students may remain without an option for no more than one year.

Change of Option

An undergraduate in good standing at the Institute shall be permitted to transfer into any option of his or her choice provided he or she has (a) a 1.9 GPA in subjects required for graduation in that option or in a specific group of subjects designated by that option or (b) permission of the option representative or committee. A change of option is effected by obtaining a Change of Option petition from the Registrar’s Office. The completed petition must then be signed by the option representative for the new option (who will assign a new adviser), and filed with the Registrar’s Office. Institute regulations require that a student who has made normal progress at the Institute be able to change options at any time up to the end of the sophomore year without penalty either as to time until graduation or as to excessive unit requirements in any term.

Term Examinations

Term examinations will be held in all subjects unless the instructor in charge of any subject shall arrange otherwise. No student will be exempt from these examinations. When conflicts exist in a student's schedule, it is the student's responsibility to report the conflict to the instructor in charge of one of the conflicting examinations and make arrangements for another time.

Satisfactory Academic Progress

A student will be declared ineligible to register if he or she has completed fewer than 36 units in the previous term and has completed fewer than 99 units in his or her three most recent terms in residence.

Graduation Requirement

To qualify for graduation a student must complete the prescribed work in one of the options with a passing grade in each required subject and with a grade-point average of 1.9. A grade of F in an elective course need not be made up, provided the student has received passing grades in enough other accepted units to satisfy the minimum total requirements of the option.

Candidacy for the Bachelor’s Degree

A student must file with the registrar a declaration of candidacy for the degree of Bachelor of Science on or before the first Monday of November preceding the date on which he or she expects to receive the degree. All subjects required for graduation, with the exception of those for which the candidate is registered during the last term of his or her study, must be completed and the grade recorded, by the second Monday of May preceding commencement.

Graduation in the Normally Prescribed Time

Any undergraduate student who fails to complete the requirements for graduation at the end of 12 terms must petition the Undergraduate Academic Standards and Honors Committee for approval to register for further work each term.

Requirement for a Second Bachelor of Science Degree

Under exceptional circumstances a student may be permitted to return to study for a second Bachelor of Science degree. As a general rule this second degree must be in an option which is not in the same division as that of the original degree. To receive this permission the student must petition the Curriculum Committee. If the petition is approved, the student must then register for three consecutive terms of additional study, completing in each term at least 36 units, and must meet all the requirements for graduation in the second option. If additional time is needed to complete the degree, the student must also petition the Undergraduate Academic Standards and Honors Committee for an extension. A student admitted for a second Bachelor of Science degree in a particular option may not change to another option without first submitting a new petition to the Curriculum Committee and receiving the explicit approval of that committee.

Graduation with Honor

Students who have achieved a high scholastic standing or who have carried out creative research of high quality may be recommended to the faculty for graduation with honor by the Undergraduate Academic Standards and Honors Committee. The Committee shall consider for graduation with honor those students who have achieved an overall grade-point average of 3.5 and others who, on the basis of exceptional creativity, have been recommended to the Committee by a faculty member or by a division of the Institute.
Excess of or Fewer Than Normal Units (Overloads and Underloads)
An overload is defined as registration for more than 54 units by an upperclassman or more than 51 units by a freshman. An underload is registration for fewer than 36 units. A student who wishes to carry an overload in any term must obtain the approval of his or her adviser and of the dean or associate dean of students. Petitions for overloads will not be accepted later than the last day for adding classes in any term.

Underloads with 27 or more units may be approved by the dean or associate dean if the student has not previously had an underload. Seniors may take an underload by presenting for the registrar’s approval a course plan for graduation the following June, provided that the plan does not require an overload in any term. In all other cases the student must petition the Undergraduate Academic Standards and Honors Committee for approval. The committee has the latitude to grant part-time status to a small number of exceptional, highly motivated students with at least junior standing, for reasons deemed valid by the committee.

Allowance and Transfer of Credit

Transfer of Credit from Other Institutions
Regularly enrolled students who want to obtain credit for college courses taken elsewhere should have a copy of the transcript of their work sent to the Registrar’s Office. The student should then obtain an Allowance of Credit form from the Registrar’s Office and take this, with the transcript, to the representative of the option in which credit is desired. Credit will be granted when this form, with the appropriate signatures, is returned to the office.

Allowance of Credit in the Humanities and Social Sciences
In general, Caltech students should fulfill Caltech course requirements by taking courses at Caltech. Students are expected to have a well-reasoned educational goal for taking classes elsewhere. The only exceptions are transfer students admitted to advanced standing. Credit for comparable work done at other institutions with similar academic standards is not granted automatically.

Students who wish to take courses elsewhere (whether on leave, in the summer, or during the academic year) should consult, in advance, with the executive officer for the humanities or the executive officer for the social sciences, or their designees, to minimize any misunderstanding regarding the nature of credit they may receive. Upon completion of the course, the student must obtain an Allowance of Credit form from the registrar, obtain the signed approval of the executive officer, or his or her designee, for transfer credit, and return the completed form to the Registrar’s Office. The executive officers are the final authority in the allowance of credit.

Guidelines and specific information about allowance of credit are available from the Division of the Humanities and Social Sciences.

Other Allowances of Credit
Except for transfer credit and advanced placement credit upon admission, credit will not be granted for Caltech courses not registered for, except in special circumstances by arrangement with the instructor. Such arrangements must be approved by the Curriculum Committee, and the student must petition the Committee before the work is undertaken.

Undergraduate Expenses

For freshman and transfer students applying for admission, there is a $60 application fee. This fee is nonrefundable.

A nonrefundable matriculation fee of $500 for freshman and transfer students is payable upon notification of admission.

Housing contracts must be submitted to the senior director of campus life by the date specified in the instructions accompanying the contract.

Expense Summary 2005–06

General:
General Deposit ... $ 100.00
Tuition ... 27,309.00
$ 27,409.00

Other:
Student Housing: (Rates are subject to change)
Room (on campus; other rates vary) 5,013.00
Board (provides 10 full meals and five continental breakfasts per week
while Institute is in session)................................. 3,801.00
Books and Supplies (approx.) 1,047.00
Personal Expenses (approx.) 1,923.00
Meals not on Board contract (approx.) 1,926.00
$ 1,926.00

1 This charge is made only once during residence at the Institute.

The following is a list of undergraduate student fees at the California Institute of Technology for the academic year 2005–06 together with the dates on which these charges are due. Fees are subject to change at the discretion of the Institute.
Determining the Student's Last Date of Attendance or Withdrawal Date:

The Office of the Registrar is responsible for receiving a request for a withdrawal from the appropriate undergraduate or graduate dean and for processing official withdrawals.

In order to calculate the refund or repayment, Caltech will establish the student's withdrawal date. This date is one of the following:

- The date that the student began the withdrawal process prescribed by Caltech; or
- The date the student otherwise provided official notification to the registrar (written or oral) of his or her intent to withdraw; or
- The mid-point of the academic term if no official notification is provided; or
- The date determined by the registrar if there are special circumstances (illness, accident, grievous personal loss); or
- The date the registrar determines the student has not returned from an approved student sabbatical or if the student does not qualify for a sabbatical.

Academically Related Activities That Determine Academic Attendance:

The Institute may use the last date of attendance at an academically related activity as the student's withdrawal date. This may occur if a student begins the withdrawal process and then attends an academically related activity after that date. Caltech considers an academically related activity to include the following:

- Attendance at a lab
- Attendance at a lecture
- Completing a quiz and/or test
- Participation in a study session
- Academic counseling session
- Academic advisement session
- Turning in a class assignment

Determining the Return of Federal Funds:

The Financial Aid Office and/or the Graduate Office will calculate the federal funds that must be returned to the appropriate federal accounts.

If a student withdraws prior to the first day of classes for the period of enrollment, Caltech will return 100% of the student's federal financial aid in accordance with federal procedures, as well as Caltech and/or state grants/aid.

If a student withdraws any time after the first day of classes for the period of enrollment, the Institute will perform the following:

- Determine the percentage of the payment period that the student completed. If the student completed more than 60% of the period, he or she earned 100% of the aid for the period. If the student completed 60% or less, the percentage of the period completed is the percentage of aid earned. This percentage is determined by dividing the number of...
and board first to the programs from which assistance has been received (i.e., scholarships, Caltech gift assistance). Any amount remaining will then be returned to the student. The non-Title IV portion will be distributed as appropriate, first to outside agencies, as required, then to the Caltech grant, scholarship, or loan, depending on the composition of the aid package. These distributions will occur as credits to the appropriate aid funds and charge(s) to the student’s Caltech account.

If the student is the recipient of federal Title IV student assistance, any refund must then be applied first to the federal aid program(s) in the prescribed order listed on page 142.

In the event that a student’s disbursed financial aid exceeds the direct costs on the student’s personal account, a credit balance will result. Withdrawal will result in the reversal or repayment of the resulting credit balance.

General Deposit
Each new student is required at his or her first registration to make a general deposit of $100, to cover possible loss and/or damage of Institute property. Upon graduation or withdrawal from the Institute, any remaining balance of the deposit will be refunded.

Fees for Late Registration
Registration is not complete until the student has enrolled in a program approved by his or her adviser and has paid tuition and other fees. A penalty fee of $50 is assessed for failure to register within five days of the scheduled dates. A $50 late penalty will be charged by the Bursar’s Office for failure to clear a past-due account within five days of the beginning of instruction.

Honor System Matters
Monies owed to the Institute resulting from a Board of Control decision may be collected through the Bursar’s Office, at the request of the dean of students.

Special Fees
Students taking the Summer Field Geology course (Ge 120) should consult with the division about travel and subsistence arrangements and costs.

Unpaid Bills
All bills owed the Institute must be paid when due. Any student whose bills are past due may be refused registration for the term following that in which the past due charges were incurred. Transcripts will not be released until all bills have been paid or satisfactory arrangements for payment have been made with the Bursar’s Office.
Financial Aid

Caltech believes that qualified students who wish to attend the Institute should not be prevented from doing so for financial reasons. Although the Institute expects students and families to finance the cost of education to the fullest extent possible, the Institute will make every effort to assist those who need help, including those whose financial circumstances change during the year.

Demonstrated financial need is the difference between the annual cost of attending Caltech and the amount the student and parents can reasonably be expected to contribute toward those costs. Costs include actual tuition, room and board, an allowance for meals not covered in the board contract, books and supplies, personal expenses, and a travel allowance based on airfare for two round trips. (Caltech is unable to include a travel allowance for students whose residence is outside the United States, Mexico, or Canada.) Caltech’s estimate of a family’s ability to contribute is determined annually in accordance with nationally established guidelines.

Eligibility for each type of assistance varies, depending upon the source of funds. Assistance offered by Caltech includes federal, state, and institutional grants, subsidized part-time jobs, and low-interest loans. U.S. citizens or eligible noncitizens (as defined in the Free Application for Federal Student Aid [FAFSA]) may apply for state and federally funded programs. International students may apply for institutionally funded programs.

Students should not wait to be accepted for admission to Caltech before applying for financial aid. Applications for admission are evaluated separately from requests for financial aid. Students with complete financial aid applications on file will be considered for all applicable types of need-based assistance. A renewal application must be submitted each year. In addition to direct financial assistance, information is available, upon request, about education payment plans and financial-planning resources. (For information on non-need-based scholarships and prizes, see pages 152 and 165-173.)

All students who believe they will need assistance to attend Caltech are encouraged to submit financial aid applications.

The Financial Aid staff is happy to talk with students and their families at any time to explain the application process, Caltech’s computations, and available programs. For further information on the determination of financial need and on application procedures, as well as on financial aid awards and programs, contact the Financial Aid Office, California Institute of Technology, Mail Code 110-87, Pasadena, CA 91125, call (626) 395-6280, or visit the Caltech Financial Aid Office home page at http://www.finaid.caltech.edu.

How to Apply for Financial Aid

Slightly different procedures and deadlines exist for each category of students applying for financial aid. Detailed descriptions of these procedures and deadline dates may be found on the Caltech Financial Aid Office website at http://www.finaid.caltech.edu.

Application Process for Caltech and Federal Financial Aid for Entering Students (U.S. citizens and eligible noncitizens)

The College Scholarship Service (CSS) Financial Aid PROFILE application and the Free Application for Federal Student Aid (FAFSA) forms are both required of all applicants (with the exception of international applicants, who should review the specific procedures listed on page 146) for Caltech need-based assistance. These forms provide essential information about the applicant’s family financial picture and enable the Financial Aid Office to determine eligibility for federal, state, and Caltech financial assistance.

Please note the following steps for filing the CSS Financial Aid PROFILE and FAFSA forms:

Step 1
To receive a 2006–07 CSS Financial Aid PROFILE application, students may register by connecting to the College Board Online at http://www.collegeboard.com after October 1, 2006. Complete the PROFILE with Caltech’s CSS Code 4034. Those filing online have several payment options: credit card (MasterCard, Visa, Discover, American Express); debit card (MasterCard, Visa); or online check. The electronic customized PROFILE application is available online within minutes of registering.

Step 2
Complete the customized PROFILE application and submit it to CSS for processing. CSS will then report the financial information to the colleges listed.

Step 3
Students must also complete the Free Application for Federal Student Aid (FAFSA) in early January. The Internet version of the FAFSA is available after January 1, 2006, at http://www.fafsa.ed.gov. Complete the FAFSA with Caltech’s code 001131 and submit according to the schedule below. The completed FAFSA is required to determine eligibility for federal and state financial aid programs. As with the PROFILE, it is advisable to estimate income information in order to meet the priority deadline—please do not wait until federal tax returns are complete before filing your FAFSA.
Types of Aid Available

Once financial need has been determined, that need will be met either by a single type of aid or by a combination of grants or scholarships, student employment, and low-interest loans. Such a combination is called a financial aid “package.”

Grants and scholarships, which include those provided both through Caltech and by the federal and state governments, do not have to be repaid. Employment wages are funds earned during the academic year either on or off campus. Employment opportunities exist for students who wish to work to help meet their educational costs. Loans are a sound means of meeting a portion of current educational expenses by borrowing against future earnings. Loans, of course, must be repaid.

Disbursement of Funds

Financial aid funds are disbursed depending on the type of aid and its source:

- **Caltech grants, scholarships, and merit awards, as well as state and federal grants,** are automatically credited to the student’s account, in equal amounts, at the beginning of each academic term.

- **Federal Perkins Loans, Direct Stafford Loans, and Caltech Loans** are also credited each term, in equal amounts, to the student’s account.

- **Federal Perkins and Caltech Loans** require that the borrower complete a Borrower Data Sheet and sign a promissory note for each academic year loan. These forms are available at the Bursar’s Office.

- **Federal Perkins Loan borrowers** must read and sign an Entrance Interview form.

- **Federal Direct Stafford Loan borrowers** must complete the Entrance Interview process and must sign an Entrance Interview form prior to receiving their loan. The Entrance Interview is available online at https://schools.dlssonline.com/index.asp or in person.

- **Paychecks (for actual hours worked)** from Federal Work Study and CIT Work Study earnings are disbursed to students at the work site on a biweekly basis.

- **Outside scholarships** are disbursed according to the sponsor’s specifications. If the funds are sent to the Financial Aid Office, they will be credited to the student’s account.

Note: For information on Federal Direct PLUS loan disbursements, please see page 156.

Grants and Scholarships

Caltech Grants are gifts awarded from an institutional fund or endowment specifically established for the purpose of assisting undergraduates. The amount of the award depends entirely on
demonstrated financial need and is subject to available funds. Caltech Grants are renewable based on demonstrated financial need, which is assessed annually when students apply for financial aid.

“Named” scholarships replace need-based Caltech grants, and are awarded to undergraduates from money given by individuals or organizations for scholarship purposes and are named by or for the donor. All aid applicants who meet the specifications of the donor are considered for a named scholarship. No special application need be filed. Since many donors are lifelong friends of the Institute and enjoy hearing about student life at Caltech today, recipients may be asked to write a thank-you letter to one or more donors.

Federal and State Grants

The Federal Pell Grant Program is for undergraduate students who have not yet completed a baccalaureate degree. Eligible students may receive Federal Pell Grants for the period of time necessary to complete a first undergraduate baccalaureate degree.

The Federal Pell Grant program is intended to be the “floor” of the student's financial aid package. This is usually the first program for which a student's eligibility is determined. Many other federal aid programs require that a student's Federal Pell Grant eligibility be considered prior to determining eligibility for other aid. Application for a Federal Pell Grant is made by using the Free Application for Federal Student Aid (FAFSA). Applicants will receive a Student Aid Report (SAR) directly from the FAFSA processor. Upon receipt of the SAR, students should review it for accuracy.

If eligible, the exact amount of the student's award will be determined by the Financial Aid Office after verification of the data based upon the cost of attendance, the expected family contribution, and the student's enrollment status.

In 2005–06, Pell Grant awards will range up to $4,050 per year.

The Federal Supplemental Educational Opportunity Grants (FSEOG) Program provides grant funds for undergraduate students who have not completed their first baccalaureate degree and who are financially in need of this grant in order to pursue their education. Awards of FSEOG funds must be made first to students who show exceptional financial need (defined as those students with the lowest federal expected family contribution at the Institute). Priority for FSEOG funds must be given to Pell Grant recipients. No additional application is required. These grants are contingent upon federal appropriations. The minimum annual FSEOG award is $100, and the maximum annual award is $4,000.

Cal Grants are awarded to California residents by the California Student Aid Commission (CSAC). All students who are eligible to apply are required to do so each year at the time they apply for Caltech assistance. Students should complete a FAFSA and Cal Grant GPA Verification Form. Results from the FAFSA are sent by the processor to the CSAC, where eligibility is determined. Renewal materials are mailed to current recipients at their permanent addresses each year in December. Students must renew their Cal Grant eligibility on an annual basis by completing the FAFSA.

The Cal Grant deadline for new and continuing students is March 2.

Cal Grant A, which is awarded on the basis of financial need and academic achievement, is designed to assist with the cost of tuition and fees.

Cal Grant B is awarded to students from disadvantaged/low-income families. During the first year, Cal Grant B recipients are awarded a monthly stipend for living costs. Renewal Cal Grant B recipients are awarded the monthly stipend and, in addition, assistance with tuition and fees.

Many other states provide scholarships and grants. A complete list of state scholarship agencies and their addresses is available from the Financial Aid Office. Students should contact the agency in their state of residence regarding programs available and application procedures.

Self-Help: Employment and Loans

A self-help award is a combination of loans and employment opportunities available to help meet school expenses. At Caltech, in order to meet their expected self-help contribution, students are offered a suggested combination of loan and employment opportunities. Students can choose how much they wish to earn and how much they wish to borrow, or they may decide to work or borrow less than the standard self-help amount. These choices will not affect the amount of their grant.

The amount of self-help expected of a student is established yearly by the Institute. For the 2005–06 academic year, a freshman typically was awarded $3,250 ($1,625 loan and $1,625 work) toward educational expenses. An eligible student is first awarded a combination of work and/or loan, with any remaining need being met with grant assistance.

Employment

Work programs offer students a double incentive—earning money to help meet college expenses plus gaining valuable job experience. In the competitive job market, employers look for applicants who have work experience in addition to their education.

Student employment is generally available to all students regardless of whether they apply for financial aid. Interested students should contact the Caltech Career Development Center. Undergraduate students must receive approval from the dean of students to work. Students typically work less than 10 hours per week. Freshman students may not work during fall term. In subsequent terms, they must receive permission from the dean of students to work before accepting their first work assignment.
The Federal Work Study Program provides jobs for eligible students who demonstrate need for such earnings to meet a portion of their educational expenses. Jobs may be located on campus or off campus. The employer may be Caltech; a federal, state, or local public agency (such as Caltech’s Jet Propulsion Laboratory); or a private nonprofit organization, such as a community service agency. Beginning with the 1994–95 school year, Caltech placed an increased emphasis on placing Federal Work Study students in community service jobs.

The maximum amount of Federal Work Study wages that students may earn is determined by financial need. To locate a job, the student may contact the campus Career Development Center, the student newspaper, faculty, and offices on campus. Summer Federal Work Study is also available for continuing students.

The Caltech Work Study Program is funded by the Institute to provide part-time employment for international students who have demonstrated financial need. This program is limited to the campus or JPL. The program is designed to parallel the Federal Work Study Program, and the same guidelines apply to its administration. Summer Caltech Work Study Program funding is also available for continuing students.

Loans
Loans are a valuable resource for many students and their families in financing a college education. Loans allow students to postpone paying a portion of their education costs until they complete their education or leave school. Loan repayment generally extends up to 10 years after students graduate or leave school. Loan repayment begins nine months after leaving school or dropping below half-time status. For Caltech Loans, interest is then charged at a rate of 5 percent on the unpaid balance until the loan has been repaid in full. Institute Loans are interest-free. As with Federal Perkins Loans, if the student transfers to another institution or attends graduate school, no payments need be made on the principal or interest as long as half-time attendance is maintained. More specific information is provided to each borrower on the promissory note and in a disclosure statement given to students prior to disbursement of the loan.

Cecil L. Kilgore Student Loans are available to members of all undergraduate and graduate classes, including freshmen, under the same general guidelines established for Caltech Loans as described above. It is the fund’s policy to make loans available at the lowest possible cost to the student, with priority given to students in the field of power engineering.

Other Loans/Emergency Loans may be available to students regardless of their eligibility for financial aid. The Hoover Loan Fund enables students to borrow small sums of money to cover unforeseen emergencies. These loans are usually payable within the same academic year and are administered by the dean of students on a case-by-case basis. Additional information and applications may be obtained from the Dean of Students’ Office.

The Caltech Y also has a no-interest, 30-day, emergency-loan program. Maximum loans are $50. Additional information and applications may be obtained from the Caltech Y.

The Federal Direct Student Loan Program is an opportunity for students to borrow money from the federal government to pay for a Caltech education. Under this program, the U.S. Department of Education makes loans, through Caltech, directly to students. Caltech will use the Federal Direct Loan to pay tuition and fees, as well as room and board charges, and will give any remaining money to the student for personal expenses. Federal Direct Loans simplify loan repayment—payments go directly to the federal government.

For detailed information on Direct Loan programs and repayment plans, please see pages 154–164.

Alternative Loan and Payment Options
Several private organizations offer a variety of financing options (such as monthly payment plans and long-term loans) to assist students and families in meeting college expenses. Information describing these programs is available upon request from the Caltech Financial Aid Office and on the Caltech Financial Aid home page at http://www.finaid.caltech.edu.
Merit Awards

Merit Awards are awarded annually to returning students solely on the basis of academic merit. Financial need is not considered in the selection process. These Upperclass Merit Awards include the endowed Caltech Upperclass Merit Awards, Carnation Scholarships, Rosalind W. Alcott Awards, and the John Stauffer Scholarship (chemistry major). The Faculty Committee on Scholarships and Financial Aid recommends a number of Caltech’s most academically talented students for receiving merit awards their sophomore, junior, and/or senior year. In 2005–06, students were awarded Caltech Merit Awards in amounts ranging from three-fourths of tuition to full tuition, and room and board. The honor is recorded on academic transcripts and listed in the commencement program when the scholar graduates.

In addition, the Freshman Admissions Committee selects admitted freshmen for a limited number of merit-based awards. No separate application is required. Selected students will be notified by the Admissions Office.

Several corporations offer partial- or full-tuition scholarships to students demonstrating particular talent in the options that represent the types of expertise the corporations need in their research and development groups. As these and other organizations announce competitions throughout the year, eligibility criteria and deadlines are advertised by the Financial Aid Office in the student newspaper—the California Tech—and on the Financial Aid Office home page at http://www.finaid.caltech.edu.

Financial Aid When Studying Abroad

Caltech provides student financial aid (in the form of grants, scholarships, and loans) to those undergraduates with demonstrated financial need who desire to participate in the Institute-sponsored Caltech Cambridge Scholars Program, Caltech Copenhagen Scholars Program, or Caltech University College London Scholars Program. Enrollment in a study-abroad program approved for credit by Caltech will be considered enrollment at the Institute, for the purpose of applying for and receiving federal student financial assistance. To be eligible for consideration in Caltech's Cambridge, Copenhagen, or University College London Scholars Program, students must be in good academic standing, as defined in the Caltech Catalog and as certified by the Institute's registrar. They must also meet the minimum GPA requirement as outlined in the information provided by the Fellowships Advising and Study Abroad Office. In addition, students selected to be Cambridge, Copenhagen, or University College London Scholars will be provided a Memo of Understanding outlining the terms of their study abroad participation. (For more information on study abroad, see pages 128–130.)

For eligible students wishing to study abroad, the costs will not exceed the prorated costs of attending Caltech for the same academic period. These costs include but are not limited to tuition, fees, room, board, additional meals not covered by a board contract, books, supplies, personal expenses, and a standard transportation allowance from the student’s home to Caltech. Transportation expenses related to the student's travel between Caltech and the study abroad institution are the responsibility of the student. The eligible student will have his or her expected family contribution and financial package calculated in the same manner as other students. Because students are usually unable to work while out of the country, they will receive a larger loan component as part of their financial aid award to compensate for their inability to work. Students studying abroad are subject to the standard Caltech policy of a maximum of 12 terms of eligibility for financial aid.

Cambridge, Copenhagen, and University College London Scholars candidates must meet all financial aid priority deadlines and eligibility requirements to receive aid. It is the student’s responsibility to ensure that all necessary documents are filed and complete with regard to their application for financial aid. Cambridge, Copenhagen, University College London, and University of Edinburgh Scholars will continue to be considered for available federal, state, and Caltech grant, scholarship, and loan funds. The Fellowships Advising and Study Abroad Office will make the necessary arrangements with the Bursar's Office to ensure that scholars who may be eligible for funds in excess of the direct charges to the Institute receive those funds prior to their departure.

Other Resources

A number of both local and national organizations offer outside scholarships to continuing students throughout the year, some of these regardless of need. The student newspaper, the California Tech, announces eligibility criteria for several such scholarships. Those relevant to undergraduate students will also be posted in the Scholarship News section of the Caltech Financial Aid Office home page. Such scholarships can also often be found with the help of a search service. We recommend FastWeb, SRN, ExPAN, MACH25, CASHE, and Fund Finder. (For more information on scholarship services, go to http://www.finaid.org.) Outside scholarships acquired by students are considered, by federal regulation, to be a resource available during the academic year. In general, the amount of each outside merit award will be used to replace a like amount of the self-help (work and/or loan) portion of the financial aid award. If the amount of the outside award exceeds the self-help portion, the excess amount will replace Caltech grant eligibility (it will not replace the expected family contribution).
Satisfactory Academic Progress

In order to continue to receive financial aid at Caltech, students must maintain satisfactory academic progress toward completion of the baccalaureate degree as defined on pages 136–137 and 173. Whenever this is not maintained, approval for reinstatement by the Undergraduate Academic Standards and Honors Committee, the registrar, or the dean of students (as described on pages 133–135) shall reestablish satisfactory progress for purposes of financial aid eligibility.

In general, assistance is available to eligible students for the first 12 terms of enrollment (or the equivalent for transfer or less-than-full-time students). Exceptions may be approved after submission of a petition to the Financial Aid Office. Petition forms are available in the Financial Aid Office.

Class Level

For loan purposes, undergraduate students are classified according to the number of units earned and the number of terms of residence at Caltech. Both these criteria must be satisfied for class-level eligibility. Students are regarded as freshmen until eligible for sophomore status, and as sophomores, juniors, or seniors if they meet the corresponding criteria set below. Units earned are defined as units completed with a passing grade.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Minimum Units Earned</th>
<th>Minimum Terms in Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore</td>
<td>108</td>
<td>3</td>
</tr>
<tr>
<td>Junior</td>
<td>216</td>
<td>6</td>
</tr>
<tr>
<td>Senior</td>
<td>324</td>
<td>9</td>
</tr>
</tbody>
</table>

Part-Time Enrollment (Underloads)

Underloads (see page 138) must be approved by the registrar or the Undergraduate Academic Standards and Honors Committee. Students enrolled half-time (taking 18 to 26 units) will be expected to work additional hours during the academic year, as well as to accept a reduction in the books and supplies allowance of their college expense budget. All students planning to carry an underload (less than 36 units) should contact the Financial Aid Office.

Direct Loan Programs and Repayment Plans

Direct loans include

1. the Federal Direct Stafford Loan Program;
2. the Federal Direct Unsubsidized Stafford Loan Program;
3. the Federal Direct PLUS Loan Program; and
4. the Federal Direct Consolidation Loan Program.

Federal Direct Stafford Loan

The Federal Direct Stafford Loans (subsidized and unsubsidized) are available to both graduate and undergraduate students. The federal government “subsidizes” a loan by paying the interest while the student is in school, during the grace period, and during periods of deferment. For an unsubsidized loan, the government does not provide the subsidy; therefore, interest on the loan accrues during those periods. The calculated family contribution is taken into consideration when determining a student’s need for a subsidized loan. To determine eligibility for an unsubsidized loan, the family contribution is not considered. Other than these two differences, the provisions of the Federal Direct Stafford Loan Program apply to both subsidized and unsubsidized loans (i.e., loan limits, deferment provisions, etc.).

Before Caltech can determine loan eligibility, a determination of the student’s eligibility for a Federal Pell Grant must be made. In order to make this determination, the applicant must complete a Free Application for Federal Student Aid (FAFSA).

Subsidized Federal Direct Stafford Loans may not be used to substitute for the federally calculated expected family contribution; however, Federal Direct Unsubsidized Stafford Loans may be used in this capacity. Before a student can apply for a Federal Direct Unsubsidized Stafford Loan, eligibility for a subsidized loan will be determined. To reiterate, Federal Direct Unsubsidized Stafford Loan borrowers are not required to demonstrate need in order to be eligible. However, if the student is eligible for a Subsidized Federal Direct Stafford Loan, he or she will be awarded that loan first, and this award will be taken into consideration when determining eligibility for the Federal Direct Unsubsidized Stafford Loan. The amount borrowed under the subsidized and unsubsidized loans combined may not exceed the annual/aggregate loan limits, or the total cost of education.

The following chart summarizes loan limits for Federal Direct Stafford Loans and Federal Direct Unsubsidized Stafford Loans.

<table>
<thead>
<tr>
<th>Maximum Loan Amount for a Full Academic Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Student</td>
</tr>
<tr>
<td>Maximum combined subsidized & unsubsidized Federal Direct Stafford Loan</td>
</tr>
<tr>
<td>1st year undergraduate</td>
</tr>
<tr>
<td>2nd year undergraduate</td>
</tr>
<tr>
<td>3rd & 4th year undergraduate</td>
</tr>
<tr>
<td>Graduate/Professional</td>
</tr>
<tr>
<td>Independent Student</td>
</tr>
<tr>
<td>Maximum combined subsidized & unsubsidized Federal Direct Stafford Loan</td>
</tr>
<tr>
<td>1st year undergraduate</td>
</tr>
<tr>
<td>2nd year undergraduate</td>
</tr>
<tr>
<td>3rd & 4th year undergraduate</td>
</tr>
<tr>
<td>Graduate/Professional</td>
</tr>
</tbody>
</table>
Repayment Plans

Under the Direct Loan program, student borrowers have four types of repayment plans available:

1. the Standard Repayment Plan;
2. the Extended Repayment Plan;
3. the Graduated Repayment Plan; or
4. the Income Contingent Repayment Plan.

The plans vary in a number of ways to meet the different needs of individual borrowers. The following information describes these plans and provides suggestions on how to choose among them.

Standard Repayment

Minimum monthly payment $50
Maximum number of monthly payments 120 (10 years)

Under this plan no more than 120 monthly payments are required, and for small loan amounts, the number of monthly payments can be less than 120. Each monthly payment will be at least $50, and may be more if necessary to repay the loan within 10 years (excluding periods of deferment or forbearance). The number of monthly payments will be adjusted to reflect changes in the variable interest rate. This means that as the rate varies, the monthly amount will remain the same unless the borrower requests that the repayment amount be changed.

Extended Repayment

Minimum monthly payment $50
Maximum number of monthly payments see table

Loan Amount and Maximum Number of Monthly Payments for the Extended and Graduated Repayment Plans

<table>
<thead>
<tr>
<th>Amount of Debt</th>
<th>Maximum number of Monthly Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least $0</td>
<td>Less than $10,000</td>
</tr>
<tr>
<td>10,000</td>
<td>180</td>
</tr>
<tr>
<td>20,000</td>
<td>240</td>
</tr>
<tr>
<td>40,000</td>
<td>300</td>
</tr>
<tr>
<td>60,000</td>
<td>360</td>
</tr>
</tbody>
</table>

Under this plan, the maximum number of months that payments are due (excluding periods of deferment or forbearance) depends on the loan amount. Each monthly payment will be at least $50 and may be more if necessary to pay off the loan in the maximum number of repayment months. The number of monthly payments will be adjusted to reflect changes in the variable interest rate. This means that as the rate varies, the monthly amount will remain the same unless the borrower requests that the repayment amount be changed.
Graduated Repayment

Minimum monthly payment $25
Maximum number of monthly payments see table above

Under the Graduated Repayment Plan, payments are lower at first and will increase over a period of time that varies depending on the amount borrowed. The minimum monthly payment is the larger of 50 percent of the amount that would be required under the Standard Repayment Plan or the amount of interest that accrues monthly on the loan. The maximum number of months the borrower will pay excludes periods of deferment and forbearance and depends on the loan amount (see table above). With this plan the monthly payment amount during the earlier portion of the repayment period is reduced. Later in the repayment period, the monthly payment amount will increase, but will never be more than 150 percent of the amount required by the Standard Plan. The monthly repayment amount is increased (graduated) every two years. The number of monthly payments will be adjusted to reflect changes in the variable interest rate. This means that as the rate varies, the monthly amount will remain the same unless the borrower requests that the repayment amount be changed.

Income Contingent Repayment

Minimum monthly payment Generally none
(in certain circumstances, $15—see table, page 162)

Maximum number of monthly payments 300 months (25 years)
Federal Direct PLUS Loans and Federal Direct PLUS Consolidation Loans are not eligible for Income Contingent Repayment (ICR).

Effective July 1, 1996, borrowers who enter repayment will pay an amount based on the Adjusted Gross Income (AGI) they report on their federal tax return, or, if they submit alternative documentation of income, they will pay an amount based on current income. If the borrower is married, the amount he or she will pay will be based on the borrower’s income and the spouse’s income. Under this ICR Plan, the borrower will pay the lesser of

1. the amount one would pay if he or she repaid his or her loan in 12 years multiplied by an income percentage factor that varies with annual income, or
2. 20 percent of the borrower’s discretionary income, which is the AGI minus the poverty level for the family size.

If the borrower is in his or her first year of repayment, he or she will be required to submit alternative documentation of current income (that is, other than IRS-reported AGI) to the Department of Education. He or she may still be required to submit documentation of spouse’s income. In addition, the borrower may choose to submit alternative documentation of current income, if special circumstances, such as loss of employment for the borrower or his or her spouse, warrant an adjustment to the monthly payment.

Please note that if the borrower is married and submits alternative documentation of income for any of the reasons discussed above, he or she will also be required to submit alternative documentation for his or her spouse.

If the borrower’s income is less than or equal to the poverty level for the borrower’s family size, the monthly payment will be zero. If the calculated monthly payment is greater than zero but less than $5, the borrower will be required to make a $5 monthly payment. If the monthly payment is calculated to be more than $5, he or she will be required to pay that calculated amount.

The total AGI of both the borrower and his or her spouse (if married) will be used to calculate the monthly payments under the ICR Plan. The borrower will be required to provide his or her spouse’s written consent to disclose tax-return information. Further, if the borrower submits alternative documentation as noted above, he or she will be required to submit alternative documentation of spouse’s income.

If the borrower’s spouse has a Direct Loan, he or she can repay loans jointly. The repayment will be based on the joint income. While one is not required to repay loans jointly, it is important to remember that if only one spouse chooses to repay under the ICR Plan, the Department of Education will use the AGI (or alternative documentation of income) of the borrower and his or her spouse to determine the monthly payments.

Choosing a Repayment Plan

In selecting a repayment plan, there are several factors to understand before making a decision.

The Standard Repayment Plan has a shorter repayment term than under the other plans. This means the loan is paid off more quickly, and the amount of interest paid will be less than if the other plans were selected. However, the Standard Repayment Plan requires higher monthly payment amounts. If one will be able to pay a higher monthly amount, the Standard Repayment Plan may be best. If the higher repayment amount would be difficult or uncertainty exists about income level, one of the other repayment plans may be best.
The Extended or Graduated Plan features a longer repayment term. As a result, the monthly payment is lower than under the Standard Plan (unless the minimum monthly payment applies), but more interest over the life of the loan will be paid. Under the Extended Plan, the payments are fixed amounts and less interest is paid than under the Graduated Plan.

The Income Contingent Repayment Plan features monthly repayment that will vary with the borrower’s income. When income is low, one probably will have a longer repayment period than under one of the other repayment plans. As a result, a greater amount of interest is repaid over the repayment period but it may be easier to keep up with the monthly payments. If the borrower’s income grows, the monthly repayment amount increases. This would reduce the repayment period and result in repaying a smaller total amount of interest over the repayment period. If the borrower’s income is high and he or she chooses to limit the monthly repayment to the amount he or she would be required to pay if the loan was repaid over 12 years in equal monthly installments, the repayment period is extended, which results in more total interest paid. However, this also helps to ensure that one’s payment will be manageable.

If a consistent monthly payment amount is important throughout the repayment period, select either the Standard or the Extended Plan. On the other hand, if the borrower’s income is expected to increase as time passes, it might be preferable to make smaller loan payments at first and larger payments later in one’s career. If so, select the Graduated Repayment Plan.

Remember: One can prepay all or part of a student loan at any time without a prepayment penalty.

For more details, see the chart on page 162, “Examples of Debt Levels, Beginning Monthly Payments, and Total Amounts Repaid for all Direct Loan Repayment Plans.”

If a plan is not selected, the Standard Repayment Plan will be assigned. For help deciding which repayment plan to choose, call the Direct Loan Servicing Center at (800) 848-0979. If none of these plans seems feasible, the Direct Loan Servicing Center will help create a plan that meets a borrower’s individual needs.

Changing Repayment Plans

One may experience significant changes in life during the repayment period. The borrower may change or lose jobs, receive salary increases or promotions, or choose to work in a career that provides less income than expected when a repayment plan was selected. The borrower can change repayment plans annually to adjust to these changing circumstances (unless repaying a defaulted loan under the Income Contingent Repayment Plan). There is no limit to the number of times plans can be changed. If repaying under the Income Contingent Repayment Plan, one can choose the 12-year payment limit or remove the limit on the monthly amount once per year.

To change plans, the borrower can

■ change to the Income Contingent Repayment Plan at any time. The repayment term will be 25 years, less any time previously spent in the Income Contingent, Standard, and/or Extended (12 year period only) Repayment Plans. Time spent in the Extended Plan under the 15- to 30-year periods and the Graduated Repayment Plan does not count toward the 25-year maximum term;

■ change to another plan as long as that plan has a repayment term greater than the amount of time one already has been in repayment. For example, the borrower can change from the Extended Plan to the Standard Plan only if he or she has been in the Extended Plan less than 10 years. If this type of change is made, the remaining repayment term will be determined by subtracting the amount of time already in repayment from the term allowed for the new plan. For example, if the borrower has been on the Extended Plan for three years and then converts to the Standard Plan in order to pay off the loan more quickly and reduce the interest expense, he or she will have a maximum of seven years left to repay the loan.

If repaying a Federal Direct Consolidation Loan (Direct Consolidation Loan) that one agreed to repay under the Income Contingent Repayment Plan due to a previous defaulted loan, the borrower must make six consecutive monthly payments before changing to another plan.

Loan Consolidation

If the borrower has several student loans (including other federal education loans), it may be to his or her advantage to consolidate loans into a single Direct Consolidation Loan. Consolidation means making only a single monthly payment to cover all of one’s federal loans.

Because the interest rate will be the same as for Direct Loans, the borrower may also be able to pay less interest than he or she is paying on current loans. The borrower can choose the repayment plan that best suits his or her financial circumstances.

Note: If the borrower wants to consolidate during the grace period, he or she should wait until the last month of the grace period to apply. Repayment on consolidation loans begins within 60 days of the first loan disbursement, which means the grace period would be cut short if the borrower applied too early.

Once the borrower leaves school, he or she can consolidate a Federal Family Education Loan (FFEL) under Direct Loans only if an FFEL consolidation loan or an FFEL consolidation loan with income-sensitive repayment terms acceptable to him or her cannot be obtained.
Similar conditions apply to parents. They must have an outstanding balance on a Direct PLUS Loan or a Federal PLUS Loan, and at least one spouse must meet the requirements for loan consolidation. If the borrower is married, both spouses must agree either to repay the loan under the loan's original terms or to consolidate the loan. If the borrower's spouse does not agree to the new terms, the loan cannot be consolidated. Even defaulted loans may be consolidated if the borrower agrees to repay the loan under the loan's original terms.

Example of Debt Levels, Beginning Monthly Payments, and Total Amounts Repaid for All Federal Direct Stafford Loan Repayment Plans

<table>
<thead>
<tr>
<th>Initial debt when loan enters repayment</th>
<th>Standard</th>
<th>Extended</th>
<th>Graduated</th>
<th>Income Contingent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,500</td>
<td>$50</td>
<td>$3,074</td>
<td>$50</td>
<td>$3,074</td>
</tr>
<tr>
<td>$5,000</td>
<td>64</td>
<td>7,269</td>
<td>55</td>
<td>7,269</td>
</tr>
<tr>
<td>$7,500</td>
<td>92</td>
<td>11,999</td>
<td>82</td>
<td>11,999</td>
</tr>
<tr>
<td>$10,000</td>
<td>123</td>
<td>14,781</td>
<td>97</td>
<td>14,781</td>
</tr>
<tr>
<td>$15,000</td>
<td>184</td>
<td>22,077</td>
<td>146</td>
<td>20,194</td>
</tr>
<tr>
<td>$20,000</td>
<td>245</td>
<td>29,367</td>
<td>170</td>
<td>30,009</td>
</tr>
<tr>
<td>$25,000</td>
<td>307</td>
<td>36,796</td>
<td>213</td>
<td>51,124</td>
</tr>
<tr>
<td>$30,000</td>
<td>368</td>
<td>44,155</td>
<td>256</td>
<td>61,349</td>
</tr>
<tr>
<td>$40,000</td>
<td>491</td>
<td>58,733</td>
<td>345</td>
<td>94,644</td>
</tr>
<tr>
<td>$50,000</td>
<td>643</td>
<td>75,592</td>
<td>394</td>
<td>182,568</td>
</tr>
<tr>
<td>$75,000</td>
<td>920</td>
<td>110,887</td>
<td>563</td>
<td>282,842</td>
</tr>
<tr>
<td>$100,000</td>
<td>1,227</td>
<td>147,185</td>
<td>731</td>
<td>270,476</td>
</tr>
</tbody>
</table>
| Note: Months of payments are calculated using a constant interest rate for loans on or after July 1, 2006 and calculated at 5%.

1. Assumes a 5% annual income growth.
2. Note: Married couples may consolidate their loans jointly.
3. Note: Marital status changes may affect eligibility for credit benefits.

Direct Stafford Loans
• Federal Stafford Loans
• Federal Perkins Loans
• Federal Pell Loans

Direct Graduate Loans
• Federal Direct Graduate PLUS Loans

Direct Unsubsidized Loans
• Federal Direct Unsubsidized Loans

Direct Stafford Loans
• Federal Direct Stafford Loans

Direct Unsubsidized Loans
• Federal Direct Unsubsidized Loans

Federal Direct Stafford Loans
• Federal Direct Stafford Loans

Federal Direct Unsubsidized Loans
• Federal Direct Unsubsidized Loans

Federal Direct Perkins Loans
• Federal Direct Perkins Loans
Prizes

Rosalind W. Alcott Merit Scholarship, Caltech Upperclass Merit Scholarships, Carnation Scholarships, and John Stauffer Merit Scholarship

Each year Caltech awards these prizes for academic excellence to continuing students. They are based solely on merit (selection is made on the basis of grades, faculty recommendations, and demonstrated research productivity) with no consideration given to need or any other nonacademic criterion.

Robert P. Balles Caltech Mathematics Scholars Award

An annual prize of $1,000 is awarded to the mathematics major entering his or her senior year who has demonstrated the most outstanding performance in mathematics courses completed in the student’s first three years at Caltech. The executive officer for mathematics, in consultation with the faculty, determines the recipient. The prize is made possible by a gift from Mr. Robert P. Balles.

Mabel Beckman Prize

The Mabel Beckman Prize is given in memory of Mrs. Beckman’s many years of commitment to Caltech’s educational and research programs. The $3,000 prize is awarded to an undergraduate woman who, upon completion of her junior or senior year at Caltech, has achieved academic excellence and demonstrated outstanding leadership skills, a commitment to personal excellence, good character, and a strong interest in the Caltech community.

Eric Temple Bell Undergraduate Mathematics Research Prize

In 1963 the department of mathematics established an Undergraduate Mathematics Research Prize honoring the memory of Professor Eric Temple Bell, and his long and illustrious career as a research mathematician, teacher, author, and scholar. His writings on the lives and achievements of the great mathematicians continue to inspire many hundreds of students at Caltech and elsewhere.

A prize of $500 is awarded annually to one or more juniors or seniors for outstanding original research in mathematics, the winners being selected by members of the mathematics faculty. The funds for this prize come from winnings accumulated over the years by Caltech undergraduate teams competing in the William Lowell Putnam Mathematics Contest, an annual nationwide competition.

Bhansali Prize in Computer Science

The Bhansali Prize was established in 2001 by Vineer Bhansali (B.S. ’87, M.S. ’87) in memory of his grandfather, Mag Raj Bhansali. The prize and honorarium are awarded to an undergraduate student for outstanding research in computer science in the
current academic year. Awardees are selected by a committee of computer science faculty.

Marcella and Joel Bonsall Prize for Technical Writing
The Marcella and Joel Bonsall Prize for Technical Writing was established by the late Marcella Bonsall to encourage SURF students to develop excellent technical writing skills. Mentors may nominate their students' papers for consideration. A faculty committee recommends the winning papers. Five prizes can be awarded annually, a first prize of $500; second prize, $300; and three $200 third prizes.

Richard G. Brewer Prize in Physics
The Richard G. Brewer Prize is awarded to the freshman with the most interesting solutions to the Physics 11 “hurdles,” in recognition of demonstrated outstanding intellectual promise and creativity at the very beginning of his or her Caltech education.

The award is a stipend that will support the student for the summer while he or she works on an independent Physics 11 project. This award is made possible by a gift from Dr. Richard G. Brewer, a Caltech alumnus who received his B.S. degree in chemistry in 1951.

Fritz B. Burns Prize in Geology
This prize is awarded to an undergraduate who has demonstrated both academic excellence and great promise of future contributions in the fields represented by the Division of Geological and Planetary Sciences.

Bonnie Cashin Prize for Imaginative Thinking
This $5,000 prize, established in 1997 by Bonnie Cashin, is awarded each year to the entering freshman who has written the most imaginative essays in the Application for Freshman Admission. The Freshman Admissions Committee will nominate awardees to the vice provost, who will approve the selection. The award may be shared if there is more than one deserving student in a particular year.

Donald S. Clark Memorial Awards
From a fund contributed by the Caltech Alumni Association, annual awards of $1,000 are made to two juniors in engineering options. The award recognizes service to the campus community and a grade point average equal to or greater than that required for graduation with honor. The awards honor the work of Professor Clark, class of 1929, both in the field of engineering and in his service to the Alumni Association.

Deans’ Cup and Campus Life and Master’s Award
Two or more awards, selected by the deans, the assistant vice president for campus life, and the master of student houses, respectively, are presented to undergraduates whose concern for their fellow students has been demonstrated by persistent efforts to improve the quality of undergraduate life and by effective communication with members of the faculty and administration.

Doris Everhart Service Award
The Doris Everhart Service Award is given annually to an undergraduate who has actively supported and willingly worked for organizations that enrich not only student life, but also the campus and/or community as a whole, and who has, in addition, exhibited care and concern for the welfare of students on a personal basis. The award was made possible by Sally V. Ridge and was established to honor Doris Everhart.

Richard P. Feynman Prize in Theoretical Physics
This prize was established through gifts in memory of Richard P. Feynman and the senior class gift of the class of 1989. It is awarded annually to a senior student on the basis of excellence in theoretical physics. The prize consists of a cash award and a copy of the three-volume set *The Feynman Lectures on Physics*.

Haren Lee Fisher Memorial Award in Junior Physics
Mr. and Mrs. Colman Fisher established the Haren Lee Fisher Memorial Award in Junior Physics in memory of their son. The General Electric Foundation also contributed to the fund under the matching plan of their Corporate Alumnus Program. A prize of $350 will be awarded annually to a junior physics major, who is selected by a physics faculty committee as demonstrating the greatest promise of future contributions to physics.

Henry Ford II Scholar Awards
Henry Ford II Scholar Awards are funded under an endowment provided by the Ford Motor Company Fund, a nonprofit organization supported primarily by contributions from the Ford Motor Company. Each award, up to $5,000, will be made annually either to the engineering student with the best academic record at the end of the third year of undergraduate study, or to the engineering student with the best first-year record in the graduate program. The chair of the Division of Engineering and Applied Science names the recipient.

Jack E. Froehlich Memorial Award
The family and friends of the late Jack E. Froehlich, who did his undergraduate and graduate work at Caltech and was later the project manager for Explorer I for the Jet Propulsion Laboratory,
one award, or none, may be made in any year. The award, presented at commencement, consists of a cash award and a certificate.

Alexander P. and Adelaide F. Hixon Prize for Writing
The Hixon Prize for Writing was established in 2000 by Alexander P. and Adelaide F. Hixon. The prize will be awarded annually to an undergraduate student for the best composition in a freshman humanities course. The prize is administered by the writing center, and the winner will be chosen by a committee from the Humanities division, with preference given to the paper best illustrating the relationship between the humanities and science and/or engineering.

Bibi Jentoft-Nilsen Memorial Award
Family and friends of Bibi Jentoft-Nilsen, class of 1989, have provided this award in her memory. The cash award of $500 is for an upperclass student who exhibits outstanding qualities of leadership and who actively contributes to the quality of student life at Caltech.

Scott Russell Johnson Undergraduate Mathematics Prize
This prize of $2000 is awarded to the best graduating mathematics major. The prize may be split between two students. In deciding on the winner, special consideration will be given to independent research done as a senior thesis or SURF project. The executive officer for mathematics, in consultation with the faculty, determines the recipient. The prize is made possible by a gift from Steve and Rosemary Johnson in memory of Scott Johnson, B.S. ’83.

D. S. Kothari Prize in Physics
This prize was established in 1998 in memory of Dr. D. S. Kothari, who received his Ph.D. under Lord Rutherford in 1933, and subsequently made significant contributions in theoretical astrophysics and science education. The award of $500 is given each year to a graduating senior in physics who has produced an outstanding research project during the past year.

Margie Lauritsen Leighton Prize
From a fund established by Dr. Fay Ajzenberg-Selove and Dr. Walter Selove, the departments of physics and astrophysics will annually award the Margie Lauritsen Leighten Prize to one or two undergraduate women who are majoring in physics or astrophysics, and who have demonstrated academic excellence. The prize consists of a cash award and will be made at the end of the sophomore year.
Doris S. Perpall SURF Speaking Prize
Robert C. Perpall (B.S. ’52, M.S. ’56) endowed this prize in memory of his late wife, Doris S. Perpall, to encourage students to prepare excellent SURF presentations. SURF Seminar Day is the first round of the Perpall Speaking Competition. The best presentations in each session are nominated for advancement to a second round, held in November. The final round is held in January. Three prizes are awarded annually, a first prize of $500; second prize, $300; third prize, $200.

Howard Reynolds Memorial Prize in Geology
The Howard Reynolds Memorial Prize in Geology is awarded to a sophomore or junior who demonstrates the potential to excel in the field of geology, and who actively contributes to the quality of student life at Caltech.

Herbert J. Ryser Scholarships
The Herbert J. Ryser Scholarships were established in 1986 in memory of H. J. Ryser, who was professor of mathematics at Caltech from 1967 to 1985. Professor Ryser contributed greatly to combinatorial mathematics and inspired many students with his carefully planned courses. The scholarships are given on the basis of merit, preferably in pure mathematics. Recipients are selected by the executive officer for mathematics after consulting the faculty. This year the scholarship is worth $6,000.

Richard P. Schuster Memorial Prize
This award is made from a fund established by family, friends, and colleagues of Richard P. Schuster, Jr., a graduate of Caltech and the Institute's director of development at the time of his death. The recipient is a junior or senior in chemistry or chemical engineering; selection is based on financial need and a demonstration of academic promise.

Eleanor Searle Prize in Law, Politics, and Institutions
The Eleanor Searle Prize was established in 1999 by friends and colleagues to honor Eleanor Searle, who was the Edie and Lew Wasserman Professor of History at Caltech. The prize will be awarded annually to an undergraduate or graduate student whose work in history or the social sciences exemplifies Eleanor Searle’s interests in the use of power, government, and law.

Don Shepard Award
Relatives and friends of Don Shepard, class of 1950, have provided this award in his memory. The award is presented to a student, the basic costs of whose education have already been met but who would find it difficult, without additional help, to engage in extracurricular activities and in the cultural opportunities afforded by the community. The recipients—freshmen, sophomores, and
Institute. The competition is open only to freshmen and sophomores. An entry consists of a mathematical problem together with a solution or a significant contribution toward a solution. One or more winners are selected by a faculty committee acting on the advice of student judges. Each prize of $75 is funded by the same source used to sponsor the Eric Temple Bell Prize.

Fredrick J. Zeigler Memorial Award
The Fredrick J. Zeigler Memorial Award was established in 1989 to honor Fredrick J. Zeigler, a member of the class of 1976 and an applied mathematics major. The award, which carries a cash prize of $2,500, is given to a pure or applied mathematics student in his or her sophomore or junior year. Selected by the faculty in pure and applied mathematics, the award recognizes excellence in scholarship as demonstrated in class activities or in the preparation of an original paper or essay in any subject area.

Note: Prizes and awards may be subject to federal and state income tax.

GRADUATION REQUIREMENTS, ALL OPTIONS

To qualify for a Bachelor of Science degree at the Institute, students must obtain passing grades in each of the required courses listed below; must satisfy the additional requirements listed under the undergraduate options; and must achieve a grade-point average of not less than 1.9. Students must also register for the appropriate number of units that results in normal progress toward a B.S. degree.

The requirements for the B.S. degree are the ones stated in the catalog published in the first year of a student’s enrollment at Caltech, under normal circumstances. Changes to those requirements can occur due to actions and decisions made by the student’s option, the registrar, the Curriculum Committee, or the Faculty Board. A student may elect to satisfy the requirements stated in a catalog from a different year than that under which the student was registered by first obtaining approval from the Registrar’s Office.

Students must register for the Institute requirements in the year specified, unless they have previous credit. If for some reason they are not able to complete the requirements during the proper year, they must register at the earliest possible opportunity. (The Curriculum Committee may in unusual cases excuse undergraduate students from any of the following Institute or option requirements upon presentation of petitions.)

The Institute unit system is described in the opening paragraphs of section five.
Core Institute Requirements, All Options

The following requirements are applicable to incoming freshmen for 2005–06 and subsequent years. Some information for continuing students has been provided as footnotes, but guidance on special cases must be sought. Courses used to satisfy core requirements may not be used to satisfy option electives.

Course Units
1. Freshman Mathematics (Ma 1 abc) 27
2. Sophomore Mathematics (Ma 2 ab) 18
3. Freshman Physics (Ph 1 abc) 27
4. Sophomore Physics (Ph 2 ab or Ph 12 abc4) 18
5. Freshman Chemistry (Ch 1 ab) 15
6. Freshman Biology (Bi 1)6 .. 9
7. Menu Class (currently Ay 1, Ch/APh 2, ESE 1, or Ge 1) 9
8. Freshman Chemistry Laboratory (Ch 3 a)3 6
9. Additional Introductory Laboratory 6
10. Scientific Writing1 .. 3
11. Humanities Courses (as defined below) 36
12. Social Sciences Courses (as defined below) 36
13. Additional Humanities and Social Sciences Courses 36
14. Physical Education .. 9

1 Students taking Ph 12 a but not Ph 12 c must take one term in Statistical Physics or Thermodynamics from the list: Ph 2 a, APh 17 a, Ch 21 c, Ch 24 a, or ME 18 a.
2 Bi 8 and Bi 9, if taken in the freshman year, are an acceptable alternative in Bi 1.
3 This requirement may also be met by completing Ch 3 b or Ch 4 a.
4 This requirement may be met either by taking a course approved by the student’s option to satisfy this requirement, or by taking En 84.

Introductory Laboratory Requirement
All students are required to take at least 12 units of laboratory work in experimental science during their freshman and sophomore years. Ch 3 a (6 units) shall be taken during the freshman year. The additional 6 units must be chosen from one of the following: APh/EE 9 (6 units), APh 24 (6 units), Bi 10 (6 units), Ch 3 b (6 units), Ch 4 ab (6 units per term), ChE 10 (3 units), Ph 3 (6 units), Ph 5 (6 units), or a more advanced laboratory. Computational laboratory courses may not be used to satisfy this requirement.

Humanities and Social Sciences Requirements
All students must complete satisfactorily 108 units in the Division of the Humanities and Social Sciences. Of these, 36 must be in the humanities (art, English, history, history and philosophy of science, humanities, music, philosophy, and, with certain restrictions, languages) and 36 in the social sciences (anthropology, economics, law, political science, psychology, social science), in each case divided equally between introductory and advanced courses. The remaining 36 may be drawn from humanities and social sciences, including HSS tutorial courses and (to the limit of 27 units) courses in business economics and management. They may not include reading courses unless credit has been granted by petition to the Humanities or Social Science faculty. In general, no more than 18 units of freshman humanities may be counted toward the 108-unit requirement.

Entering freshmen are required to take two terms of freshman humanities; that is, humanities courses numbered 10 or below in the Catalog. These classes introduce students to the basic issues in the three core disciplines of English, history, and philosophy. Successful completion of two terms of freshman humanities is a prerequisite for all advanced humanities courses, except for foreign languages. It is not a prerequisite, however, for introductory social sciences. The freshman humanities classes may be taken in any two terms of the freshman year.

To encourage breadth, students will have to take their two freshman humanities classes in different disciplines, the disciplines for the freshman classes being English, history, and philosophy.

A student must take 18 units of advanced humanities classes as well. The classes that count as advanced humanities courses are those numbered 99 or above in English, history, history and philosophy of science, humanities, and philosophy. The advanced humanities classes also include all foreign language classes beyond the fourth term, whether or not the student has taken any of the preceding terms in the sequence for that language. The first four terms of a foreign language sequence do not count toward the 36-unit humanities requirement; however, every term receives credit toward the final 36 units of the 108-unit requirement in HSS.

Since writing is a crucial skill, all humanities courses, with the exception of some foreign languages and courses numbered between 29 and 99, require at least 4,000 words of composition. Instructors give extensive feedback on written work and help students improve their prose. As entering students may not be fully prepared for the writing in freshman humanities, all freshmen and transfer students take a writing assessment before the beginning of the fall term. On the basis of this assessment, some students may be required to pass En 1 ab, English as a Second Language, or En 2, Basic English Composition, before entering freshman or advanced humanities classes. (En 1 ab and En 2 count as general Institute credit only.) At the discretion of the instructor, students in freshman humanities who do not meet expectations for writing may be required to seek additional instruction in consultation with the writing center, or to pass En 1 ab or En 2, or another suitable composition class, before continuing with their freshman or advanced humanities classes. Any student who has taken En 1 a, En 1 b, or En 2 may not subsequently enroll in more than one freshman humanities class per term.
Students are required to take two introductory social science courses and 18 units of related advanced undergraduate social science courses. The introductory social science courses must be drawn from the following list: either An 22 or An 23, Ec 11, Law 33, PS 12, either Psy 15 or Psy 20, SS 13. The 18 units of advanced undergraduate social science courses (numbered 100 and above), in fields following at least one of their introductory courses, must be taken as indicated below.

Introductory Course	Following Course
An 22 or An 23 | advanced anthropology
Ec 11 | advanced economics
Law 33 | advanced law
PS 12 | advanced political science
Psy 15 or Psy 20 | advanced psychology
SS 13 | advanced economics or political science, or H/SS 154

For instance, a student who has taken An 22 and Ec 11 may use 18 units of advanced anthropology courses, or 18 units of advanced economics, or 9 units of advanced anthropology and 9 units of advanced economics to fulfill the advanced social science requirement.

Physical Education Requirement
Before graduation each undergraduate is required to successfully complete 9 units of physical education. This requirement may be satisfied entirely or in part by participation in intercollegiate athletics, or successful completion of physical-education class coursework. All grades are issued pass/fail. A maximum of 6 units per term may be applied toward graduation requirements with the total not to exceed 36 units. Participation as a bona fide member of an intercollegiate team for the period covered by the sport in a given term satisfies the requirement for that term.

A broad program of instruction is provided each term. Late registration is permitted during the first week of each term, provided there is space available and with permission of the instructor. Standards for evaluation of student performance will be clearly defined at the beginning of each class.

Scientific Writing Requirement
The scientific writing requirement can be satisfied by taking an appropriate course offered by any division, or by taking En 84. All options also require a three-unit course in oral communication. Some options combine these two requirements into one course. At the discretion of the option, the scientific writing requirement can be satisfied by three units of additional work associated with a senior thesis, focused on effective written scientific communication.

First-Year Course Schedule, All Options

Differentiation into the various options begins in the second year.

<table>
<thead>
<tr>
<th>Options</th>
<th>Oral Requirements</th>
<th>Written Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM, APh, CS</td>
<td>E 10</td>
<td></td>
</tr>
<tr>
<td>EE, E&AS, ME</td>
<td>E 11</td>
<td></td>
</tr>
<tr>
<td>Ay</td>
<td>Ay 30</td>
<td>Ay 31</td>
</tr>
<tr>
<td>Bi</td>
<td>Bi 80</td>
<td>Bi 24</td>
</tr>
<tr>
<td>BEM, Ec, SS</td>
<td>BEM/Ec/SS 20</td>
<td>same</td>
</tr>
<tr>
<td>CHE</td>
<td>CHE 126</td>
<td>CHE/ CHE 91</td>
</tr>
<tr>
<td>Ch</td>
<td>Ch 90</td>
<td>Ch/ CHE 91</td>
</tr>
<tr>
<td>En, H, HPS, PI</td>
<td>En 84</td>
<td>same</td>
</tr>
<tr>
<td>GPS</td>
<td>Ge 109</td>
<td>Ge 13</td>
</tr>
<tr>
<td>Ma</td>
<td>Ma 10</td>
<td>Ma 11</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph 70</td>
<td>same</td>
</tr>
</tbody>
</table>

1. This course is offered in each of the three terms.
2. The additional 6 units must be chosen from one of the following: APh/EE 9 (6 units), Bi 10 (6 units), Ch 3 b (6 units), Ch 4 ab (6 units per term), Ph 5 (6 units), or a more advanced laboratory course.
3. Students entering 1996-97 or later years must take a menu course (currently Ay 1, Ch/EP 3, ESE 1, or Ge 1) in their freshman or sophomore year. These courses are offered third quarter only. It is also possible to take one of these courses as an elective.

Undergraduate Information

Graduation Requirements
Applied and Computational Mathematics Option

The undergraduate option in applied and computational mathematics is for those students who want to combine their basic studies in mathematics with considerable involvement in applications. The program is similar in general outline to the mathematics option, with additional requirements to ensure a balance between courses that develop mathematical concepts and courses that show the interplay of these concepts with a variety of applications. Complete programs will be worked out with faculty advisers.

Option Requirements
1. Ma 5 abc or Ma 108 abc, and ACM 95 abc, ACM 101 abc, and E 10.
2. An approved sequence of three one-quarter courses to be selected from the following: ACM 104, ACM 105, ACM 106 abc, ACM 113, ACM 116, ACM/ESE 118, ACM 126 ab, ACM 151 ab.
3. One of the following (or an approved three-term combination totalling at least 27 units): Ma/CS 6 abc, Ma 109 abc, Ma 110 abc, Ma 120 abc, Ma 121 abc, Ma 122 a, EE/Ma 126 ab, EE/Ma 127 ab, CS/EE/Ma 129 abc, Ma151abc.
4. One 27-unit 100 or higher level course in science or engineering not in ACM or Ma and approved by the student's adviser.
5. Passing grades must be obtained in a total of 483 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM 95 abc</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
</tbody>
</table>

Undergraduate Information

Graduation Requirements/Applied Physics

Fourth Year

ACM 101 abc Methods of Applied Mathematics I 9 9 9
HSS Electives 9 9 9
Electives\(^1\) 27 27 27

45 45 45

\(^1\) See items 2 and 3 under option requirements.
Option Requirements
1. Any three of the following: APh/EE 9 b, APh 24, Ph 3, Ph 5, Ph 6, Ph 7; and E 10.
2. APh 17 abc, APh 125 ab or Ch 125 ab or Ph 125 ab, and Ph 106 abc.
3. ACM 95 abc.
4. Either APh 78 abc or one term of APh 77 and one chosen from the following: APh 77, Ph 77, EE 91, Ch 6, Ae/APh 104 bc, MS 125.
5. 27 additional units of APh courses numbered over 100, which must include one of the following sequences: APh 101 abc, APh 105 abc, APh 114 abc, APh 156 abc, APh/BE 161, APh/BE 162, APh/EE 183 abc, Ph 190 abc, or the sequence APh/EE 130, APh/EE 131, APh/EE 132. Note that APh 100 and APh 200 do not satisfy this requirement.
6. Passing grades must be earned in a total of 486 units, including the courses listed above. None of the courses taken to satisfy option requirements may be taken on a pass/fail basis.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>Sophomore Physics</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>Sophomore Mathematics</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Laboratory Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>APh 17 abc</td>
<td>Thermodynamics</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Other Electives</td>
<td>9</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
</tbody>
</table>

Third Year				
Ph 125 ab	Quantum Mechanics	9	9	-
APh 110 abc	Topics in Applied Physics	2	2	2
ACM 95 abc	Intro. Methods of Applied Math.	12	12	12
Laboratory Electives	9	9	9	
Other Electives	18	18	27	
Total	50	50	50	

Fourth Year				
APh 78 abc	Senior Thesis, Experimental	9	9	9
APh 77	Laboratory in Applied Physics	-	9	9
Ph 106 abc	Topics in Classical Physics	9	9	9
Electives	9	9	9	
HSS Electives	9	9	9	
Other Electives	18	9	9	
Total	54	54	54	

1 See item 1, option requirements.
2 See item 3, option requirements.
3 See item 4, option requirements.

Suggested Electives
The student may elect any course that is offered in any term provided he or she has the necessary prerequisites for that course. The following subjects are especially suitable for a well-rounded course of study. They need not be taken in the year suggested.

| **Second Year** | **Third Year** | **Fourth Year** |
| Ph 23, APh 24, APh 77, APh 100, APh 101 | Ph 77 abc, abc, APh 105 abc, APh | EE 114 abc, 114 abc, ACM 101 abc, Ch 6 ab, Ge 101, ACM 104, Ch 125 abc, APh 100, Ph 125 abc, Ph 129 abc, ME 19 ab, Ph 77 abc |

More Specialized Courses
APh 156 abc, APh/BE 161, APh/EE 183 ab, APh 190 abc, APh/EE 130, APh/EE 131, APh/EE 132, ChE 103 abc, EE 91 ab, Ge 102, Ge 103.

Astrophysics Option
Modern astronomy—certainly as practiced at Caltech—is essentially astrophysics. With the goal of understanding the physical processes that govern the universe, its constituents, and their evolution, astronomy uses the apparatus and methodology of physics to gather and interpret data.

The astrophysics option is designed to give the student an understanding of the basic facts and concepts of astronomy today, to stimulate his or her interest in research, and to provide a basis for graduate work in astronomy/astrophysics. The sequence (Ay 20, 21) constitutes a solid introduction to modern astrophysics and may be taken either sophomore or junior year, with more advanced courses (Ay 101, 102, plus Ay electives) taken in the junior and senior years. It is desirable for a student to gain as broad a background as possible in related fields of science and engineering.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in the subjects listed in the Division of Physics, Mathematics and Astronomy may, at the discretion of his or her department, be refused permission to continue the work in this option.

Option Requirements
1. Ay 20, Ay 21, Ay 101, Ay 102, Ay 30 or Ay 141, Ay 31, Ph 125 abc or APh 125 abc, and Ph 106 abc.
2. Ph 3 plus any two of Ph 5, Ph 6, Ph 7, or Ay 105. APh 23 and 24 taken as a pair may be substituted for one of these labs.
3. 54 additional units of Ay or Ph courses.
4. 27 additional units of science or engineering electives, of which 18 must be outside the Division of Physics, Mathematics and
Astronomy. Core classes (e.g., Ay 1, Ge 1, Bi 1) do not count towards fulfillment of this requirement.

5. Passing grades must be earned in a total of 486 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 12 abc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ay 20</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ay 21</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ay 30</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Physics Laboratory</td>
<td>6-9</td>
<td>6-9</td>
<td>6-9</td>
</tr>
<tr>
<td>Core Menu Course</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>0-6</td>
<td>0-3</td>
<td>15-21</td>
</tr>
<tr>
<td></td>
<td>42-51</td>
<td>45-51</td>
<td>39-48</td>
</tr>
</tbody>
</table>

Third Year			
Ph 125 abc	9	9	9
Ph 106 abc	9	9	9
Ay 101	11	-	-
Ay 105	-	9	-
HSS Electives	9	9	9
Electives	9-12	9-15	18-24
	47-50	45-51	45-51

Fourth Year			
Ay 31	-	-	3
Ay 102	-	9	-
Astronomy or Physics Electives	18	18	18
HSS Electives	9	9	9
Electives	18-24	9-15	15-21
	45-51	45-51	45-51

An ability to present one's work is vital to a successful career in research and teaching. Ay 30 satisfies the oral communications requirement, but for further development, students are also urged to sign up for Ay 141 in their junior and senior years. Ay 31 satisfies the written communication requirement. Students are encouraged (but not required) to undertake research leading to a senior thesis; credit for this work is provided through Ay 78. Non-thesis research credits may be earned through Ay 142 with a maximum of 9 units per term. Computational skills may be acquired through Ph 20–21 and/or ACM 106.

Suggested Electives

The student may elect any course offered in any division in a given term, provided that he or she has the necessary prerequisites for that course. The following courses are useful to work in various fields of astronomy and astrophysics: ACM 95, ACM 106, APh 23/24, Ay 105, Ay 121–127, EE 20, EE 91, EE/Ge 157, Ge/Ay 11 c, Ge 103, Ge/Ch 128, Ge 131, Ge/Ay 132, 133, 137, Ma 4, Ma 12, Ma 112, Ph 20–22, Ph 77, 101, 127, 129, 136, 199.

Biology Option

The undergraduate option in biology is designed to build on a solid foundation in mathematics and physical science by providing an introduction to the basic facts, concepts, problems, and methodologies of biological science. The option serves as a basis for graduate study in any field of biology or for admission to the study of medicine. Instruction is offered in the form of participation in the ongoing research programs of the division, as well as in formal course work. Course work emphasizes the more general and fundamental properties of living organisms, and areas of current research interest, rather than the traditional distinct fields within the life sciences.

The division encourages undergraduate participation in its research program and believes that research participation should be a part of each student's program of study. Students may elect to prepare an undergraduate thesis (Bi 90). Research opportunities may be arranged with individual faculty members, or guidance may be obtained from a student's individual faculty adviser in the division or from the biology undergraduate student adviser.

The requirements listed below for the biology option are minimal requirements. An adequate preparation for graduate work in biology will normally include additional elective research or course work in biology and/or advanced course work in other sciences or in mathematics. Flexibility to accommodate varied individual scientific interests, within the broad scope of biology, is achieved through the provision of elective courses, arrangements for individual research (Bi 22), and tutorial instruction (Bi 23). In addition, arrangements may be made to take courses at neighboring institutions in fields of biology that are not represented in our curriculum.

Premedical Program

The undergraduate course for premedical students is essentially the same as that for biology students and is intended as a basis for later careers in research as well as in the practice of medicine. It differs in some respects from premedical curricula of other schools; however, it has been quite generally accepted as satisfying admission requirements of medical schools.
It is recommended that all students contemplating application to medical school consult with the premed adviser, Angela Wood, at the Career Development Center.

Option Requirements
1. Bi 8, Bi 9, Bi/Ch 110, Bi 117, Bi 122, Bi/CNS 150, and Ch 41 abc.
2. One advanced laboratory course chosen from Bi 123, Bi/CNS 161, Bi/CNS 162, Bi 180, Bi 227, or at least 9 units of independent research such as Bi 22.
3. Three courses chosen from Bi/Ch 111, Bi/Ch 113, Bi 114, Bi/Ch 132, Bi 156, BBMB/Bi/Ch 170, Bi 182, Bi 188, or Bi 190. Only one of the three may be a six-unit course (these are 182, 188, and 190).
4. 3 units of Biology Major Seminar, Bi 80.
5. 34–49 elective units in Biology courses numbered above 20, to reach a total of 143 units of Biology course work. Pass/fail grading may be elected, in the manner specified on page 41, for these Biology course electives, but not for courses taken to fulfill requirements 1 to 4.
6. Passing grades must be earned in a total of 486 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Second Year</td>
<td>486</td>
<td>45-51</td>
<td>45-51</td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Bi 8</td>
<td>9</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Bi 9</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Bi 10</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Electives</td>
<td>9-15</td>
<td>0-6</td>
<td>9-18</td>
</tr>
<tr>
<td>Total</td>
<td>45-51</td>
<td>45-51</td>
<td>42-51</td>
</tr>
</tbody>
</table>

**Third Year	486	45-51	45-51
HSS Electives	9	9	9
Bi 117	-	-	9
Bi/Ch 110	12	-	-
Bi 122	9	-	-
Bi 123	-	12	-
Ch 24 ab	9	-	9
Electives	15-21	15-21	27-33
Total	45-51	54-60	45-51

Suggested Electives

Second Year: Bi 23, Ch 4 ab.

Third Year: Bi 22, Bi 23, Bi/Ch 111, Bi/Ch 113, Bi 114, Bi 115, Bi 123, Bi 152, Bi 156, Bi/CNS 157, Bi/CNS 158, Bi/CNS 161, Bi/CNS 162, Ch 7.

Fourth Year (in addition to those listed for the third year): Bi 90, Bi 125, Bi/Ch 132, BBMB/Bi/Ch 170, Bi 180, Bi 188, Bi 190, Bi/CNS 217, Bi 218, Bi 219, Ch 145, Ch 146, CNS/Bi/EE 186.

1. Many biology majors choose to take Bi 8 and Bi 9 in their freshman year.
2. Bi 10 is not required for the biology option but is commonly taken by biology students to meet the Institute Introductory Laboratory requirement.
3. Second-year electives should include an Institute core elective, if this requirement was not met during the first year.
4. Recommended for students planning to take any additional courses in genetics.
5. Strongly recommended for students interested in postgraduate work in biology, as most graduate programs expect entering students to have taken a course in physical chemistry.
6. Electives must include courses to satisfy option requirements (2) and (3), and sufficient additional units of work in biology to satisfy the total of 143 units as specified by requirement (5). Note that Bi 1, Bi 2, and Bi 10 are not counted toward this total.
7. The sequence of courses Bi/CNS 150, Bi 152, Bi 156, and Bi/CNS 157 is intended to provide a comprehensive introduction to the field of neurobiology.

Business Economics and Management Option

The business economics and management (BEM) option provides students with the analytical tools to operate successfully in a modern, volatile, business environment. The emphasis is on strategy, design (markets, organizations, networks), finance, and law in a free-market competitive or strategic situation, as well as in a highly politicized environment. Today's business environment is complex; the required courses in this option are therefore highly analytical. The formal nature of the required courses can be complemented by case-study courses.

Option Requirements

2. BEM 103, BEM 106.
3. ACM/ESE 118.
4. Six courses, to be chosen from the menu: BEM courses (excluding the ones listed under [1] and [2] above), Ec 105, Ec 121 ab, Ec 122, Ec 123, Ec 145, Ec 155, Ec/PS 160 abc, Ps 12, Ps/Ec 173, Psy 15, Psy 20, ACM 113, ACM 116, Ma 112 a.
chemical engineering curriculum includes the study of applied and computational mathematics, fluid mechanics, heat and mass transfer, thermodynamics, chemical kinetics and chemical reactor design, and process control. Because of this broad-based foundation that emphasizes basic and engineering sciences, chemical engineering is perhaps the broadest of the engineering disciplines.

Because many industries utilize some chemical or physical transformation of matter, the chemical engineer is much in demand. He or she may work in the manufacture of inorganic products (ceramics, semiconductors, and other electronic materials); in the manufacture of organic products (polymer fibers, films, coatings, pharmaceutical, hydrocarbon fuels, and petrochemicals); in other process industries; or in the biotechnology, pharmaceuticals, or biomedical industries. Chemical engineering underlies most of the energy field, including the efficient production and utilization of coal, petroleum, natural gas, and newer technologies like fuel cells. Air and water pollution control and abatement are also within the domain of expertise of chemical engineers. The chemical engineer may also enter the field of biochemical engineering, where applications range from the utilization of microorganisms and cultured cells, to enzyme engineering and other areas of emerging biotechnology, to the manufacture of foods, to the design of artificial human organs.

Freshman and sophomore students normally take the core courses in mathematics, physics, chemistry, and biology (Ma 1 abc, Ma 2 ab, Ph 1 abc, Ph 2 ab, Ch 1 ab, and Bi 1). They also take the second-year chemistry course, Ch 41 abc, and the basic chemical engineering courses, ChE 63 ab and ChE 64. It is strongly recommended that they also take a course in computer programming (e.g., CS 1 or CS 2).

Undergraduate research is emphasized, and students are encouraged, even in the freshman year, to participate in research with the faculty. In order to obtain a basic intellectual background, all students take courses in the fundamentals of chemical engineering through the junior year. During the senior year, students can diversify into one of four tracks to achieve concentrated study in areas of chemical engineering. An optional senior thesis is a unique aspect of the chemical engineering program.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in the subjects listed under the Division of Chemistry and Chemical Engineering may, at the discretion of the faculty in this division, be refused permission to continue the work in this option.

Option Requirements

1. Ch 3 b, ChE 41 abc, ChE 63 ab, ChE 64, ACM 95 abc, Ch 21 ab, ChE 101, ChE 103 abc, ChE 105, and either Ec 11, BEM 101, or BEM 103.

2. Completion of a track (biomolecular, environmental, process systems, or materials).
3. Passing grades must be earned in all courses required by the Institute and the option. None of the courses satisfying option requirements may be taken pass/fail.

These 9 units partially satisfy the Institute requirements in humanities and social sciences.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ch 3 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ChE 63 ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChE 64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>45</td>
<td>44</td>
</tr>
</tbody>
</table>

Third Year			
ACM 95 abc			
Ch 21 ab	12	12	12
ChE 103 abc	9	9	9
ChE 101			
CDS 110 a			
Science Writing			
HSS Electives	9	9	18
Total	39	49	42

Fourth Year			
Fourth-year courses of study are based on particular areas (tracks) of chemical engineering:			
Biomolecular Track			
Bi/Ch 110 Intro. to Biochemistry	12	-	-
BE 201 abc Physiology for Bioengineering	9	9	9
BE/ChE 163 Intro. to the Design of Biological Molecules and Systems	-	-	-
or ChE/BE 210 Cellular Engineering	9	-	-
ChE 126 a Chemical Engineering Laboratory	9	-	-
and ChE 130 Biomol. Engineering Laboratory	-	-	-
or ChE 126 a Chemical Engineering Laboratory and ChE 90 ab and Senior Thesis	9	9	9
Bioengineering Electives	-	9	9
HSS Electives	-	9	9
Science/Engineering Electives	9	9	9
Total	48	45-54	36-45

1. May be taken during fourth year.
2. Typically second and third term total number of units will be at least 78.

Environmental Track

ChE 126 a Chemical Engineering Laboratory	9	-	-
ESE 159 Environmental Analysis Lab	-	-	9
or Senior Thesis	-	9	9
ESE/Ge 148 abc Global Environmental Science	9	9	9
or ESE Courses1	9	18	9
HSS Electives	9	-	9
Science/Engineering Electives	9	9	9
Total	45	36-45	45

1. Recommended ESE courses include ESE 142, ESE 144, ChE/ESE 158, ESE/Ge 166, ESE/Be 168, ESE/Ge/ChI 171, ESE/Ge/Ch 172, ESE/Ge/Ch 175 ab.

Process Systems Track

ChE 110 ab Optimal Design of Chemical Systems	-	9	9
ChE 126 ab Chemical Engineering Laboratory	9	9	-
or ChE 126 a Chemical Engineering Laboratory and ChE 90 ab and Senior Thesis	9	9	9
HSS Electives	9	-	9
Engineering Electives	18	9-18	9
Science/Engineering Electives	9	9	9
Total	45	36-45	36-45

1. If ChE 90 ab option, then 9 units.
2. Typically second and third term total number of units will be at least 81.

Materials Track

| ChE 126 ab Chemical Engineering Laboratory | 9 | 9 | - |
| or ChE 126 a Chemical Engineering Laboratory and ChE 90 ab and Senior Thesis | 9 | 9 | 9 |

Advanced Materials Courses1

1–Polymers

Ch 120 a Nature of the Chemical Bond	9	-	-
Ch/ECh 147 Polymer Chemistry	-	9	-
Ch/ECh 148 Polymer Physics	-	-	9

2–Electronic Materials

| APh 114 ab Solid-State Physics | 9 | 9 | - |
| ChE 189 Special Topics in Materials Processing | - | - | 9 |

Undergraduate Information

Graduation Requirements/Chemical Engineering
Double Majors
For students simultaneously pursuing a degree in a second option, courses taken as required courses for that option can also be counted as chemistry electives (requirement 3, below) where appropriate. However, courses that count toward the electives requirement in the other option cannot simultaneously be counted toward satisfying the elective requirement in chemistry.

The courses listed below would constitute a common core for many students in the option.

Any student of the chemistry option whose grade-point average is less than 1.9 will be admitted to the option for the following year only with the special permission of the Division of Chemistry and Chemical Engineering.

Option Requirements
1. Ch 14, Ch 21 abc (or Ch 21 a, Ch 24 ab), Ch 41 abc, Ch 90.
2. A minimum of five terms of laboratory work chosen from Ch 4 ab, Ch 5 ab, Ch 6 ab, Ch 7, Ch 10 c (if taken freshman or sophomore year), Ch 15, and Bi 10.
3. A minimum of five terms of advanced chemistry electives taken for a letter grade from chemistry course offerings at the 100 and 200 level, including cross-listed offerings such as Bi/Ch 110, Bi/Ch 111, Bi/Ch 113, Bi/Ch 132, and ChE/Ch 164, but excluding Ch 180, Ch 280, CNS/Bi 176.
4. Passing grades must be earned in the courses that constitute the approved program of study, including those listed above. None of the courses satisfying option requirements may be taken pass/fail.
5. Passing grades must be earned in a total of 486 units, including courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Second Year</td>
</tr>
<tr>
<td>Ch 41 abc</td>
</tr>
<tr>
<td>Ma 2 ab</td>
</tr>
<tr>
<td>Ph 2 ab</td>
</tr>
<tr>
<td>Ch 4 ab</td>
</tr>
<tr>
<td>and Inorganic Compounds</td>
</tr>
<tr>
<td>Ch 5 ab</td>
</tr>
<tr>
<td>and Analysis</td>
</tr>
<tr>
<td>Ch 14</td>
</tr>
<tr>
<td>Electives</td>
</tr>
<tr>
<td>Physical Education</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

1 One complete track (1, 2, or 3) and two elective courses from each of the tracks not completed (ChE 90 b can substitute for 9 units of Science/Engineering Electives).
2 Typically second and third term total number of units will be at least 81.
Biochemistry
Ch 4 ab or Ch 5 a
Ch laboratory 1, Ch 7, Ch 14, Ch 21 a
Ch 6 a or 6 b,
Ch 21 b, Ch 80
Ch 10, Ch 110,
(Ch 22), HSS
Ch 111, HSS
elective
Ch 133, Ch 10,
elective
HSS

1. A significant fraction of the chemical literature, especially in organic chemistry, is in German. A reading knowledge of German is therefore useful in research at the doctoral level. Russian is another important language for chemistry; however, the leading Russian periodicals are translated and published in English.

2. Experience in computer programming and use is now important to all areas of chemistry.

3. Requires Ch 4 ab.

4. Requires Ch 5 b, Ch 15, Ch 6 ab.

5. See “Research Opportunities for Undergraduates in Chemistry,” which may be obtained from the Chair of the Undergraduate Studies Committee. No more than 27 units of Ch 80 will count toward the 486-unit graduation requirement without a senior thesis.

6. Ch 122 ab, Bi/Ch 132, Ch 141, Ch 144 a, Ch 145, Ch 146, Ch/E/Ch 147, Ch 154 ab, Ch/E/Ch 155, ESE/Ch/Ge 175 abc, Ch 242 ab, Ch 244 ab, Ch 247.

7. Students without sufficient math preparation may delay Ch 21 abc and Ch 6 ab until their junior year and take Ch 5 ab and Ch 41 abc during their sophomore year.

8. Ch 5 ab, Ch 15, Bi 10.

9. Ch 112, Ch 117, Ch 120 ab, Ch 121 ab, Ch 122 ab, Ch 135 ab, Ch/E/Ch 140, Ch 143, Ch 144 ab, Ch/E/Ch 147, Ch 154 ab, Ch/E/Ch 155, ESE/Ch/Ge 175 abc, Ch 212, Ch 213 ab, Ch 221.

10. Ch 6 ab, Ch 7, Ch 15, Bi 10.

Suggested Elective Courses for the Chemistry Option
1. Chemical Engineering: Ch 10, Ch 63, Ch 80, Ch 101, Ch 103, Ch 151, Ch 174.
2. Biology: Bi 9, Bi 122, Bi 114, Bi 156, Bi 180.
3. Engineering: ACM 95, APh/EE 9, CS 1, CS 2.
4. Physics: Ph 3, Ph 4, Ph 5, Ph 6, Ph 7, Ph 106, Ph 125, Ph 129, Ph 127.
5. Humanities: Ec 11, L 102 or L 130.
6. Miscellaneous: Ay 1, Ch/APh 2, Ch 10, ESE 1, MS 115, Ge 1, Ge 140, Ma 108.

Computer Science Option
The undergraduate option in computer science is designed to introduce students to the mathematical and engineering foundations of this discipline. The program provides considerable flexibility in course selection, together with a capstone project giving an opportunity for independent work in an area of the student’s choice. Individual programs will be worked out in consultation.
Option Requirements

1. CS 1; CS 2; Ma/CS 6 a or Ma 121 a; CS 21 or CS/EE/Ma 129 a; CS 24; CS 38; E 10, E 11.
2. One of the following:
 a. Any of the following three-quarter sequences involving a large project in their last quarter: CS 141 abc; CS/EE 181 abc; CS/EE/Ma 129 abc; CS 134 abc; CS 136 abc; CS 139 abc; CS/CNS 174 and two other CS 170-series courses; CS/EE 145 ab and one quarter of a networking project.
 b. A laboratory project in computer science extending at least two quarters and totaling at least 18 units (normally in CS 81 or CS 90), approved for this requirement by the student’s adviser and the CS undergraduate option representative.
 c. Thesis (EE/CS 80 abc) supervised by a CS faculty member.
3. A total of 63 CS units that are not applied to requirement (1), and that are either numbered CS 114 and above or are in satisfaction of requirement (2).
4. In addition to the above requirements, 36 units in Ma, ACM, or CS; 18 units in E&AS or Ma; and 18 units not labeled PE or PA.
5. Units used to fulfill the Institute Core requirements do not count toward any of the option requirements. Pass/fail grading cannot be elected for courses taken to satisfy option requirements. Passing grades must be earned in a total of 486 units, including all courses used to satisfy the above requirements.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CS 1</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>CS 2</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma/CS 6 a</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>CS 21</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>CS 24</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>CS 38</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Other Electives</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>45</td>
<td>36</td>
</tr>
</tbody>
</table>

Third Year

CS Courses	9	9	9
CS Project	9	9	9
HSS Electives	9	9	9
E 10	-	-	3
Technical Seminar Presentations	9	9	
E&AS/Ma Courses	9	9	
Other Electives	9	9	
Total	45	45	36

Fourth Year

CS Courses	9	9	9
HSS Electives	9	9	9
E&AS/Ma Courses	9	9	
Other Electives	9	9	
Total	45	36	36

1 Commonly taken during the freshman year.

Control and Dynamical Systems Minor

Control and dynamical systems (CDS) may be pursued as a minor by undergraduates who are taking degrees in science, mathematics, or engineering. The CDS minor is intended to supplement one of Caltech’s undergraduate degrees and is designed for students who wish to broaden their knowledge beyond their normal major or who may wish to pursue a graduate program involving control or dynamical systems. Students completing the CDS minor requirements will have the phrase “minor in control and dynamical systems” added to their transcripts.

CDS Minor Requirements

1. Complete either CDS 110 ab and CDS 140 a, or CDS 101 and CDS 140 ab.
2. Complete either a three-term senior thesis approved by the CDS faculty, or Ae/CDS 125 abc.

All CDS courses to be applied to fulfill the CDS minor requirements must be taken for grades, and students must obtain a grade of B or higher. Students may substitute CDS 110 a for CDS 101 in the above requirements if desired. The senior thesis requirement may be satisfied either by completing a three-term senior thesis in the student’s major option but on CDS subject matter, with approval of the thesis topic by the CDS option representative, or by taking CDS 90 abc.

Courses that are used to satisfy the CDS minor cannot be used to satisfy course requirements in the major options, with the exception that CDS 110 a may be used in E&AS options where this course is part of their requirements (e.g., ChE, EE, ME) and the senior thesis requirement may be used to satisfy requirements for major options that require a senior thesis. Courses taken as part of the CDS minor are counted toward the total 486-unit Institute graduation requirements.
A typical course sequence would be to take either CDS 110 ab or CDS 140 ab in the junior year, followed by the remaining course and the senior thesis in the senior year. Alternatively, it is possible to take all requirements in the senior year. In addition to the requirements above, CS 1 and CS 2 are highly recommended.

Economics Option

The economics option provides students with an understanding of the basic principles underlying the functioning of economic institutions. It offers a modern and quantitative approach to economics seldom available to undergraduates. The emphasis on economic principles and modern methodology provides students with an excellent preparation for graduate study in economics or for professional study in the fields of business or law and economics.

The option is sufficiently flexible that students can combine their pursuit of economics with studies in other areas, such as engineering, physics, or mathematics. The core of the option consists of Ec 11, Ec 121, Ec 122, and Ec 123. Students are strongly encouraged to supplement this core with additional electives in economics, political science, and mathematics.

Option Requirements

1. Ec 11, Ec 121 ab, Ec 122, Ec 123, BEM/Ec/SS 20.
2. Ma 112 a.
3. Ec 105 or Ec 145.
4. 54 additional units of advanced economics and social science courses. (Courses that are used to fulfill the Institute advanced social science requirement [courses numbered 100 and above] will also count toward the 54 additional units required under the economics and social science options.) Students may also take classes from the following list in partial fulfillment of this requirement: any BEM course except BEM 101; ACM 113, ACM 116, or ACM/ESE 118.
5. 45 additional units of science, mathematics, and engineering courses. The requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by any course with a number less than 10.
6. Passing grades must be earned in a total of 486 units, including all courses used to satisfy the above requirements.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year Ma 2 ab Sophomore Mathematics</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ph 2 ab Sophomore Physics</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Menu Course</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Ec 11 Introduction to Economics</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PS 12 Introduction to Political Science</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Electives¹</td>
<td>18</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

¹ See option requirements 4 and 5.

Electrical and Computer Engineering Option

Students interested in electrical and computer engineering are directed toward the computer science or electrical engineering options. Students who enrolled under earlier catalogs offering a degree in electrical and computer engineering can continue to pursue that degree; due to changes in course offerings, the following substitutions will be allowed.

- CS 21 for CS 20 a
- CS 38 for CS 20 b
- ACM 106 a for CS 20 c
- CS 150 or CS 151 for CS 138 b

Electrical Engineering Option

The electrical engineering option is designed to prepare its students for either graduate study or research and development work in government or industrial laboratories. It accomplishes this by building on the core curriculum to provide a broad and rigorous exposure to the fundamentals of electrical engineering. It strives to maintain a balance between classroom lectures and laboratory and design experience, and emphasizes the problem formulation and solving skills that are essential to any engineering discipline. The program also strives to develop in each student self-reliance, creativity, professional ethics, and an appreciation of the importance of continuing intellectual growth.

Students electing this option will normally choose to take APh/EE 9 as a freshman-year elective. Freshmen interested in digital electronics might also consider taking EE/CS 51. Then in the sophomore year, the formal study of electrical engineering will begin with the theory and laboratory practice of analog and digital electronics, EE 20 ab and EE/CS 51/52, respectively; and an introduction to solid-state sensors and actuators, EE 40. The junior year features EE 111; a course on feedback control systems (either CDS 110 a or EE 113); an introduction to analog and digital communications, EE 160; and an analog electronics laboratory, EE 90.
In the senior year, the student will take electromagnetic engineering, EE 151; and will also be asked to demonstrate his or her ability to formulate and carry out an independent research or design project through either a senior thesis, EE/CS 80 abc, or the senior project design laboratory, EE 91 a. In addition, the student, especially in the senior year, will have a significant opportunity to take elective courses that will allow him/her to explore earlier topics in depth, or to investigate topics that have not been covered previously. (See the “suggested electives” section, page 199.)

A student whose interests lie in the electrical sciences but who wishes to pursue a broader course of studies than that allowed by the requirements of the electrical engineering option may elect the engineering and applied science option.

Attention is called to the fact that any student who has a grade-point average less than 1.9 at the end of the academic year in the subjects listed under electrical engineering may be refused permission to continue work in this option.

Option Requirements

1. EE 10 and EE 11.
2. ACM 95 abc.
3. EE 20 ab, EE 40, EE 111, EE 151, EE 160, and either EE 113 or CDS 110 a.
4. EE/CS 51, EE/CS 52, EE 90.
5. EE 80 abc, or two courses selected from EE 91 ab, EE/CS 53, and CS/EE/ME 75 c (note that only CS/EE/ME 75 c may replace one term of EE 91 and EE/CS 53).
6. APh/EE 9 ab.
7. In addition to the above courses, 27 units selected from any EE course numbered over 100, or any cross-listed courses numbered over 100 that include EE in the listing. Also, CDS 111 is acceptable.
8. Passing grades must be earned in a total of 486 units, including courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>EE 20 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>EE 40 ab</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>EE/CS 51</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>EE/CS 52</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Electives</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM 95 abc</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>HSS Electives2</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>EE 111</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EE 90</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>EE 160</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EE 113</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>EE 20 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>EE/CS 51</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>EE/CS 52</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Electives</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSS Electives2</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>E 10</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>EE 91 ab3</td>
<td>12</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>EE 151</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
<td>18</td>
<td>36</td>
</tr>
</tbody>
</table>

1 A student who follows this “typical schedule” exactly, and who takes APh/EE 9 ab as a freshman, will have taken about 540 units prior to graduation, whereas only 486 are required. This means that by taking fewer electives than given in the typical schedule, the student can take lighter loads and have considerable flexibility in arranging his or her individual schedule.

2 See Institute requirements for specific rules regarding humanities and social sciences.

Suggested Electives

First-year students interested in electrical engineering should consider taking APh/EE 9 ab, which is an EE option requirement (though it need not be taken freshman year).

Suggested elective courses for the second, third, and fourth year for various specializations within electrical engineering are given below. Students interested in other areas of specialization or interdisciplinary areas are encouraged to develop their own elective program in consultation with their faculty adviser.

Communications and Signal Processing

Second Year: Selected from APh 17 abc, APh 23, APh 24, EE/CS 53

Third and Fourth Year: EE 112 ab, ACM/EE 116, EE/Ma 126, EE/Ma 127 ab, EE 161, EE 163 ab, EE 164, EE 167, APh/EE 130, 131, 132, and selections from APh/EE 132, EE/CS 54, Ma 112 a.

Control

Second Year: APh 17 abc

Third and Fourth Year: CDS 110 ab, CDS 111, and selections from EE 112 ab, ACM/EE 116, EE 164.
Electronic Circuits
Second Year: APh 17 abc
Third and Fourth Year: CDS 111, EE 112 ab, EE 114 ab, and selections from EE 119 abc, EE 153, CS/EE 181 abc, CS 185 abc, APh/EE 183 ab.

Microwave and Radio Engineering
Second Year: APh 23, APh 24, APh 17 abc
Third and Fourth Year: EE 153, EE/Ge 157 abc, EE/Ge 158 ab, EE 114 ab, APh/EE 130, 131, 132, APh/EE 183 ab.

Optoelectronics
Second Year: APh 23, APh 24, APh 17 abc
Third and Fourth Year: APh/EE 130, 131, 132, APh 105 abc, APh 114 abc, APh/EE 183 ab, EE 190 abc, EE 153.

Solid-State Electronics
Second Year: APh 17 abc
Third and Fourth Year: APh/EE 183 ab, and selections from APh 105 abc, APh 114 ab, EE 153.

Engineering and Applied Science Option
The engineering and applied science (E&AS) option offers students the opportunity for study in a wide variety of challenging areas of science and technology and includes concentrations in aeronautics, computation and neural systems, environmental science and engineering, materials science, and structural mechanics. In addition, the E&AS option offers students the possibility of designing a customized course of study that has breadth, depth, and rigor similar to the concentrations listed above.

The aim of the E&AS option is to prepare students for research and professional practice in an era of rapidly advancing interdisciplinary technology. The program builds on the core curriculum to combine individual depth of experience and competence in a particular chosen engineering specialty, and a strong background in the basic and engineering sciences, with laboratory and design experience. It strives to develop professional independence, creativity, leadership, and the capacity for continuing professional and intellectual growth.

The first year of the four-year course of study leading to a Bachelor of Science degree is common for all students of the Institute, although freshman elective subjects are available as an introduction to various aspects of engineering and applied science. At the end of the first year, students who elect the E&AS option are assigned advisers as close to their expressed field of interest as possible, and together with their advisers develop programs of study for the next three years. Beyond the Institute-wide requirements of physics, mathematics, and humanities, the E&AS option requires one year of applied and computational mathematics and a prescribed number of units selected from a wide variety of engineering and applied science courses. Engineering design (synthesis), as distinct from analysis, is considered an essential part of every engineer’s capability. Advisers will expect students to select a sufficient number of courses that place emphasis on design.

Any student in the E&AS option whose grade-point average is less than 1.9 at the end of the academic year in the subjects listed in the option requirements may be refused permission to continue to work in the E&AS option.

Option Requirements
Students who have elected the E&AS option must either choose one of the approved areas of concentration (see item 6 a below), or by the end of the third term of the sophomore year submit a written proposed customized course of study and obtain approval for it from the E&AS option oversight committee (see item 6 b below).

The course of study must include each of the following elements:
1. Demonstration of computer programming competency by taking CS 1, or by taking an approved alternative course, or by passing a placement exam administered by the computer science option by first term of sophomore year.
2. a. 27 units of advanced E&AS courses with the prefixes Ae, ACM, AM, APh, BE, CE, CNS, CS, CDS, EE, ESE, MS, or ME; and
b. 27 additional units of either advanced E&AS courses or advanced science courses offered by the Biology, CCE, GPS, or PMA divisions.
3. a. 9 units of laboratory courses taken from the following list: APh 77 bc, Ae/APh 104 bc, CE 95, CE 180, CS 40 ab, CS 47, CS 134 b, CS/CNS 171, 173, and 174, CS/EE 137 b, EE 20 ab, EE/CS 52, 53, 54, EE 90, EE 91 ab, ESE 159, MS 90, MS 125, ME 72, ME 90 bc, ME/CE 96; and
b. 9 units of additional laboratory courses either from the list in 3 a or from E&AS courses with the word “laboratory” in the title, but excluding those courses for which freshman laboratory credit is allowed.
4. ACM 95 abc or Ma 108 abc or Ma 109 abc. None of these course sequences may be taken pass/fail.
5. E 10 or equivalent; E 11 or equivalent.
6. Courses used to satisfy requirements 1–5 above must also satisfy a depth requirement, which must be met by either:
 a. the concentration requirements listed below for one of the following disciplines: aeronautics\(^1\), computation and neural systems\(^2\), environmental science and engineering\(^3\), materials science\(^4\), structural mechanics\(^5\).
or

b. a customized schedule of requirements that is similarly rigorous to 6 a, has both breadth and depth, and that includes a senior thesis or design project, such as, but not restricted to EE/CS 80 abc, ME 90 abc, or two terms chosen from EE 91 ab and EE/CS 53. To select this alternative, the student must submit a written proposal to, and obtain the approval of, the E&AS option oversight committee. This approval must be obtained by the end of the third term of the sophomore year.

(Note: Students who meet the depth requirement by satisfying one of the five concentration requirements listed in 6 a will have both the E&AS option and the name of the concentration listed on their transcript while students who satisfy the depth requirement using 6 b will have only the E&AS option listed on their transcript.)

7. At least 117 units of E&AS courses not including those used to satisfy requirements 3, 4, and 5 above. Concentrations marked with a dagger (†) in both 6 a and the list below include sufficient E&AS courses to automatically satisfy this requirement; concentrations marked with an asterisk and also the customized schedule given in 6 b do not do so, in which case students will have to select sufficient additional E&AS courses to bring the total to 117 units. Courses in ChE count toward this requirement.

8. Passing grades must be earned in at least 486 units, including those listed in requirements 1–7 above.

Discipline Concentration Requirements (to satisfy requirement 6 a above)

Aeronautics†
ME 35 abc, ME 18 ab or APh 17 abc, ME 71, ME 19 ab, EE20 a, ME 65, CDS 110 a, and Ae 103 abc or an alternative three-term 100-level aeronautics course with approval by the concentration representative.

Computation and Neural Systems*
CNS 100, Bi/CNS 150, CNS/Bi/Ph/CS 187, CNS/Bi/EE 186, CNS/CS/EE 188 a, EE 111, CDS 101, and Bi 8. CS 2 is required in addition to CS 1 for the CNS concentration. In addition, the laboratory course Bi/CNS 162 is required.

Environmental Science and Engineering†
Thermodynamics (ChE 63 ab or ME 18 ab), transport processes (ChE 103 abc or ME 19 ab), environmental laboratory (ESE 159); a total of 4 courses covering all three of the areas of environmental chemistry (ESE 142, ESE/Ge/Ch 171, 172, or ESE/Ch/Ge 173), environmental physics (ESE/Ge 148 a, ESE/Ge 148 b, or ChE/ESE 158), and environmental biology (ESE/Ge 148 c, ESE/Bi 166, or ESE/Bi 168); ESE 90 (senior thesis) 18 units.

Substitution of courses may be approved at the discretion of the concentration representative, provided they meet the overall E&AS requirements.

Materials Science†
APh 17 ab or ChE 63 ab or ME 18 ab, MS 115 ab, MS 90, and three terms of MS 78. In addition, the student shall complete 45 units from the following list of restricted electives: ME 35 abc, APh 105 abc, APh/EE 130 ab, APh/EE 183, Ch 120 abc, Ch 121 ab, Ch 125 abc, Ch/ChE 147, ChE/Ch 148, CS 11, Ge 114 ab, MS 105, MS 125, MS 130–133, MS 142, Ph 125 abc. Substitution of courses may be approved at the discretion of the concentration representative, provided they meet the overall E&AS requirements.

Structural Mechanics†
ME 35 abc, ME 71, ME 19 ab, ME 65 or ME 66, CE 90 abc, MS 115 a, ME/CE 96 or CE 180, Ae/AM/CE/ME 102 abc or CE 160 abc or AM 151 abc. ME/CE 96 or CE 180 satisfies 9 units of the 18-unit E&AS laboratory requirement; both courses may be taken to satisfy the full requirement. Credit for ME 65 is not allowed if Ae/AM/CE/ME 102 is taken. Credit for ME 66 is not allowed if AM 151 is taken.

Typical Course Schedules

<table>
<thead>
<tr>
<th>Units per term</th>
<th>Second Year</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 ab</td>
<td>Sophomore Mathematics</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>Sophomore Physics</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>HSS Electives</td>
<td></td>
<td>18</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units per term</th>
<th>Third Year</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM 95 abc or Ma 108 abc or Ma 109 abc</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units per term</th>
<th>Fourth Year</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 10</td>
<td>Technical Seminar Presentations</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>45</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

Undergraduate Information

Graduation Requirements/Engineering and Applied Science
Typical Course Schedules by Concentration
Variation of the course schedule from these examples should be made in consultation with the student's academic adviser and must satisfy the discipline concentration requirements listed above.

Aeronautics

<table>
<thead>
<tr>
<th>Year</th>
<th>First Term</th>
<th>Second Term</th>
<th>Third Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Elective</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Second</td>
<td>ME 35 a</td>
<td>ME 35 b</td>
<td>ME 35 c</td>
</tr>
<tr>
<td>Third</td>
<td>ME 19 a</td>
<td>ME 19 b</td>
<td>ACM 95 b</td>
</tr>
<tr>
<td>Fourth</td>
<td>Ae 103 a</td>
<td>Ae 103 b</td>
<td>E 10</td>
</tr>
</tbody>
</table>

1. Recommended CS 1 or CS 11.
2. Electives include APh 23, APh 24.
3. Electives include CS 3, MS 90, MS 115 ab.
4. Electives include Ae/APh/CE/ME 101 abc, Ae/AM/CE/ME 102 abc.

Computation and Neural Systems

<table>
<thead>
<tr>
<th>Year</th>
<th>First Term</th>
<th>Second Term</th>
<th>Third Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>CS 1</td>
<td>CS 2</td>
<td>Elective</td>
</tr>
<tr>
<td>Second</td>
<td>CNS 100</td>
<td>Bi 8</td>
<td>Elective</td>
</tr>
<tr>
<td>Third</td>
<td>CNS 150</td>
<td>CNS 186 b</td>
<td>Bi/CNS 162</td>
</tr>
<tr>
<td>Fourth</td>
<td>CNS 187</td>
<td>CNS 188 a</td>
<td>Elective</td>
</tr>
</tbody>
</table>

1. Offered biannually.

Environmental Science and Engineering

<table>
<thead>
<tr>
<th>Year</th>
<th>First Term</th>
<th>Second Term</th>
<th>Third Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>CS 1</td>
<td>Ch 3</td>
<td>ESE 1</td>
</tr>
<tr>
<td>Second</td>
<td>ChE 63 a or ME 18 a</td>
<td>ChE 63 b or ME 18 b</td>
<td>Engineering Elective</td>
</tr>
<tr>
<td>Third</td>
<td>ACM 95 a</td>
<td>ACM 95 b</td>
<td>ACM 95 c</td>
</tr>
<tr>
<td>Fourth</td>
<td>Ae/AM 102 a</td>
<td>Ae/AM 102 b</td>
<td>Ae/AM 102 c</td>
</tr>
</tbody>
</table>

1. CE 180 may be taken in place of ME/CE 96.
2. AM 151 or CE 160 may be taken in place of Ae/AM 102.

Materials Science

<table>
<thead>
<tr>
<th>Year</th>
<th>First Term</th>
<th>Second Term</th>
<th>Third Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second</td>
<td>APh 17 a</td>
<td>APh 17 b</td>
<td>Restricted</td>
</tr>
<tr>
<td>Third</td>
<td>ACM 95 a</td>
<td>ACM 95 b</td>
<td>ACM 95 c</td>
</tr>
<tr>
<td>Fourth</td>
<td>MS 78 a</td>
<td>MS 78 b</td>
<td>MS 78 c</td>
</tr>
</tbody>
</table>

Structural Mechanics

<table>
<thead>
<tr>
<th>Year</th>
<th>First Term</th>
<th>Second Term</th>
<th>Third Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second</td>
<td>ME 35 a</td>
<td>ME 35 b</td>
<td>ME 35 c</td>
</tr>
<tr>
<td>Third</td>
<td>ACM 95 a</td>
<td>ACM 95 b</td>
<td>ACM 95 c</td>
</tr>
<tr>
<td>Fourth</td>
<td>AE 103 a</td>
<td>AE 103 b</td>
<td>AE 103 c</td>
</tr>
</tbody>
</table>

English Option

Students majoring in English can take a broad range of courses in English and American literature. During the senior year, English majors will enroll in En 99 ab with a faculty member chosen by mutual agreement. En 99 a is devoted to research and En 99 b to writing a substantial research paper. All courses to be counted toward the option in English must be taken for grades except for Hum/En 5 or Hum/En 6 when taken in the first two quarters of the freshman year.

All students are assigned an adviser who will help them select the courses best suited to their needs, including courses in fields...
such as history that may be relevant for work in the English option. Students will be expected to consult their adviser before registering for each quarter’s work. It is recommended that English majors take at least one English or related course per term. Those who are preparing for graduate work in English should take more than the minimum requirements listed below, and should be prepared to take courses in several periods of English and American literature.

Option Requirements
1. En 99 ab and one term of En 114.
2. 81 additional units of English courses numbered 98 and above. Majors may substitute 18 units of courses in foreign literature (in the original or in translation) and, with authorization, certain humanities courses numbered above 99, for 18 units of English courses. Students may also take either Hum/En 5 or Hum/En 6 for 9 units of these additional 81 units.
3. 54 additional units of science, mathematics, and engineering courses. This requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by a course with a number less than 10.
4. Three units of oral communication. En 84 satisfies this requirement as do oral communication courses offered by other options.
5. Passing grades must be earned in a total of 486 units, including the courses listed above.

Geology, Geobiology, Geochemistry, Geophysics, and Planetary Science Options
The aim of this undergraduate program is to provide thorough training in the geological and planetary sciences and, wherever possible, to integrate these studies with, and build upon, the courses in mathematics, physics, chemistry, and biology taken during the student’s earlier years at the Institute. Active involvement in research, particularly during the summer, is encouraged. For geologists, field work is emphasized because it provides firsthand experience with geological phenomena that can never be satisfactorily grasped or understood solely from classroom or laboratory treatment. Options are offered in geology, geobiology, geochemistry, geophysics, and planetary science. Electives permit students to follow lines of special interest in related scientific and engineering fields. Those who do well in the basic sciences and at the same time have a compelling curiosity about the earth and the other planets are likely to find their niche in these options, especially if they enjoy grappling with complex problems involving many variables. Most students majoring in the earth and planetary sciences now pursue further training at the graduate level.

Under the geobiology option a student can be associated with either Biology or GPS. This association formally will only affect which course the students elect to satisfy the institute-wide oral presentation requirement; all other geobiology option requirements are independent of GPS or Biology affiliation. In practice, however, we expect that students’ affiliation with one division or another will significantly shape their choice of elective courses.

For students beginning their junior year, it is possible to complete the requirements for all but the geobiology option within two years, but there are benefits from starting with Ge 11 abc in the sophomore year.

Passing grades must be earned in a total of 486 units, including courses listed below. Any student whose grade-point average in science and mathematics courses is less than 1.9 at the end of an academic year may be refused permission to register in the geological and planetary science options.

Division and Option Requirements
Typical Course Schedule
Division Requirements (All Options)

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 11 ab, Introduction to Earth and Planetary Sciences</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ge/Ay 11 c Scientific Writing Tutorial</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Ge 109 Oral Presentation</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>99 1 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM 95 abc Intro. Methods of Applied Math.</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

1 For geobiology students associated with the Biology division, Bi 80 will satisfy this requirement.
2 Geobiology students may substitute Ch 41 abc plus Bi/Ch 110 for ACM 95 abc.

Geology Option Requirements

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 112 Geomorphology and Stratigraphy</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ge 114 ab Mineralogy</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ge 106 Introduction to Field and Structural Geology</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Ge 115 a Igneous Petrology</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Ge 111 a Applied Geophysics Seminar</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Ge 115 b Metamorphic Petrology</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>24 18 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geochemistry Option Requirements

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 111 b</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ge 120</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Summer Field Geology</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Ge 121 ab</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

5 Students wishing to take Ge 120 in the summer before their third year should take Ge 106 in their second year.

4 Ge 122 can substitute for one term of Ge 121 ab.

Geobiology Option Requirements

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 11 ab</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ge/Ay 11 c</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bi 8</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Bi 9</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Bi 10</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESE/Bi 166</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ge 114 a</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bi/Ch 110</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ESE/Bi 168</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi 117</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Bi 122</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ge 112</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Geobiology Electives6</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Summer (Recommended in Third Year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi 125</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Bi 180</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

5 Students affiliated with the GPS division will substitute Ch 41 abc and Bi/Ch 110 for the GPS ACM 95 abc requirement.

Geophysics Option Requirements

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 14</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge 111 a</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ge 112 Geophysics</td>
<td>-</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Summer (Recommended in Third Year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi 125</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

4 Any non-GPS course numbered 100 or greater, relevant to the option and approved by the option representative, including GE 65, ME 65, AM 125 abc, AE/GE/ME 160, IB 106 abc.

3 Geophysics electives (selected in consultation with adviser): Ge 161, Ge 162, Ge 163, Ge 165, Ge 166, Ge 168, Ge 211, 200-level courses.
Planetary Science Option Requirements

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Science<sup>10</sup></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Planetary Science<sup>11</sup></td>
<td>18</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planetary Science<sup>11</sup></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Additional Science and Engineering<sup>12</sup></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

¹⁰ Advanced science courses (27 units) can be taken third or fourth year, selected from Ao/Ph/CE/NE 101 ab, Ao/Ge/ME 160 ab, Ch 21 abc, Pb 101, Pb 106 abc, Pb 125 abc. Must include two consecutive terms of one of the multiterm courses.

¹¹ Planetary science courses (63 units) selected from Ge 102, Ge/Ch 128, Ge 131, Ge/Ay 132, Ge/Ay 133, ESE/Ge 148 abc, Ge 150, Ge 151, ESE/Ge 152, ESE/Ge 153, ESE/Ge 173, Ge 225 abc.

¹² Additional science and engineering courses (27 units selected in consultation with adviser and planetary science option representative). Choose additional courses from footnote 9, appropriate Ge courses, or any of the following: ACM 101 abc, ACM/ESE 118, ME 35 abc, APb 17 abc, Ay 20, Ay 21, Ay 101, Ay 102, ChE 63 ab, Ch 6 ab, CS 1, CS 2, CS 3, Ma 112 ab, ME 18 ab, ME 19 ab.

History Option

History majors must take not less than 99 units of history courses (including Freshman Humanities) during their four years as undergraduates. Of these, not less than 45 must be in junior and senior tutorial (H 97 ab and H 99 abc), and another 18 may be in H 98 ab if students wish and their instructors agree.

The courses and tutorials in the history option concentrate on three areas: Europe, the United States, and Asia. Each history major will concentrate in one of these areas and write a research paper in it; each student must also take at least 36 units of history in other areas as approved by the adviser or as required by the history option.

A student considering the history option when he or she comes to Caltech will be well advised to take one course from Hum/H 1, 2, or 3. In the sophomore year the student should take upper-level history courses, but this is also a good time to pursue the study of English or philosophy, to begin or continue a foreign language (particularly desirable if the area of concentration is to be Europe or Asia), and to do introductory work in the social sciences. A student will normally make a commitment to an area of concentration early in the junior year, exploring this area through regular course work supplemented during the second and third terms by tutorial study in H 97 ab. At the beginning of the senior year, a history major will enroll in H 99 abc and be assigned to a faculty member in the student's chosen area. The first term will be devoted to preparation, the second to research, and the third to the writing of a substantial research paper.

History and Philosophy of Science Option

The option in history and philosophy of science (HPS) provides students with a broad education in the historical and philosophical issues arising in connection with science and technology. Students take courses addressing fundamental questions about scientific concepts and practice, such as the following: To what extent was the scientific revolution revolutionary? What is a scientific explanation and how do scientists go about constructing and justifying one? How do the sciences fit into the larger cultural, social, and economic context? How have conceptions of scientific experimentation changed over time? How and why did modern physics (or chemistry or biology) emerge in the form that it did? How should the theory of evolution inform our conception of the modern mind and brain? What role can the neurosciences be expected to play in solving the “mind-body” problem? The option thus aims to give students a broad basic understanding of the ways in which science is practiced, and the ways in which that practice has changed over time. It is designed to complement the regular curriculum at Caltech, offering students the opportunity to enlarge upon and to contextualize the strong technical skills they acquire in other courses and options.

The HPS option provides excellent preparation for students going into law, business, medicine, and public affairs, as well as...
solid preparation for graduate work in history and/or philosophy of science. In addition, and because of its emphasis on essay writing and the formulation of complex philosophical and historical arguments, it aids budding scientists and engineers in developing the writing and communication skills that are increasingly vital today.

Option Requirements
1. Hum/H/HPS 10, HPS 102 ab, HPS/Pl 120, and HPS 103 (normally for 9 quarters). HPS 102 b fulfills the Institute scientific writing requirement.
2. Three advanced courses in the history of science, chosen from HPS/H offerings with a course number of 99 or higher.
3. Three advanced courses in philosophy of science, chosen from HPS/Pl offerings with a course number of 99 or higher.
4. 45 units of courses in science, mathematics, and engineering. This requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by a course with a number less than 10.
5. Three units of oral communication. En 84 satisfies this requirement as do oral communication courses offered by other options.
6. Passing grades must be earned in a total of 486 units, including all courses used to satisfy the above requirements.

Explanatory Notes
1. It is desirable that students enter the option in their sophomore year. However, students may also enter the option in their junior year if they can complete the option’s requirements in time for graduation.
2. Students in the option will normally take HPS 103 each quarter, beginning in the sophomore year, for a total of 9 quarters. HPS 103 is graded on attendance and may only be taken pass/fail. To pass the course, student must attend four lectures by outside speakers on HPS topics. HPS 103 is thus an excellent way for students to learn about a broad variety of HPS issues, past and present.
3. HPS 102 ab is a two-quarter course devoted to the writing of a senior research paper. It is taught as a tutorial, with students developing their papers under the guidance of a faculty adviser. The senior research paper stresses independent work and can cover any one of a number of topics from a historical and/or philosophical perspective. Areas in which research could be conducted include the following: the nature and growth of scientific institutions and knowledge, theories of cognition, language and perception, and theories of scientific practice, broadly construed. In researching their senior theses, students are encouraged to form collaborations with other members of the Caltech community and to bring to bear knowledge acquired in other classes (e.g., a student writing on the history of quantum mechanics might be encouraged to interview members of the Caltech physics department; those writing on neurophilosophy or genetic determinism would be expected to incorporate material learned in biology classes into their research). Among the other resources available for writing the senior paper is the Caltech Archives, which contains a substantial collection of rare books in the history of science going back to the 16th century, and which houses the correspondence and other papers of a number of distinguished scientists, including George Ellery Hale, Robert Millikan, Richard P. Feynman, Lee A. DuBridge, and Max Delbrück. Also potentially of interest to both historians and philosophers of science is the Huntington Library’s rich collection of scientific books and manuscripts, and the Einstein Papers Project’s complete archive of Einstein’s scientific papers and correspondence, now housed at Caltech.

Typical Course Schedule
First Year
It is recommended that students intending to follow the HPS option take Hum/H/HPS 10 as one of their freshman humanities courses. Students making the decision to take this option in their sophomore year should take Hum/H/HPS 10 and HPS/Pl 120 as early as possible in that year.

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 ab</td>
<td>Sophomore Mathematics</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>Sophomore Physics</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>HPS 10</td>
<td>Introduction to History of Science</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>HPS/Pl 120</td>
<td>Introduction to Philosophy of Science</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>HPS 103</td>
<td>Advanced HPS/History</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>HPS 109</td>
<td>Public Lecture Series</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ec 11</td>
<td>Introductory Social Science</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>or PS 12</td>
<td>Other Electives</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

| 46 | 46 | 46 |

Second Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPS 103</td>
<td>Public Lecture Series</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Advanced HPS/History</td>
<td>-</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Advanced HPS/Philosophy</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Science, Math, Engineering</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Advanced Social Science</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other Electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

| 46 | 46 | 46 |

Graduation Requirements/History and Philosophy of Science
Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPS 103 Public Lecture Series</td>
<td>1 1 1</td>
</tr>
<tr>
<td>HPS 102 ab Senior Research Seminar¹</td>
<td>- 12 12</td>
</tr>
<tr>
<td>Advanced Social Science²</td>
<td>9 - -</td>
</tr>
<tr>
<td>Science, Math, Engineering</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Other Electives</td>
<td>27 18 18</td>
</tr>
<tr>
<td>Total</td>
<td>46 40 40</td>
</tr>
</tbody>
</table>

Note: Not all required courses are offered each term; students should consult the current Catalog to determine which terms required courses are being offered, and should construct their course plan for the year accordingly.

¹ If not taken in first year, otherwise one additional HPS or elective.
² It is recommended that students choose their advanced social science electives from among courses that will enlarge their perspective on topics related to HPS (e.g., Ec/SS 129, Ec/SS 130, Psy 101, Psy 125, Psyc 130, Psyc 121, Psyc 122, An 22).
³ HPS 102 ab may be taken in any two consecutive terms in the senior year. Students should coordinate with their HPS adviser to determine their course schedule.

Independent Studies Program

The Independent Studies Program (ISP) is an undergraduate option that allows the student to create his or her own scholastic requirements, under faculty supervision, and to pursue positive educational goals that cannot be achieved in any of the other available options. A student’s program may include regular Caltech courses, research courses, courses at other schools, and independent study courses (item 5 next page). In scope and depth, the program must be comparable to a normal undergraduate program, but it need not include all of the specific courses or groups of courses listed in the formulated Institute requirements for undergraduates.

The Curriculum Committee, a standing committee of the faculty, has overall responsibility for the program. In addition, each student has his or her own committee of three advisers, two of whom must be professorial faculty. Application material may be obtained at the Registrar’s Office or from the dean of students.

Administrative Procedures and Guidelines

1. An interested student must recruit three individuals, representing at least two divisions of the Institute, who approve of his or her plans and agree to act as an advisory “committee of three.” The committee of three forms the heart of the program and bears the chief responsibility for overseeing the student’s progress. The chair and one other member must be on the professorial staff. The third member may be any qualified individual, such as a postdoctoral fellow, graduate student, or faculty member of another institution.

2. The student must submit a written proposal to the dean of students, endorsed by the committee of three, describing his or her goals, reasons for applying, and plan of study for at least the next year. If persuaded that the proposal is sound and workable, the dean endorses it and passes it on to the Curriculum Committee. This committee, in turn, reviews the proposal and, if it is acceptable, assumes responsibility for oversight of the program.

3. To implement the program, a written contract is now drawn up between the student, the committee of three, and the Curriculum Committee. This contract includes the agreed-upon content of the student’s program and the methods for ascertaining satisfactory progress for those parts of the student’s program that are not standard Institute courses. This contract may of course be amended, but any amendments must be approved by the committee of three and the Curriculum Committee. Copies of each student’s contract and of all amendments thereto, along with all ISP records for each student and his or her transcript, are kept in the permanent files of the Registrar’s Office.

4. The progress of each student in the ISP is monitored each quarter by the registrar, and any deviations from the terms of the contract are reported to the Chair of the Curriculum Committee. Standards for acceptable progress and for satisfactory completion of the terms of the contract are the responsibility of the Curriculum Committee. When the Committee is satisfied that the terms of the contract have been fulfilled by the student, it recommends the student to the faculty for graduation.

5. A plan of study may include special ISP courses to accommodate individual programs of study or special research that falls outside ordinary course offerings. In order that credit be received for an ISP course, a written course contract specifying the work to be accomplished, time schedule for progress reports and completed work, units of credit, and form of grading must be agreed upon by the instructor, the student, and the committee of three, and submitted to the registrar prior to initiating the work in the course. ISP courses are recorded on the student’s transcript in the same manner as are other Caltech courses.

Mathematics Option

The four-year undergraduate program in mathematics leads to the degree of Bachelor of Science. The purpose of the undergraduate option is to give students an understanding of the broad outlines of modern mathematics, to stimulate their interest in research, and to prepare them for later work, either in pure mathematics or allied sciences. Unless students have done exceptionally well in their freshman and sophomore years, they should not contemplate specializing in mathematics. An average of at least "B" in mathematics courses is required of students in order to major in mathematics.

Since the more interesting academic and industrial positions open to mathematicians require training beyond a bachelor’s degree, students who intend to make mathematics their profession...
must normally plan to continue with graduate study. Some students use their background in mathematics as an entry to other fields such as physics, computer science, software engineering, economics, business, finance, medicine, or law.

The schedule of courses in the undergraduate mathematics option is flexible. It enables students to adapt their programs to their needs and mathematical interests and gives them the opportunity of becoming familiar with creative mathematics early in their careers. In particular, students are encouraged to consider courses in areas such as applied and computational mathematics, physics, finance, economics, control and dynamical systems, computer science, electrical engineering, and computation and neural systems.

During each term of their junior and senior years, students normally take 18 units of courses in mathematics or applied and computational mathematics, including the required courses Ma 108 abc and 109 abc. Any course listed under applied and computational mathematics is regarded as an elective in mathematics and not as an elective in science, engineering, or humanities. Those who have not taken Ma 5 as sophomores must do so as juniors. Overloads in course work are strongly discouraged; students are advised instead to deepen and supplement their course work by independent reading.

A student whose grade-point average is less than 1.9 at the end of the academic year in the subjects under mathematics and applied and computational mathematics may, at the discretion of the department, be refused permission to continue work in the mathematics option.

Option Requirements
1. Ma 5 abc, Ma 10, Ma 108 abc, Ma 109 abc.
2. Ma/CS 6 a or Ma 121 a.
3. Ma/CS 6 c or Ma 116 a or Ma/CS 117 a.
4. 45 additional units in Ma or ACM numbered 90 or above (other than Ma 98). Courses in other options with high mathematical content may be used to fulfill this requirement with the approval of the executive officer for mathematics. Of these 45 units, at most 18 can be in ACM or other courses outside Ma.
5. Math majors must take two quarters (18 units) of a single course, chosen from the Ma course listings with numbers between 110 and 190, inclusive. (In years where one of these courses is given as a one-term course only, it cannot be used to satisfy this requirement.) These two quarters may be used to meet requirements 2, 3, or 4.
6. Passing grades must be earned in a total of 483 units, including the courses listed above.

Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
</tr>
<tr>
<td>Ma 2 ab</td>
</tr>
<tr>
<td>Ph 2 ab</td>
</tr>
<tr>
<td>Ma 5 abc</td>
</tr>
<tr>
<td>HSS Electives</td>
</tr>
<tr>
<td>Electives<sup>1</sup></td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
</tr>
<tr>
<td>Ma 10</td>
</tr>
<tr>
<td>Ma 108 abc</td>
</tr>
<tr>
<td>Ma/CS 6 ac</td>
</tr>
<tr>
<td>HSS Electives</td>
</tr>
<tr>
<td>Electives<sup>1</sup></td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
</tr>
<tr>
<td>Ma 109 abc</td>
</tr>
<tr>
<td>HSS Electives</td>
</tr>
<tr>
<td>Electives<sup>1</sup></td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

¹ Includes menu course (second year, if not taken in freshman year). Also must include courses to meet option requirements 4, 5.

Mechanical Engineering Option

The aim of the undergraduate program in mechanical engineering is to prepare students for research and professional practice in an era of rapidly advancing interdisciplinary technology. The program builds on the core curriculum to combine individual depth of experience and competence in a particular chosen mechanical engineering specialty with a strong background in the basic and engineering sciences. It maintains a balance between classroom lectures and laboratory and design experience, and emphasizes the problem formulation and solving skills that are essential to any engineering discipline. The program also strives to develop in each student self-reliance, creativity, leadership, professional ethics, and the capacity for continuing professional and intellectual growth.

Mechanical engineering is the branch of engineering that is generally concerned with understanding forces and motion and their application to solving problems of interest to society. The field includes aspects of thermodynamics, fluid and solid mechanics, mechanisms, materials, and energy conversion and transfer, and involves the application of physics, mathematics, chemistry, and
increasingly biology and computer science. Importantly, the field also emphasizes the process of formulation, design, optimization, manufacture, and control of new systems and devices.

Technical developments in the last decade have established the importance of interdisciplinary engineering and science, and as a result, new technical disciplines within mechanical engineering have emerged. These new areas build on an understanding of the fundamental behavior of physical systems; however, the focus of this work is at the interfaces of the traditional disciplines. Examples of the new disciplines include micro- and nanomechanical systems, simulation and synthesis, integrated complex distributed systems, and biological engineering.

Mechanical engineers can be found in many fields, including automotive, aerospace, materials processing and development, power production, consumer products, robotics and automation, semiconductor processing, and instrumentation. Mechanical engineering can also be the starting point for careers in bioengineering, environmental and aeronautical engineering, finance, and business management.

At the end of the first year, students who elect the mechanical engineering option are assigned advisers as close to their expressed field of interest as possible, and together they develop programs of study for the next three years. Beyond the Institute-wide requirements of physics, mathematics, and humanities, these programs require one year of applied and computational mathematics and additional course requirements listed below.

A student whose interests relate to mechanical engineering, but who wishes to pursue a broader course of study than that allowed by the requirements below, may elect the engineering and applied science option.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of the academic year in the required courses listed below may be refused permission to continue work in this option.

Option Requirements
1. E 10, E 11.
2. ACM 95 abc or Ma 108 abc or Ma 109 abc.
3. 9 units from CS 1, CS 2, CS 11, EE/CS 51, Ph 20–22.
4. ME 35 abc, ME 18 ab, ME 19 ab, ME 71, ME 65, and CDS 110 a.
5. 9 units of ME/CE 96 and 9 units of additional laboratory\(^1\) (such as CS/EE/ME 75 abc, MS 90, ME 72), or an experimental senior thesis (ME 90 abc).
6. In addition to the above courses, 27 units selected from Ae/APh/CE/ME 101 abc, Ae/AM/CE/ME 102 abc, Ae/ME 120 ab, AM 151 abc, CDS 110 b, CDS 140, ME 20, ME 66, ME 90 abc, ME 91 abc, ME 115 ab, ME 118, ME 119 ab, ME 171, MS 115 ab, or an advanced engineering course approved in advance by the mechanical engineering faculty.

7. A design project. This requirement may be fulfilled by taking one of the following: ME 72, E/ME 105, CS/EE/ME 75 abc. When appropriate, students may also seek consent from the ME undergraduate option representative and the student’s adviser to fulfill this requirement by taking ME 90 abc, ME 91 abc, or another suitable project course. If ME 72, CS/EE/ME 75 abc, or ME 90 is chosen, these units may also be used to fulfill requirement 5.
8. None of the courses satisfying requirements 2 through 7 may be taken pass/fail.
9. Passing grades must be earned in a total of 486 units, including courses listed above.

\(^1\) Excluding courses for which freshman laboratory credit is allowed.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>HSS Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Menu class</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>ME 35 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ME 18 ab</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>ME 71 abc</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>45</td>
<td>36</td>
</tr>
</tbody>
</table>

Third Year			
ACM 95 abc	12	12	12
ME 19 ab	9	9	-
HSS Electives	9	9	9
Elective	-	9	-
Laboratory	-	-	9
Science Writing	-	3	-
Total	30	42	39

Fourth Year			
E 10	-	3	-
ME 65	9	-	-
CDS 110 a	9	-	-
ME/CE 96	-	9	9
HSS Electives	9	9	-
ME Electives	9	9	-
Electives	9	18	18
Total	45	39	36
Suggested Electives
Elective courses for the third and fourth year should be selected in consultation with the student’s faculty adviser to pursue an interdisciplinary topic or a specialization of interest to the student. Such specializations include micro- or nanomechanical systems, simulation and synthesis, integrated complex distributed systems, kinematics, dynamics, fluid mechanics, solid mechanics, mechanical systems, control systems, engineering design, thermal systems, energy systems, combustion, or biological engineering.

Philosophy Option
Philosophy majors must take at least 99 units of philosophy courses during their four years as undergraduates. These must include 18 units of Pl 90 ab, to be taken in any two consecutive terms in the senior year. The 99 units may include 9 units of either Hum/Pl 8 or Hum/Pl 9, up to 9 units of Pl 30, and up to 18 units of study in related disciplines, such as history of science, logic, physics, math, psychology, or biology.

The courses in the philosophy option concentrate on three areas: philosophy of science; philosophy of mind, brain and behavior; and moral and political philosophy. Students may choose to specialize in one of these areas, but broader courses of study are also encouraged. Depending on their interests, philosophy majors may be required by the option representative or their advisers to take up to 18 units in one or more related areas. For example, students writing on political philosophy or philosophy of neuroscience will be expected to have the appropriate political science or neuroscience background. Students whose primary interest lies in the philosophy of science—particularly, in the philosophy of particular sciences such as physics or biology—will have their intellectual interests best served by taking classes in both the history and philosophy of science. Such students are encouraged to pursue the HPS option; or, if they choose the philosophy option, they may be required to take some history of science courses toward their 99-unit requirement.

Students considering the philosophy option will be well advised to take either Hum/Pl 8 or Hum/Pl 9 as one of their freshman humanities courses. From the sophomore year onward, they should plan on taking one philosophy course per term, culminating in two terms of Pl 90 ab in the senior year. Students in Pl 90 ab work with a faculty adviser to write a 10,000–12,000 word paper on a topic of mutual interest. Senior theses are expected to be of a high standard and to form the basis of students’ applications to graduate study in philosophy, should they so desire.

Option Requirements
1. Pl 90 ab.
2. 63 units of advanced philosophy courses, numbered 99 or above. (Up to 9 units of Hum/Pl 8 or Hum/Pl 9 and/or up to 9 units of Pl 30 may be substituted for up to 18 of these advanced units.)
3. 18 units of advanced philosophy courses numbered 99 or above, or advanced non-philosophy courses that are closely related to the student’s area(s) of philosophical interest. (Students wishing to count non-philosophy courses towards their option requirements must obtain prior approval from the philosophy option representative or their adviser. Students will normally not be permitted to satisfy this requirement with core courses.)
4. 54 units of science, mathematics, and engineering courses in addition to the core. This requirement cannot be satisfied by core or menu courses, or by courses listed as satisfying the introductory laboratory requirement. Students are strongly encouraged to choose their additional courses in areas that complement their philosophy studies.
5. Three units of oral communication. En 84 satisfies this requirement as do oral communication courses offered by other options.
6. Passing grades must be earned in a total of 486 units, including the courses listed above.

Physics Option
The physics option offers instruction in the fundamentals of modern physics and provides a foundation for graduate study, which is generally necessary for a career in basic research. Many individuals have also found that the physics program forms an excellent basis for future work in a variety of allied fields.

While all Caltech students must take the five terms of introductory courses, an intensive version of the sophomore course (waves, quantum mechanics, and statistical mechanics) is offered for those planning further study in physics. The required junior-level courses give a thorough treatment of fundamental principles. Elective courses taken during the junior and senior years allow students to explore their particular interests. Some electives offer broad surveys, while others concentrate on particular fields of current research. A choice of laboratory courses is offered at several levels. Students are encouraged to become active participants in research on campus. Academic credit for physics work done outside of the classroom can be awarded in a variety of ways.

Students must maintain a grade-point average of 1.9 or better each year in the subjects listed under this division to remain in the physics option.

Option Requirements
The first three requirements should be completed by the end of the second year. In planning a program, note that Ph 6 and Ph 7 are each offered only once per year, in the second and third terms, respectively.
1. Ph 3.
2. Ph 6 or APh 24.
4. 18 units of Ph 78, or 18 units of Ph 77, or 9 units of Ph 77 and 9 units from APh 77 or Ay 105.
5. Ph 70.
6. Ph 106.
7. Ph 125.

Some laboratory courses from other options have considerable physics content, and students wishing to satisfy this requirement with such a course may petition the Physics Undergraduate Committee for approval.

Other communication courses (e.g., E 10, Ay 30, Ma 10) may be substituted for Ph 70.

Required Electives

1. 90 units, in addition to the above, of any of the following: any Ph, Ay, or APh course numbered 100 or above, or any of Ph 5, Ph 78, Ph 79, ACM 95, ACM 101, or up to 9 units of Ph 20–22. 9 units toward the 90-unit requirement will be given for taking three terms of Ph 77. Students are encouraged to take ACM 95 as part of this requirement. The pass/fail option cannot be exercised on any courses used for this requirement, with the exception of ACM 95. No more than 9 units of Ph 171–173 may apply toward this requirement without permission from the Physics Undergraduate Committee. In individual cases, this committee may allow other courses with substantial physics content to apply toward the requirement; seniors must submit their petitions for this purpose before the first day of third term.

2. 9 units of science or engineering electives outside of Ph, APh, Ma, and ACM. These units are in addition to the required Core Science Electives.

3. Passing grades must be earned in a total of 486 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 12</td>
<td>Waves, Quantum Physics, and Statistical Mechanics</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>Sophomore Mathematics</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ACM 95 abc</td>
<td>Intro. Methods of Applied Math.</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Physics Laboratory</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>HSS and/or PE Electives</td>
<td>15</td>
<td>9</td>
</tr>
</tbody>
</table>

45 48 48

1 In addition to the required courses listed here, facility with computer programming at the level of CS 1 is strongly recommended, and further computer-related course work such as CS 2, or Ph 20–22 is highly desirable. Facility with electronics at the level of Ph 5 also is recommended.

Third Year

<table>
<thead>
<tr>
<th>Courses</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 106 abc Topics in Classical Physics</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 125 abc Quantum Mechanics</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>HSS and/or PE Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Electives

45 48 48

Fourth Year

<table>
<thead>
<tr>
<th>Courses</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Physics Laboratory</td>
<td>9</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Ph 70 Oral and Written Communication</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Advanced Physics Electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>HSS and/or PE Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

45 48 45

Social Science Option

The social science program is designed to provide undergraduates with multidisciplinary training in social science. The program focuses on the processes of social, political, and economic change and the analytical methods used by social scientists to describe and predict them. The program is designed to be sufficiently flexible to provide an excellent preparation for students intending to attend graduate school in any social science discipline, or in law or business.

Option Requirements

1. Ec 11, PS 12, Ec 121 a, Ma 112 a, Ec 122, PS/Ec 172, BEM/Ec/SS 20.
2. One of the following: An 22, An 23, or Psy 15.
3. 45 additional units of science, mathematics, and engineering courses. The requirement cannot be satisfied by courses listed as satisfying the introductory laboratory requirement or by any course with a number less than 10.
4. 54 additional units of social science courses, which include any course listed under the following headings: anthropology, business economics and management (except BEM 101), economics, law, political science, psychology, and social science. (Courses that are used to fulfill the Institute’s advanced social science requirement [courses numbered 100 and above] will also count toward the 54 additional units required under the economics and social science options.)
5. Passing grades must be earned in a total of 486 units, including all courses used to satisfy the above requirements.
Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ec 11</td>
<td>9</td>
</tr>
<tr>
<td>PS 12</td>
<td>-</td>
</tr>
<tr>
<td>Ma 2 ab</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 ab</td>
<td>9</td>
</tr>
<tr>
<td>Menu Course</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ma 112 a</td>
<td>9</td>
</tr>
<tr>
<td>Ec/SS 20</td>
<td>-</td>
</tr>
<tr>
<td>Ec 121 a</td>
<td>-</td>
</tr>
<tr>
<td>Ec 122</td>
<td>-</td>
</tr>
<tr>
<td>PS/Ec 172</td>
<td>-</td>
</tr>
<tr>
<td>An 22</td>
<td>-</td>
</tr>
<tr>
<td>An 23 or</td>
<td>-</td>
</tr>
<tr>
<td>Psy 15</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>BEM/Ec/SS 20</td>
<td>-</td>
</tr>
<tr>
<td>Electives¹</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

¹ Students may concentrate on research by taking 34 units of supervised research in their senior year.
The Institute offers graduate work leading to the degrees of Master of Science and Doctor of Philosophy. In addition, it offers the following intermediate degrees: Aeronautical Engineer, Civil Engineer, Electrical Engineer, and Mechanical Engineer.

The academic work of the Institute is organized into six divisions: Biology; Chemistry and Chemical Engineering; Engineering and Applied Science; Geological and Planetary Sciences; the Humanities and Social Sciences; and Physics, Mathematics and Astronomy.

Graduate work at the Institute is further organized into graduate options, which are supervised by those professors whose interests and research are closely related to the area of the option, within the administrative jurisdiction of one or more of the divisions. The graduate student working for an advanced degree in one of the graduate options is associated with an informal group of those professors who govern the option, other faculty including research associates and fellows, and other graduate students working for similar degrees.

A faculty member serves as the representative for an option. The option representative provides consultation on academic programs, degree requirements, financial aid, etc., and provides general supervision to graduate students in the option. The Committee on Graduate Studies, which includes the option representatives, elected members of the faculty at large, and graduate students appointed by the Graduate Student Council, exercises supervision over the scholastic requirements established by the faculty for all advanced degrees, provides policy guidance to the dean of graduate studies, and certifies all candidates for graduate degrees to the faculty for their approval. The option representatives for 2005–06 are as follows:

- **Aeronautics**: Prof. D. Pullin
- **Applied and Computational Mathematics**: Prof. E. Candes
- **Applied Mechanics**: Profs. K. Bhattacharya and T. Heaton
- **Applied Physics**: Prof. R. Phillips
- **Astrophysics**: Prof. S. Kulkarni
- **Biochemistry and Molecular Biophysics**: Prof. R. Phillips
- **Bioengineering**: Prof. J. Burdick
- **Biology**: Prof. R. Deshaies
- **Chemical Engineering**: Prof. Z-G. Wang
- **Chemistry**: Prof. D. Dougherty
- **Civil Engineering**: Profs. K. Bhattacharya and T. Heaton
- **Computation and Neural Systems**: Prof. S. Shimojo
- **Computer Science**: Prof. K. M. Chandy
- **Control and Dynamical Systems**: Prof. J. Marsden
- **Electrical Engineering**: Prof. Y-C. Tai
GRADUATE POLICIES AND PROCEDURES

Admission to Graduate Standing

Application
An application for admission can be completed electronically at http://www.gradoffice.caltech.edu. Admission will be granted only to a limited number of students of superior ability, and application should be made as early as possible. In general, admission to graduate standing is effective for enrollment only at the beginning of the next academic year. The California Institute of Technology encourages applications from both men and women, including members of minority groups. Students wishing to apply for assistantships or fellowships may do so in the appropriate section of the application for admission. Completed applications are due in the Graduate Office no later than January 15; January 1 for applied mechanics, biology, chemistry, civil engineering, computer science, mechanical engineering, and physics; December 15 for social science. Some options will review an application received after the deadline, but that applicant may be at a disadvantage in the allocation of financial assistance or in the priority for admission. Although the application form asks the applicant to state his or her intended major field of study and special interests, the application may actually be considered upon request by two or more options.

To be admitted to graduate standing an applicant must in general have received a bachelor’s degree representing the completion of an undergraduate course in science or engineering equivalent to one of the options offered by the Institute. He or she must, moreover, have attained such a scholastic record and present such recommendations as to indicate fitness to pursue, with distinction, advanced study and research. Admission sometimes may have to be refused solely on the basis of limited facilities in the option concerned.

Required Tests
The verbal, quantitative, and analytical components of the Graduate Record Examination are required by all graduate options, and scores are required by most options as part of the application for graduate admission.

International Students
In order to be admitted for graduate study, students from non-English-speaking countries are expected to read, write, and speak English and comprehend the spoken language. Although not required for admission, it is important to demonstrate a strong capability in English prior to admission to Caltech, as it is one of the criteria for admission and financial aid. In addition, to be a candidate for an advanced degree, the student must have acquired the power of clear and forceful self-expression in both oral and written English.

Applicants whose first or native language is not English are required to take a test of English proficiency as part of the application procedure. These tests are given at centers throughout the world, on several dates each year. Caltech recognizes scores from the Educational Testing Service (ETS) and from the Cambridge Examinations and the International English Language Testing System (IELTS). Nearly all successful applicants have a computer-based Test of English as a Foreign Language (TOEFL) score better than 250, or a paper-based score better than 600. The overall IELTS band score should be at least 7. In addition, applicants who are taking the TOEFL exam are highly encouraged to take the Test of Written English (TWE) and the Test of Spoken English (TSE) and submit these scores as part of their application.

Applicants should arrange for the results of these tests to be sent to the Office of the Dean of Graduate Studies prior to the application deadline.

The testing schedules for and information on the TOEFL, TWE, and TSE may be obtained by writing to TOEFL, Educational Testing Service, Princeton, NJ 08540. They are also available online at http://www.toefl.org.

The testing schedules for and information on the IELTS exam may be obtained by writing to The British Council, Bridgewater House, 58 Whitworth Street, Manchester M1 6BB, United Kingdom. They are also available online at http://www.ielts.org.

It is strongly recommended that students who do not achieve a high score on these tests, or who have little opportunity to communicate in English, make arrangements for intensive work during the summer preceding their registration. All international students are tested upon arrival at Caltech and, if found to be seriously deficient in their ability to communicate in English, must take special courses in English as a Second Language (ESL).

Special Students
Students who hold a bachelor's degree or the equivalent may in exceptional cases be admitted, for a period of up to six months, as special graduate students to carry out full-time studies at the Institute without being candidates for a degree from Caltech. Special students must be registered for a minimum of 36 units each...
term and may enroll in either research and/or courses to fulfill requirements. Special students will not be considered to be working toward a Caltech degree, and courses taken under this program cannot be used to fulfill the requirements for a Caltech degree. Registration as a special graduate student does not count toward minimum residency requirements for an advanced degree.

This status is ordinarily restricted to students who are registered in, or are on sabbatical from, an advanced degree program at another institution and who need to make use of resources available at Caltech. Admission to such status requires sponsorship by a Caltech faculty member. Application should be made directly to the dean of graduate studies, following the same procedures as for regular graduate students.

Visiting Student Researchers

In exceptional cases, students from other universities may visit Caltech to carry out research under the direction of a Caltech faculty member. Students must be registered in and pay tuition at another institution, and be on sabbatical or leave, to qualify for this status. These students will receive the status of a visiting student researcher at Caltech and will not be eligible to receive any funding from the Institute. This status is restricted to students who will not be enrolled at Caltech, but will conduct research at the Institute. (Graduate students pursuing a degree at another university may enroll in classes, receive a stipend, and pay tuition as special students at Caltech. Please see Special Students on page 229.) Applications for the visiting student researcher status must be submitted to the dean of graduate studies or dean of students along with all supporting documents and evidence of appropriate financial support (for international students). Please contact one of the deans for information on procedures and for a list of supporting documents.

Graduate Residence

One term of residence shall consist of one term’s work of not fewer than 36 units of advanced work in which a passing grade is recorded. Advanced work is defined as study or research in courses whose designated course number is 100 or above. If fewer than 36 units are successfully carried, the residence will be regarded as short by the same ratio; but the completion of a greater number of units in any one term will not be regarded as increasing the residence. In general, the residency requirements are as follows: for Master of Science, a minimum of three terms (one academic year) of graduate work; for Aeronautical Engineer, Civil Engineer, Electrical Engineer, and Mechanical Engineer, a minimum of six terms (two academic years) of graduate work; and for Doctor of Philosophy, a minimum of nine terms (three academic years) of graduate work.

Registration

Graduate students are required to register for each term of residence, whether they are attending a regular course of study, carrying on research, doing independent reading, writing a thesis, or utilizing any other academic service or campus facility.

A graduate student must be registered for 36 or more units to be classified as a full-time student, but course loads greater than 45 units are more common. International students on student visas must be registered for at least 36 units per term during their entire tenure at Caltech. A graduate student who registers for less than 36 units, or who undertakes activities related to the Institute aggregating more than 62 hours per week (in class, research, and teaching assistantship units) must receive approval from the dean of graduate studies. Petition forms for this purpose may be obtained from the Graduate Office and must carry the recommendation of the option representative of the student’s major option before submission to the dean of graduate studies.

Graduate students register during a two-week period each quarter. A late registration fee of $50 is assessed for failure to register on time. Before registering, students should consult with members of the option in which they are taking their major work to determine the studies that they can pursue to the best advantage. An adviser is assigned to each entering graduate student by the option representative. In most options a new adviser is assigned when the student begins research. Only members of the professorial faculty may serve as advisers. With the approval of the dean of graduate studies, any graduate student whose work is not satisfactory may be refused registration at the beginning of any term by the division in which the student is doing his or her major work.

In registering for research, students should indicate the name of the instructor in charge, and should consult with him or her to determine the number of units to which the proposed work corresponds. At the end of the term, the instructor in charge may decrease the number of units for which credit is given if he or she feels that the progress of the research does not justify the full number originally registered for.

Students will not receive credit for courses unless they are properly registered. The students themselves are charged with the responsibility of making certain that all grades to which they are entitled have been recorded.

All changes in registration must be reported, on drop or add cards, to the Registrar’s Office by the student. Such changes are governed by the last dates for adding or dropping courses as shown on the academic calendar on pages 4 and 5. A student may not withdraw from or add a course after the last date for dropping or adding courses without his or her option’s consent and the approval of the dean of graduate studies.
Academic Year and Summer Registration

Most courses are taught during the three 12-week quarters that make up the academic year. However, predoctoral students are strongly encouraged to continue their research throughout the summer quarter. They are entitled to at least two weeks’ annual vacation (in addition to Institute holidays), but they should arrange their vacation schedules with their research advisers early in each academic year. Any questions should be referred to the dean of graduate studies.

All students in residence must be registered. There is no tuition charge for summer research units. To maintain full-time student status, 36 units must be taken in the summer quarter.

Sabbatical

Graduate students are required to maintain their admission status until all requirements for a degree are fulfilled, whether by continuity of registration or on the basis of an approved sabbatical. A sabbatical for medical or other reasons may be approved for up to one year at a time. A sabbatical will be approved to meet military obligations, and tuition adjustments will be made if the sabbatical must be initiated within a term (see pages 140–142). An approved sabbatical indicates that the student can return to the option at the end of the sabbatical. Financial aid awarded by the Institute will not be deferred from the term for which it was originally offered and must be requested again for the term of reenrollment.

In general, international students cannot take a sabbatical without jeopardizing their visa status. Students who hold nonimmigrant visas must meet with an adviser in the International Student Programs Office to determine the impact that a sabbatical will have on their immigration status.

Detached duty status continues registration for a student doing research at another location, such as a national facility, for an extended period. Reduced duty status continues registration for a student who cannot carry a full load due to medical disability, including pregnancy.

Graduate students who become pregnant during their studies must be provided a minimum of six weeks of paid leave with full benefits and another six weeks of family bonding leave without pay but maintaining full benefits. Family bonding leave without pay is available to the father, if the father is a graduate student at Caltech. The paid and unpaid leaves are intended to cover normal pregnancy and childbirth. If a longer leave is required due to medical complications, a six-month extension of leave beyond the 12 weeks may be taken as a medical leave with approval of the dean of graduate studies.

Petition forms for an approved sabbatical, or detached or reduced duty status, may be obtained from the Graduate Office and must, before submission to the dean of graduate studies, carry the recommendations of the student’s option representative and, where appropriate, the thesis adviser. In case of a lapse in admission status, readmission must be sought before academic work may be resumed or requirements for the degree completed. Registration is required for the quarter in which the thesis defense is undertaken, with the exception of the first week of each quarter, but is not normally allowed beyond the last date of the quarter. Approval of the dean of graduate studies is required for any student seeking to enroll for subsequent terms following the thesis defense.

The dean of graduate studies may place a graduate student on involuntary sabbatical if persuaded by the evidence that such an action is necessary for the protection of the Institute community or for the personal safety or welfare of the student involved. Such a decision by the dean is subject to automatic review within seven days by the vice president for student affairs.

Guidelines for Graduate Student Advising

The relationship between a faculty adviser and graduate student should be founded on mutual respect and open communication. Advisers and students should discuss the nature of their working relationship early and continue this discussion throughout their period of collaboration to ensure mutually understood and compatible expectations. These discussions should be frequent and open, and should include not only work, research goals, and performance reviews, but also change of status, time for personal and family responsibilities, time off, and concerns about academic or work situations. Both the student and adviser have the obligation to initiate meetings as necessary to ensure the success of the relationship.

After achieving candidacy, each Ph.D. student should be assigned a thesis advising committee of three or more faculty members. This committee should meet informally at least once a year beginning in the fourth year of graduate study.

The graduate student–faculty adviser relationship should be guided by norms of fairness and professionalism. Both faculty and graduate students should avoid relationships that conflict with their respective roles and duties at Caltech. Both are bound by the prevailing policies prohibiting discrimination and harassment (pages 59–60 and 66–75). Concerns relating to academic or work situations should be raised promptly between the persons directly involved, and handled informally if possible. Both students and advisers have the responsibility to raise and address concerns and conflicts promptly, honestly, and in a manner that conforms with academic integrity and professionalism. Caltech policy requires that students’ concerns be addressed fairly and promptly, and prohibits retaliation or discrimination against students for appropriately voicing or raising a concern.
Part-Time Programs

Part-time graduate study programs at the Institute are for graduate students who cannot devote full time to their studies and are allowed to register only under special arrangements with a sponsoring organization, and such students are subject to the following rules:

Degree Programs

- Applicants for the part-time program must submit a regular application form accompanied by a detailed plan for meeting the course requirements for the degree.
- Any research work done for academic credit shall be supervised by a Caltech faculty member.
- In general, students admitted to the part-time program are required to take at least 27 units of graduate course work or research work each term during the first academic year.
- Any option at the Institute retains the right to not participate in the program or to accept it under more stringent conditions.

Nondegree Programs

Caltech employees, both campus and JPL, are eligible to apply to take one or more graduate courses for credit. Participants in this program will not be considered to be working toward a Caltech degree, in contrast to the part-time program for graduate degrees described above, and courses taken under this program cannot be used to fulfill the requirements for a Caltech degree.

At least one month prior to the start of the term, the employee should have an initial discussion with the option representative of the option in which the course is to be taken. Application should be made to the Graduate Office by completing the special form provided for this purpose, and providing a transcript of academic work and one letter of recommendation. The employee must meet the prerequisites for the course, and must obtain the written permission of the instructor. Individual options may require further information such as GRE scores. The decision on admission to take each course will be made by the course instructor and the option representative, with final approval by the dean of graduate studies. Taking an additional course at a later time will require full reappplication. It is the employee’s responsibility to arrange a revised work schedule with the appropriate supervisor. Approval of the employee’s division is required.

Part-time nondegree students are subject to the Honor System (see page 30) and are under the purview of the dean of graduate studies. They may take only courses numbered 100 or higher. Research courses are excluded from the program. For courses in which a letter grade is offered, these students may not register to receive a pass/fail grade in the course, nor can credit for the course be obtained by examination. The option may limit the number of nondegree students admitted to any one course.

Working at Special Laboratories

- Students who desire to take advantage of the unique opportunities available at one of the special laboratories (e.g., JPL), for Ph.D. thesis work, may be allowed to do so, provided that they maintain good contact with academic life on campus, and the laboratory involved commits support for the duration of the thesis research, and provided that all Caltech graduate thesis research carried out at a special laboratory is under the supervision of Caltech faculty members.
- A student’s request to carry out thesis work at a special laboratory should be formally endorsed by the appropriate committee of his or her option and by the special laboratory, on a petition submitted through the option representative to the dean of graduate studies. The special laboratory should recognize its commitment of special equipment or any other resources required for the thesis work. Approval by the special laboratory should also indicate that the thesis topic is a sensible one, and that it is not likely to be preempted by the laboratory.
- A student may take similar advantage of unique opportunities at a corporate or governmental research and development facility under the same conditions, providing that there exists a formal written agreement between the R&D facility and the student's thesis adviser, and that advance written approval is obtained from the dean of graduate studies. Such curricular practical training may in some cases involve full-time employment at the laboratory for a limited period of time for the purpose of engaging in the essential data collection that is integral to a student's doctoral dissertation. Typically, such students who are not in a local laboratory are placed on detached duty status.
- Employment by a special laboratory of a graduate student for work not connected with his or her thesis should be regarded as equivalent to other outside employment.
Exchange Program with Scripps Institution of Oceanography

An exchange program has been established with the Scripps Institution of Oceanography (SIO), University of California, San Diego, permitting Caltech graduate students to enroll in and receive credit for graduate courses offered by SIO. Arrangements should be made through the student's major option and the Office of the Dean of Graduate Studies. The student must obtain the advance approval of the instructors of courses to be taken at SIO. In some cases, when it is in the best interests of the student, arrangements may be made for the student to be temporarily in full-time residence at SIO.

Thesis research done partly at SIO may be arranged directly by the student's option and the staff of appropriate research laboratories at SIO, without the necessity of enrolling for SIO courses designated for research; in this case the student will continue to be under the supervision of his or her Caltech thesis adviser and will enroll for Caltech research units.

GENERAL REQUIREMENTS FOR GRADUATE DEGREES

Degree of Master of Science

The Master of Science degree is a professional degree designed to prepare a student for teaching, for further graduate studies, or for more advanced work in industry. Detailed requirements are based primarily on professional studies, and the program should be planned in consultation with the faculty in the appropriate discipline. Under normal circumstances, the requirements for the M.S. degree can be completed in one academic year.

A student who enters the Institute holding a master's degree from another institution will not normally be awarded a master's degree in the same field from the Institute unless the initial admission to Caltech graduate standing indicated that the student was to be a master's candidate. A student may not normally be awarded two master's degrees from the Institute.

Special regulations for the master's degree are listed under each graduate option. Several options do not offer an M.S. degree except in special circumstances.

Residence and Units of Graduate Work Required. At least one academic year of residence at the Institute and 135 units of graduate work at the Institute subsequent to the baccalaureate degree are required for the master's degree. Included in these units are at least 27 units of free electives or of required studies in the humanities. Courses used to fulfill requirements for the bachelor's degree may not be counted as graduate residence.

To qualify for a master's degree, a student must complete the work indicated in the section on special regulations for his or her option with a grade-point average for the approved M.S. candidacy courses of at least 1.9.

In special cases, with the approval of the instructor and the dean of graduate studies, courses taken elsewhere before enrollment at the Institute may be offered in place of specifically required courses. An examination may be required to determine the acceptability of such courses. Course credit, if granted, shall not count toward the 135-unit and residency requirements.

Joint B.S./M.S. Degree. In exceptional cases, undergraduate students may pursue a joint B.S./M.S. program of study in some options. Several options do not allow a joint B.S./M.S. degree. Students should contact the graduate option representative to find out if the joint B.S./M.S. degree is possible in a particular option. Such students must follow the normal procedures for admission to the M.S. program in the option of their choice. Students attending courses or carrying out research toward an M.S. degree before completion of their B.S. degree requirements will be considered as undergraduate students and will not be eligible for graduate financial aid, graduate housing, or other graduate student privileges.

Admission to M.S. Candidacy. Before the midpoint of the first term of the academic year in which the student expects to receive the degree, he or she should file in the Office of the Dean of Graduate Studies an application for admission to candidacy for the degree desired. On the M.S. candidacy form, the student must submit a proposed plan of study, which must have the approval of his or her option representative and, if a thesis is required, of his or her research adviser. Some options require a thesis or research report in addition to course requirements. The thesis or research report must be signed off on the M.S. candidacy form by the research adviser no later than two weeks before the degree is to be conferred. This approved plan of study will constitute the requirements for the degree. Any modifications must be approved by the option representative, and the initial plan of study resubmitted to the Graduate Office at least two weeks before Commencement.

Engineer's Degree

Engineer's degrees are awarded in aeronautical engineering, civil engineering, electrical engineering, and mechanical engineering. The work for an engineer's degree must consist of advanced studies and research in the field appropriate to the degree desired. It must conform to the special requirements established for that degree and should be planned in consultation with the members of the faculty concerned. Students who have received the master's degree and wish to pursue further studies leading toward either the engineer's or the doctor's degree must file a new petition to continue graduate work toward the desired degree. Students who have received an engineer's degree will not in general be admitted for the doctor's degree.
Residence. At least six terms of graduate residence subsequent to a baccalaureate degree equivalent to that given by the Institute are required for an engineer's degree. Of these, at least the last three terms must be at Caltech. It must be understood that these are minimum requirements, and students must often count on spending a somewhat longer time on graduate work.

To qualify for an engineer's degree, a student must complete the work prescribed by his or her supervising committee with a grade-point average of at least 1.9. Research work and the preparation of a thesis must constitute no fewer than 55 units. More than 55 units may be required by certain options, and the student should determine the particular requirements of his or her option when establishing a program.

Admission to Candidacy. Before the midpoint of the first term of the academic year in which the student expects to receive the degree, he or she must file in the Office of the Dean of Graduate Studies an application for admission to candidacy for the degree desired. Upon receipt of this application, the dean of graduate studies, in consultation with the chair of the appropriate division, will appoint a committee of three members of the faculty to supervise the student's work and to certify its satisfactory completion. One of the members of the committee must be in a field outside the student's major field of study. The student should then consult with this committee in planning the details of his or her work. The schedule of work as approved by the committee shall be entered on the application form and shall then constitute a requirement for the degree. Changes in the schedule will not be recognized unless initialed by the proper authority. No course that appears on the approved schedule and for which the applicant is registered may be removed after the last date for dropping courses, as listed in the Catalog.

The student will be admitted to candidacy for the degree when the supervising committee certifies (a) that all the special requirements for the desired degree have been met, with the exception that certain courses of not more than two terms in length may be taken after admission to candidacy; (b) that the thesis research has been satisfactorily started and can be finished at the expected date; (c) that the candidate demonstrates competence in oral and written English.

Students may demonstrate competence in written English by scoring 5 or above on the TWE examination or by having their final thesis accepted by the faculty. To determine oral competence in English, students from non-English-speaking countries are screened during the fall orientation session. Those who do not pass the screening must enroll in ESL 101 during the fall quarter and must subsequently score at least 50 on the standardized NTS (National Testing Service) SPEAK test. Students who score below 50 on the SPEAK test are urged to continue taking ESL classes; they must pass the SPEAK test before admission to candidacy. To help students pass this test, ESL courses are held throughout the school year and intensive English is offered in the summer. The Graduate Office will maintain a record of the test scores and will provide them to the option representatives, as needed, to verify that the student has met this requirement. (Note: Other ESL courses are open to all students who want to improve their oral skills, as described on pages 418–419.)

Admission to candidacy must be obtained by the midpoint of the term in which the degree is to be granted.

Thesis. At least two weeks before the degree is to be conferred, each student is required to submit to the dean of graduate studies two copies of his or her thesis in accordance with the regulations that govern the preparation of doctoral dissertations. These regulations may be obtained from the Graduate Office. The candidate must obtain written approval of the thesis by the chair of the division and the members of the supervising committee, on a form obtained from the Office of the Dean of Graduate Studies.

The use of “classified” research as thesis material for any degree will not be permitted. Exceptions to this rule can be made only under special circumstances, and then only when approval is given by the dean of graduate studies before the research is undertaken.

Examination. At the discretion of the option in which the degree is desired, a final examination may be required. This examination would be conducted by a committee appointed by the candidate's supervising committee.

Degree of Doctor of Philosophy

The degree of Doctor of Philosophy is conferred by the Institute primarily in recognition of breadth of scholarship, depth of research, and the power to investigate problems independently and efficiently, rather than for the completion of definite courses of study through a stated period of residence. The work for the degree must consist of research and the preparation of a thesis describing it, and of systematic studies of an advanced character, primarily in science or engineering. In addition, the candidate must have acquired the power of clear and forceful self-expression in both oral and written English.

Subject to the general supervision of the Committee on Graduate Study, the student's work for the degree of Doctor of Philosophy is specifically directed by the division in which he or she has chosen the major subject. Each student should consult his or her division concerning special divisional and option requirements.

Admission. With the approval of the dean of graduate studies, students are admitted to graduate standing by the option in which they choose their major work toward the doctor's degree. In some
cases, applicants for the doctor's degree may be required to register for the master's or engineer's degree first; however, these degrees are not general prerequisites for the doctor's degree. Students who have received the master's degree and wish to pursue further studies leading toward either the engineer's or the doctor's degree must file a request to continue graduate work toward the desired degree. Students who have received an engineer's degree will not, in general, be admitted for the doctor's degree.

A student who holds a Ph.D. degree from another institution will not normally be admitted to graduate standing at Caltech to pursue a second Ph.D. degree. A student will not normally be awarded two Ph.D. degrees from the Institute.

Minor Programs of Study. The Institute does not require a minor for the Ph.D. degree, but the individual options may have minor requirements as part of their requirements for the major.

A student may undertake a minor program of study in most options as specified in this catalog under the section “Special Regulations of Graduate Options.” Completion of a minor program of study is recognized on the Ph.D. diploma by the statement, “...and by additional studies constituting a minor in [minor option].”

A minor program of study should be at a level of study in the minor substantially beyond that typically acquired by students as part of their major requirements. Most options require 45 units or more, including at least one 200-level course and a coherent program of the supporting 100-level courses. The faculty of the minor option may approve a proposed minor program on the basis of overall class performance and/or by an oral examination. Detailed requirements for minor options are listed under the individual options.

Residence. At least nine terms (three academic years) of residence subsequent to a baccalaureate degree equivalent to that given by the Institute are required for the doctor's degree. Of this at least one year must be in residence at the Institute. It should be understood that these are minimum requirements, and students must usually count on spending a somewhat longer time in residence. A student whose undergraduate work has been insufficient in amount or too narrowly specialized, or whose preparation in his or her special field is inadequate, must count upon spending increased time in work for the degree.

However, no student will be allowed to continue work toward the doctor's degree for more than five academic years of graduate residence, without a petition approved by the dean of graduate studies. This petition must include a plan and schedule for completion, agreed upon and signed by the student, the research adviser, and the option representative.

Registration. Continuity of registration must be maintained until all requirements for the doctor's degree have been completed, with the exception of summer terms and authorized sabbaticals. Registration is required for the quarter in which the thesis defense is undertaken.

Admission to Candidacy. On the recommendation of the chair of the division concerned, the dean of graduate studies will admit a student to candidacy for the degree of Doctor of Philosophy after the student has been admitted to work toward the doctor's degree and has been in residence at least one term thereafter; has initiated a program of study approved by the major option and, if needed, by the minor option; has satisfied by written or oral examination the several options concerned, or otherwise shown that he or she has a comprehensive grasp of the major and minor subjects and of subjects fundamental to them; has demonstrated the ability for clear and forceful self-expression in both oral and written English; and has shown ability in carrying on research in a subject approved by the chair of the division concerned. Option regulations concerning admission to candidacy are given in a later section.

Members of the Institute staff of rank higher than that of assistant professor are not admitted to candidacy for a higher degree.

Students may demonstrate competence in written English by scoring 5 or above on the TWE examination or by having their final thesis accepted by the faculty. To determine oral competence in English, students from non-English-speaking countries are screened during the fall orientation session. Those who do not pass the screening must enroll in ESL 101 during the fall quarter and must subsequently score at least 50 on the standardized NTS (National Testing Service) SPEAK Test. Students who score below 50 on the SPEAK Test are urged to continue taking ESL classes; they must pass the SPEAK Test before admission to candidacy. To help students pass this test, ESL courses are held throughout the school year and intensive English is offered in the summer. The Graduate Office will maintain a record of the test scores and will provide them to the option representatives, as needed, to verify that the student has met this requirement. (Note: Other ESL courses are open to all students who want to improve their oral skills, as described on pages 418–419.)

A standard form, obtained from the dean of graduate studies, is provided for making application for admission to candidacy. Such admission to candidacy must be obtained before the close of the second term of the year in which the degree is to be conferred. The student is responsible for seeing that admission is secured at the proper time. A student not admitted to candidacy before the beginning of the fourth academic year of graduate work at the Institute must petition through his or her division to the dean of graduate studies for permission to register for further work.

After achieving candidacy, each Ph.D student should be assigned a thesis advising committee of three or more faculty members. This committee should meet informally at least once a year beginning in the fourth year of graduate study.
Candidacy (and permission to register) may be withdrawn by formal action of the option from a student whose research is not satisfactory, or for other compelling reasons. However, the option must petition through its division chair to the dean of graduate studies before taking such action.

Final Examination. Each doctoral candidate shall undergo broad oral examination on the major subject, the scope of the thesis, and its significance in relation to the major subject. The examination, subject to the approval of the dean of graduate studies, may be taken after admission to candidacy whenever the candidate is prepared; however, it must take place at least three weeks before the degree is to be conferred.

The examination may be written in part, and may be subdivided into parts or given all at one time at the discretion of the options concerned. The student must petition for this examination, on a form obtained from the Graduate Office, not less than two weeks before the date of the examination. Ordinarily, more than two weeks are needed for the necessary arrangements. An examination committee should consist of a minimum of four voting members, three of whom must be Caltech faculty. Exceptions to this rule must be approved by the dean of graduate studies in advance of the defense. The date of the examination and the composition of the examining committee will not be approved by the dean of graduate studies until the thesis is submitted in final form—i.e., ready for review by the dean, the members of the examining committee, and the Graduate Office proofreader.

Thesis. The candidate is to provide a copy of his or her completed thesis to the members of the examining committee at least two weeks before the final oral examination. The date of the examination and the composition of the examining committee will not be approved by the dean of graduate studies until the thesis is submitted in completed form, i.e., ready for review by the dean, the members of the examining committee, and the Graduate Office proofreader. Registration is required for the term in which the thesis defense is undertaken, but is not normally allowed beyond the last date of the term. Approval of the dean of graduate studies is required for any student seeking to enroll for subsequent terms following the thesis defense. A student may petition the dean of graduate studies for reduced tuition charges if the student supplies a copy of the thesis, schedules the examination, and submits the necessary petitions for the Ph.D. examination prior to 5:00 p.m. on the third Friday of the term in which the examination will be taken.

The last date for submission of the final, corrected thesis to the dean of graduate studies is the fifth week of the succeeding term if the candidate defended his or her thesis during the previous summer or the first or second terms; or two weeks before the degree is to be conferred if the candidate defended his or her thesis during the month of May. Two copies of the thesis are to be submitted in accordance with the regulations governing the preparation of doctoral dissertations, obtainable from the Graduate Office. For special option regulations concerning theses, see specific graduate options.

Before submitting the final, corrected thesis to the dean of graduate studies, the candidate must obtain approval of the thesis by the chair of his or her division and the members of the examining committee, on a form that can be obtained at the Graduate Office.

With the approval of the option concerned, a portion of the thesis may consist of one or more articles published jointly by the candidate and members of the Institute staff or other coauthors. In any case, however, a substantial portion of the thesis must be the candidate's own exposition of his or her own work.

The use of “classified” research as thesis material for any degree is not permitted. Exceptions to this rule can be made only under special circumstances, and then only when approval is given by the dean of graduate studies before the research is undertaken.

Regulations and directions for the preparation of theses may be obtained from the Office of the Dean of Graduate Studies, and should be followed carefully by the candidate.

Graduate Expenses

The tuition charge for all students registering for graduate work is currently $27,309 per academic year, payable in three installments at the beginning of each term. Graduate students who cannot devote full time to their studies are allowed to register only under special circumstances. Students desiring permission to register for fewer than 36 units must therefore petition on the form available from the Graduate Office. If reduced registration is permitted, the tuition for each term is at the rate of $253 a unit for fewer than 36 units, with a minimum of $759 a term. This tuition credit will only be made for reduced units as of the published Add Day of each term.

The payment of tuition by graduate students is required (a) without reference to the character of the work by the student, which may consist of research, independent reading, or writing a thesis or other dissertation, as well as attendance at regular classes; (b) without reference to the number of terms in which the student has already been in residence; and (c) without reference to the status of the student as an appointee of the Institute, except that members of the academic staff of rank of instructor or higher are not required to pay tuition.

Each graduate student is required to make a general deposit of $100 to cover loss of, or damage to, Institute property used in connection with work in regular courses of study. Upon completion of
graduate work, or upon withdrawal from the Institute, any remaining balance of the deposit will be refunded.

Unpaid Bills. All bills owed the Institute must be paid when due. Any student whose bills are past due may be refused registration for the term following that in which the past due charges were incurred. Transcripts are not released until all bills due have been paid or satisfactory arrangements for payment have been made with the Bursar’s Office.

Information regarding fellowships, scholarships, and assistantships is discussed in the following pages. Students of high scholastic attainment may be offered special tuition awards covering all or part of the tuition fee. Loans also may be arranged by applying at the Financial Aid Office.

Expense Summary 2005–06

General:
- General Deposit ... $ 100.00
- Tuition ... 27,309.00

$ 27,409.00

Other:
- Books and Supplies (approx.) $1,047.00
- Room:
 - Avery House
 - Avery House single room $ 565.00 per month
 - Avery House suite room $ 594.00 per month
 - Plus Avery meal plan $ 550.00 per term
 - (M–F)
 - Catalina apartments
 - For single or married students
 - 4 bedroom apt. $ 447.00 per person per month
 - 2 bedroom apt. $ 532.00 per person per month
 - 1 bedroom apt. $ 921.00 per apt. per month
 - (plus utilities)

Below is a list of graduate fees at the California Institute of Technology for academic year 2005–06, together with the dates on which these charges are due. Fees are subject to change at the discretion of the Institute.

First Term
- Fee
 - September 26, 2005
 - General Deposit $ 100.00
 - Tuition $ 9,103.00

Second Term
- January 4, 2006
 - Tuition $ 9,103.00

Information regarding fellowships, scholarships, and assistantships is discussed in the following pages. Students of high scholastic attainment may be offered special tuition awards covering all or part of the tuition fee. Loans also may be arranged by applying at the Financial Aid Office.

Housing Facilities. An apartment complex Catalina Central provides approximately 152 single rooms in four-bedroom furnished units. Another, Catalina North, has 156 single rooms in two-bedroom furnished units, and Catalina South has 78 single rooms in two-bedroom furnished units, and 29 one-bedroom furnished units. These apartments are also available to married students with families. In addition, there are 24 spaces for graduate students in Avery House, an innovative residential community of faculty, undergraduates, and graduate students (see page 28).

Rates for housing vary, depending upon the accommodations and services provided. A contract is required to live in these houses for the academic year. Complete information and reservations can be obtained by writing to the Housing Office, Mail Code 160-86, California Institute of Technology, Pasadena, CA 91125 or at http://www.housing.caltech.edu.

The Institute also owns a limited number of apartments and single-family houses that are available for rental, on a lease basis, to graduate students. Because of limited availability, there is a waiting list for these properties. For additional information and sign-up forms, contact the Housing Office.

The Housing Office maintains a listing service of available rooms, apartments, and houses in the Pasadena area. The listings are available on the Web at http://www.housing.caltech.edu.

Students preferring to live in non-Institute housing typically pay approximately $550–$600 per month in rent for a shared apartment, and somewhat more for a private apartment. Please note that the Institute cannot make negotiations for individual housing off campus.

Dining Facilities. Graduate students are granted the privilege of joining the Athenaeum (faculty club), which affords the possibility of contact with fellow graduate students and with others using the
Athenaeum, including the Associates of Caltech, distinguished visitors, and members of the professional staffs of the Huntington Library and the California Institute of Technology.

The Chandler Dining Hall, located on the campus, is open Monday through Friday. Breakfast, lunch, and snacks are served cafeteria style. Citrus Bistro and the Café at Broad are open for lunch and dinner, Monday through Friday.

Health Services. Health services available to graduate students are explained in section one.

FINANCIAL ASSISTANCE

Caltech offers in each of its options a number of fellowships, tuition scholarships, and graduate assistantships. In general, tuition scholarships may be for full or partial tuition charges; assistantships provide stipends; and fellowships often provide both tuition scholarship awards and stipends. Graduate assistants are eligible to be considered for special tuition awards.

A request for financial assistance is included on the application for admission to graduate standing. These applications should reach the Graduate Office by January 15; January 1 for applied mechanics, biology, chemistry, civil engineering, computer science, mechanical engineering, and physics; December 15 for social science. Some options will review applications received after the deadline date, but such applicants may be at a disadvantage in the allocation of financial assistance. Appointments to fellowships, scholarships, and assistantships are for one year only; a new application must be filed with option representatives each year by all who desire appointments for the following year, whether or not they already hold such appointments.

Graduate students receiving any form of financial aid from the Institute are required to report to the dean of graduate studies any financial aid from other sources. Students may be allowed to accept outside employment if the time commitment does not interfere with their graduate studies. However, the number of hours per week spent on outside employment must be reported to the dean of graduate studies.

Graduate Assistantships

Graduate assistants help with teaching, laboratory work, or research that affords them useful experience. Teaching assistantships are for up to 15 hours per week during the academic year and are devoted to preparation, grading, or consulting with students. Students may not, without advance permission from the dean of graduate studies, be a teaching assistant for a course in which they receive credit. Research assistantships are limited to less than 20 hours per week during the academic year and may be greater during the summer. Combined teaching and research assistantships are common. Stipends are based on four 12-week quarters and are normally paid monthly. Assistantships normally permit carrying a full graduate residence schedule also. Only teaching assistants with good oral English are allowed to teach sections.

Teaching assistants must familiarize themselves with Caltech’s policy on harassment (see page 66). Classes should foster academic achievement in a “hassle-free” environment. Teaching assistants should not attempt to date a student in their class, and should disqualify themselves from teaching a section in which a spouse or current partner is enrolled. Any questions should be referred to the dean of graduate studies.

Teaching and research obligations of graduate assistants shall not exceed 50 weeks per year, but may be less depending on departmental policy and the arrangements made by the adviser and the student. Graduate assistantship appointments include regular Institute holidays occurring during specified appointment periods. In addition, when necessary, graduate assistants may arrange for short-term medical disability leave (including maternity leave). Assistants should schedule their vacation and planned disability leaves with their adviser or option representative. Any questions should be referred to the dean of graduate studies.

Graduate Scholarships, Fellowships, and Research Funds

The Institute offers a number of endowed fellowships and scholarships for tuition and/or stipends to graduate students of exceptional ability who wish to pursue advanced study and research.

In addition to the National Science Foundation, the Department of Health and Human Services, the Department of Energy, NASA, and the California State Graduate Fellowship program, gifts are received from other donors to support graduate study. A number of governmental units, industrial organizations, educational foundations, and private individuals have contributed funds for the support of fundamental research related to their interests and activities. These funds offer financial assistance to selected graduate students in the form of graduate research assistantships.

Loans

Several types of loans are available to graduate students. To qualify for any of these, a student must demonstrate financial need and must maintain satisfactory academic progress in the course of study for which he or she is enrolled. Application forms and further information are available in the Financial Aid Office. Loans are not available to first-year international students due to visa restrictions.
Satisfactory Academic Progress

In order to continue receiving financial aid at Caltech, graduate students must maintain satisfactory academic progress toward completion of their degree. Continuity of registration must be maintained until all requirements for the degree being sought have been completed, with the exception of summer terms and authorized sabbaticals.

The Master of Science degree requires at least one academic year of residence at the Institute and 135 units of graduate work with a grade-point average of at least 1.9. Under normal circumstances a master's degree requires a minimum of three academic terms (one year) and cannot take more than two years, without a petition approved by the dean of graduate studies.

The engineer's degree must consist of advanced studies and research in the field appropriate to the degree desired. At least six terms (two years) of graduate residence are required with a minimum 1.9 overall grade-point average. The engineer's degree cannot take more than three years to complete, without a petition approved by the dean of graduate studies.

For the doctor's degree at least nine terms (three years) of residence are required, but the necessary study and research typically require more than five years. The work for the degree consists of research and the preparation of a thesis describing it, and of systematic studies of an advanced character, primarily in science or engineering. In addition, the candidate must have acquired the power of clear and forceful self-expression in both oral and written English.

The requirements for each degree include special regulations established by each option and detailed in the Institute catalog for the year of initial registration. Many options require a C grade or better in particular courses or groups of courses. Hence, a limited number of courses may be repeated while still maintaining a status of satisfactory academic progress and would count toward the 36-unit-per-term requirement. A full-time graduate student must register for (and complete) 36 units per term. Approval of the dean of graduate studies is required before dropping any course that brings a student below 36 units. All graduate students are expected to complete 108 units each academic year. The treatment of incomplete grades and withdrawals is specified on pages 39–40. Satisfactory academic progress is checked each academic year by the Graduate Office.

Satisfactory academic progress is judged by the options against these regulations, and revocation of permission to register may be recommended by the option to the dean of graduate studies prior to or in response to the student's petition for admission to candidacy. Further, even after admission to candidacy, the candidacy (and permission to register) may be withdrawn by formal action of an option for a student whose research is not satisfactory, or for other compelling reasons. However, the option must petition through its division chair to the dean of graduate studies before taking such action.

A doctoral student who has not been admitted to candidacy by the beginning of the fourth year must petition to the dean of graduate studies for permission to register for further work. In addition, no doctoral student will be allowed to register for a sixth year without approval of a petition by the dean of graduate studies. This petition must include a plan and schedule for completion, agreed upon and signed by the student, the thesis advising committee, and the option representative.

Petitions approved by the option and the dean of graduate studies reinstate student eligibility for all financial aid.

Refund and Repayment Policy

Caltech has established an equitable refund policy for students who find it necessary to withdraw or take a sabbatical from the Institute.

Students who officially withdraw or take a sabbatical from the Institute during an academic term may receive a tuition refund (see pages 140–143). Students living in Caltech housing may also be eligible for a partial refund from the Housing Office.

When granting refunds to financial aid recipients or graduate assistants, it is Caltech's policy to return the refund, in most cases, to the original account.

An overpayment or overaward occurs when a student receives more aid than he or she is eligible to receive. Therefore, the Graduate Office will compare actual costs to aid disbursed in accordance with federal guidelines. If aid disbursed exceeds costs, the student may be responsible for the overpayment. Any overpayment will be charged to the student on his or her student account.

Refund and Repayment Policy

Students who officially withdraw or take a sabbatical from the Institute may receive a tuition refund (see pages 140–143). Students living in Caltech housing may also be eligible for a partial refund from the Housing Office.

When granting refunds to financial aid recipients or graduate assistants, it is Caltech's policy to return the refund, in most cases, to the original account.

An overpayment or overaward occurs when a student receives more aid than he or she is eligible to receive. Therefore, the Graduate Office will compare actual costs to aid disbursed in accordance with federal guidelines. If aid disbursed exceeds costs, the student may be responsible for the overpayment. Any overpayment will be charged to the student on his or her student account.

Additional information is available in the Graduate Office.

Students receiving financial aid from any source are expected to register for 36 units each term unless special arrangements have been made with the dean of graduate studies.
Charles D. Babcock Award
The Charles D. Babcock Award recognizes a student whose achievements in teaching (or other ways of assisting students) have made a significant contribution to the aeronautics department. The criteria for the award selection are as follows: The award can be made as unscheduled support for a graduate student associated with aeronautics, e.g., for travel to a technical meeting for professional advancement. All aeronautics-associated students are eligible, with preference given to those in the structures and solid mechanics group. The award may be made yearly, as merited. The timing of the award will be as special recognition warrants.

The Charles D. Babcock Award was established in 1992 in memory of Charles D. Babcock, who was professor of aeronautics and applied mechanics until 1987; he served aeronautics as option representative and the Institute as vice provost.

William F. Ballhaus Prize
A prize of $1,000 will be awarded for an outstanding doctoral dissertation in aeronautics, to be selected by the aeronautics faculty. This award is made possible by a gift from Dr. William F. Ballhaus, a California Institute of Technology alumnus, who received his Ph.D. degree in aeronautics in 1947.

Bohnenblust Travel Grants in Mathematics
Special grants may be awarded to outstanding graduate students in mathematics to enable them to travel in the United States or abroad to further their mathematical education. The mathematics faculty established these awards in 1978 to honor H. F. Bohnenblust, who served Caltech as professor of mathematics, executive officer for mathematics, and dean of graduate studies.

Application forms and further details are available in the mathematics office, 253 Sloan.

Rolf D. Buhler Memorial Award in Aeronautics
An award of $500 is made annually to a student in the aeronautics master's program whose academic performance was exemplary and who shows high potential for future achievements at Caltech.

The Rolf D. Buhler Memorial Award in Aeronautics was established in 1990 in memory of Rolf Buhler, a 1952 graduate of GALCIT and professor of space flight at the Technical University of Stuttgart in Germany.

W. P. Carey & Co., Inc., Prizes in Applied Mathematics
Prizes of up to $1,000 will be awarded by a faculty committee in applied mathematics for outstanding doctoral dissertations. If there is no appropriate candidate, then the awardee can be chosen from pure math. These awards have been made possible by gifts from William Polk Carey and from W. P. Carey & Co., Inc.

Richard Bruce Chapman Memorial Award
A prize of $500 will be awarded annually to a graduate student who has distinguished himself or herself in research in the field of hydrodynamics.

Bruce Chapman was awarded an M.S. from Caltech in 1966 and a Ph.D. in 1970, both in engineering science. This award has been established in his memory by his family and friends.

Milton and Francis Clauser Doctoral Prize
An annual prize is awarded to the Ph.D. candidate whose research is judged to exhibit the greatest degree of originality as evidenced by its potential for opening up new avenues of human thought and endeavor as well as by the ingenuity with which it has been carried out. The Milton and Francis Clauser Doctoral Prize is made possible by gifts from the family and friends of these twin alumni, who received bachelor's degrees in physics in 1934, master's degrees in mechanical engineering in 1935, and doctor's degrees in aeronautics in 1937.

Donald Coles Prize in Aeronautics
The Donald Coles Prize will be awarded to the graduating Ph.D. student in aeronautics whose thesis displays the best design of an experiment or the best design for a piece of experimental equipment.

Demetriades-Tsafka Prize in Bioengineering
Awarded annually to a Ph.D. candidate for the best thesis, publication, or discovery in bioengineering or related fields during the past year. Winners are selected by the bioengineering faculty. This award has been made possible by a gift from Sterge and Anna Demetriades.

Constantin G. Economou Memorial Prize
Awarded to a chemical engineering graduate student distinguished by outstanding research accomplishments and exemplary attitude while fulfilling candidacy requirements for the Ph.D. degree.

Lawrence L. and Audrey W. Ferguson Prize
Awarded to the graduating Ph.D. candidate in biology who has produced the outstanding Ph.D. thesis for the past year.

Henry Ford II Scholar Awards
The Henry Ford II Scholar Awards are funded under an endowment provided by the Ford Motor Company Fund. Each award, up to $5,000, will be made annually either to the engineering student with the best academic record at the end of the third year of
Ernest E. Sechler Memorial Award in Aeronautics
An award of $1,000 is made annually to an aeronautics student who has made the most significant contribution to the teaching and research efforts of the Graduate Aeronautical Laboratories of the California Institute of Technology (GALCIT), with preference given to students working in structural mechanics.

The Ernest E. Sechler Memorial Award in Aeronautics was established in 1980 in memory of Ernest E. Sechler, who was one of the first graduates of GALCIT and who then served as a GALCIT faculty member for 46 years. Throughout his career Sechler was the faculty adviser for aeronautics students. In addition, he made many contributions to structural mechanics in areas ranging from aeronautics to the utilization of energy resources.

John Stager Stemple Memorial Prize in Physics
A prize of $500 is awarded annually to a graduate student in physics for outstanding progress in research as demonstrated by an excellent performance on the oral Ph.D. candidacy exam. John S. Stemple was a Caltech physics graduate student when he died; a memorial fund was established from contributions made by the community of Falls Church, Virginia, John’s hometown.

Charles Wilts Prize
Awarded for outstanding independent research in electrical engineering leading to a Ph.D.

Note: Prizes and awards may be subject to federal and state income tax.

SPECIAL REGULATIONS OF GRADUATE OPTIONS

Aeronautics

Aims and Scope of the Graduate Program
The Institute offers graduate programs in aeronautics leading to the degrees of Master of Science, Aeronautical Engineer, and Doctor of Philosophy. The programs are designed to provide intense education in the foundations of the aeronautical sciences, with emphasis on research and the experimental method. Entering graduate students should have a thorough background in undergraduate mathematics, physics, and engineering science. Applicants for graduate study are asked to submit Graduate Record Examination scores with their applications.

In working for a degree in aeronautics, a student may pursue major study in, for example, one of the following areas: physics of fluids, computational fluid mechanics, technical fluid mechanics, mechanics of materials, mechanics of fracture, computational solid mechanics, aeronautical engineering, and propulsion.
While research and course work in aeronautics at the Institute cover a very broad range of subjects, a choice of one of the above fields allows students to focus their activities while taking advantage of the flexibility offered by the breadth of interests of the aeronautics group. A student with an interest in energy-related subjects will find many suitable courses and research projects of particular use. Subjects of major importance in the efficient use of energy, such as turbulent mixing, drag reduction, and lightweight structures, have historically been the focus of research activity in the aeronautics option.

In consultation with his or her adviser, a student may design a program of study in one of the above fields, consisting of the fundamental courses prescribed in the regulations for the separate degrees listed below, and of electives selected from the list of aeronautics courses. Special attention is called to the list of courses numbered Ae 200 or higher.

Examinations, Committees, and Student Responsibilities
To help the student achieve satisfactory progress in his or her academic pursuits, the aeronautics faculty provides for the following committee and individual support.

Upon entering aeronautics for the master's program, each student is assigned a faculty (course) adviser whose research field matches the interests of the student as described in the latter's statement of purpose in his or her admissions application. This adviser, besides supervising the student's academic performance during that program, may also serve as a personal counselor. During the master's year, the GALCIT director and the option representative, as well as the elected student representative, are also available for counseling (see below).

In order to pursue studies beyond the master's degree and toward the degree of Aeronautical Engineer, a student has to select and be accepted by a research adviser. The research adviser may be the former course adviser or a different faculty member.

The research adviser and the student select a three-person committee. It is the responsibility of the student to initiate this selection process before the beginning of the post-master's studies. It is also the student's responsibility to have this committee meet three times during the last year of his or her residency before receiving the degree of aeronautical engineer.

Students wishing to pursue studies leading to the Ph.D. are required to pass a qualifying examination in the second term of the year following completion of their M.S. studies, or, for students entering with an M.S., during the second year of their residency. Having passed the qualifying examination, the student's work continues to be guided by the three-person committee until he or she is ready to enter candidacy for the Ph.D. The five-member Candidacy Examination Committee may include the former adviser, or may be formed with different faculty members, one of whom is chosen from outside of aeronautics. The Candidacy Committee is chaired by a faculty member other than the research adviser.

Conferral of the Ph.D. degree is contingent on satisfactorily passing the thesis examination before a five-person committee, which may, but does not need to, have the same constitution as the Candidacy Committee.

Problem and Grievance Resolution within Aeronautics
Students may pursue several avenues for redress concerning personal and academic problems that may arise during their residency. Any member of the supervising committee at the time (three-person or Candidacy Committee) is accessible for relevant discussion, as are the director and option representative. In addition, two ombudspersons are available, one at the student and one at the faculty level. The student representative is elected annually by the aeronautics graduate students at or after the Information Session, which is part of Ae 150 a. In the event that the student representative has completed his or her Ph.D. studies before the election date and left the Institute, the student organizer for Ae 150 may be his or her replacement. A faculty member (at present, an emeritus faculty member), chosen by the aeronautics faculty, acts as an ombudsperson available for student contact. The names of the current student and faculty ombudspersons are available in the aeronautics office.

Master's Degree in Aeronautics and Master's Degree in Aerospace Engineering

Admission. Students with a baccalaureate degree equivalent to that given by the Institute are eligible to seek admission to work toward the master's degree in aeronautics or toward the master's degree in aerospace engineering, available starting 2006–07. Applicants are encouraged to indicate their desire to continue studies past the master's degree.

Course Requirements. A program of study consists of courses totaling at least 138 units; of these, at least 84 units must be in the following subject areas:

- Fluid mechanics 27 units
- Solid/structural mechanics 27 units
- Mathematics or applied mathematics 27 units
- Aerospace engineering seminar 3 units

An additional 27 units are required as follows: a course in experimental techniques and laboratory work for the master's degree in aeronautics, and a course in aerospace engineering for the master's degree in aerospace engineering. For the aerospace degree, the remaining 27 units of electives are to be chosen from courses at Caltech that support the broader goals of the aerospace program,
subject to the approval of the aeronautics faculty. Students must have a proposed program approved by their adviser prior to registration for the first term of work toward the degree.

Admission to More Advanced Degrees
Students wishing to pursue the more advanced degrees of Aeronautical Engineer or Ph.D. must file a petition to continue work toward the desired degree. Students registering for the engineer's degree may transfer to study for the Ph.D. upon satisfactory completion of the same qualifying examination required of those working for the Ph.D. However, once admitted to work for the Ph.D. degree, students are not normally permitted to register for work leading to the engineer's degree. All students working for the engineer's degree or the Ph.D. degree are expected to register for and attend one of the advanced seminars (Ae 208 abc or Ae/AM 209 abc).

Degree of Aeronautical Engineer
The degree of Aeronautical Engineer is considered to be a terminal degree for the student who desires advanced training more highly specialized than the master's degree permits, and with less emphasis on research than is appropriate for the Ph.D. degree.

Admission. Students with a Master of Science degree equivalent to that given by the Institute may seek admission to work for the engineer's degree.

Program Requirements. The degree of Aeronautical Engineer is awarded after satisfactory completion of at least 138 units of graduate work equivalent to the Master of Science program described above, plus at least 135 additional units of advanced graduate work. This latter program of study and research must consist of:
- not less than 60 units of research in aeronautics (Ae 200);
- three units of an advanced seminar such as Ae 208; and
- satisfactory completion (with a grade of C or better, or Pass) of at least 27 units of aeronautics courses numbered Ae 200 or higher, or CE/Ae/AM 108, Ae/ME 120, and Ae/Ge/ME 160, excluding research and seminars.

A proposed program conforming to the above regulations must be approved by the student's adviser prior to registration for the first term of work toward the degree.

A thesis is required based on the research program and may consist of the results of a theoretical and/or experimental investigation or may be a comprehensive literature survey combined with a critical analysis of the state of the art in a particular field.

No student will be allowed to continue to work toward the degree of Aeronautical Engineer for more than six terms of graduate residence beyond the baccalaureate degree (not counting summer registrations) except by permission after petition to the aeronautics faculty.

Degree of Doctor of Philosophy
Admission. Students with a Master of Science degree equivalent to that given by the Institute may seek admission to work for the Ph.D. degree. In special cases, students may be admitted to Ph.D. work without first obtaining the master's degree.

Qualifying Examination. Because of the broad spectrum in the backgrounds of graduate students entering the Ph.D. program in aeronautics, the student must first pass a qualifying examination to determine whether he or she is qualified to pursue problems typical of Ph.D. work. Emphasis in the qualifying examination is directed at determining if the student is properly prepared and qualified to undertake graduate research. The exams will cover the following subjects:
- Fluid Mechanics
- Solid Mechanics
- Mathematics

The material covered in these examinations is at the same general level and breadth as covered in the corresponding M.S.-level courses. The examinations are offered during one week in the first half of the winter term, in the second year of graduate residence at the Institute.

A student is examined orally on all three of these topics. In the event of an unsatisfactory performance, the examining faculty members may permit a repeat examination in the appropriate topics. The repeat examination must be scheduled prior to finals week of the third term and must be completed before the end of June of the same year.

Candidacy. To be recommended for candidacy for the Ph.D. in aeronautics, the applicant must have satisfactorily completed at least 138 units of graduate work equivalent to the above Master of Science program and must pass one of the following, or its equivalent, with a grade of C or better: ACM 101 abc, AM 125 abc, or Ph 129 abc, and complete (with a grade of C or better, or Pass) at least 45 units of aeronautics courses numbered Ae 200 or higher, or CE/Ae/AM 108, Ae/ME 120, and Ae/Ge/ME 160, excluding research and seminars. If any of the above subjects were taken elsewhere than at the Institute, the student may be required to pass special examinations indicating an equivalent knowledge of the subject.

In addition to fulfilling these course requirements, the applicant must pass a candidacy examination in the second or third year of residence at the Institute. This examination, which includes the topic of mathematics or applied mathematics, aims at determining whether the student is successful in integrating formal course work into a mature understanding of fundamental engineering concepts, and at demonstrating his or her professional competence in applying these concepts to problems in advanced research.

Minor. No minor is required for the Ph.D. degree. Students are, however, encouraged to take advanced courses appropriate to their particular interests.
Foreign Languages. The student is encouraged to discuss with his or her adviser the desirability of studying foreign languages.

Thesis and Final Examination. Before graduation, each candidate is required to give a public seminar presenting the results of his or her thesis research. For final examination and thesis completion, see also the general degree requirements and the section on Examinations, Committees, and Student Responsibilities, regarding aeronautics, on page 254.

Subject Minor
A student majoring in a field other than aeronautics may, with the approval of the aeronautics faculty, elect aeronautics as a subject minor. A minimum of 54 units in subjects acceptable to the aeronautics faculty is required.

Aims and Scope of the Graduate Program
The Institute offers an interdisciplinary program of graduate study in applied and computational mathematics leading to the Ph.D. degree. This program is designed to give students a thorough training in fundamental computational and applied mathematics and to develop their research ability in a specific application field. The fields of application include a wide range of areas such as fluid mechanics, materials science, and mathematical biology, and engineering applications such as image processing. Entering students should have a background in mathematics, physics, or engineering.

The research areas and interests of the applied and computational mathematics faculty cover a broad spectrum, including asymptotic and perturbation theory, computational fluid mechanics, computational electromagnetics, computational materials science, computational molecular biology, diffusion and transport processes, free surface flows, multiscale problems, and multisolution analysis and image processing. As reflected by the faculty research activities, there is a strong emphasis on computational methods for solving challenging problems arising from engineering and scientific applications.

Reflecting the interdisciplinary nature of the program, several different groups, in addition to the applied and computational mathematics faculty, contribute to the teaching and supervision of research. Students in applied and computational mathematics are expected to combine their basic mathematical studies with deep involvement in some field of application. Basic general courses are listed specifically under applied and computational mathematics and these are to be supplemented, according to the student's interest, from the whole range of Institute courses in specific areas of physics, biology, engineering, etc.

A regular colloquium provides the opportunity for visitors, faculty, and students to discuss current research.

Admission
Each new graduate student admitted to work for the Ph.D. in applied and computational mathematics is given an informal interview on Thursday or Friday of the week preceding the beginning of instruction for the fall term. The purpose of this interview is to ascertain the preparation of the student and assist him or her in mapping out a course of study. The work of the student during the first year will usually include some independent reading and/or research.

Course Requirements
All ACM students are required to take a total of 18 quarter courses (or equivalent of 162 units) during their graduate study at Caltech. Among these 18 courses, the following core courses are required for all students during their graduate study at Caltech. These courses are ACM 101 abc, ACM 104, ACM 105, ACM 106, ACM 116, ACM 201 ab, ACM 210 ab, and an application elective course. The application elective course is selected, with the recommendation of the student's adviser, from among a wide range of courses offered by an outside option within the Institute. Typically, students are expected to take ACM 101 abc, ACM 104, ACM 105, ACM 106, ACM 116, and an application elective course in their first year. In the second and third years, students are expected to take ACM 201 ab and ACM 210 ab, and a selection from ACM 113, ACM/CS 114 ab, ACM 126 ab, ACM 151 ab, and CS 138 ab.

Students who have already taken some of the required courses may use them to satisfy the course requirements, even though the units may not be used to satisfy the total unit requirement for the Ph.D. degree. In addition, the student is required to enroll in ACM 290 (Applied and Computational Mathematics Colloquium) for each quarter that he or she is in residence.

Master's Degree
Entering graduate students are normally admitted for the Ph.D. program. The master's degree may be awarded in exceptional cases. Of the 135 units of graduate work required by Institute regulations, at least 81 units of advanced graduate work should be in applied mathematics.

Degree of Doctor of Philosophy
The Candidacy Examination. In order to be recommended for candidacy the student must, in addition to satisfying the general Institute requirements, pass an oral or written candidacy examination administered by a faculty committee. This examination is offered during one week at the end of the first year of graduate residence at the Institute, typically near the beginning of the fall term. The material covered in this examination is based on the three core sequences described above. For students who have already taken the required courses before coming to Caltech, the
examination can also be based on the substituted courses taken in the first year.

Advising and Thesis Supervision. Upon passing the candidacy examination (usually by the end of the second year), the student is required to choose a thesis supervisor who assumes the major responsibility in supervising the Ph.D. thesis. At the same time, an advising committee consisting of three faculty members is formed to help oversee the advising process. This committee should be formed no later than the third year of graduate study. The student's supervisor is part of this committee, but does not chair the committee. The student is encouraged to meet with the committee members informally for advice or suggestions. Joint supervision between two faculty members is also possible as is seeking a thesis adviser outside the core applied and computational mathematics option, although in this case it is mandatory that an applied mathematics faculty member be nominated as a co-adviser.

Should a disagreement of any kind occur between the student and his or her supervisor as regards the timely completion of the thesis, the student is encouraged to direct his or her concerns to the committee chair. If this is not workable, the student should feel free to consult with the option representative, the executive officer, or an applied and computational mathematics faculty member of the student's choice. If the student's concerns cannot be resolved through consultation with these individuals, the student is encouraged to pursue resolution of his or her concerns through other channels as outlined in Student Grievance Procedure on page 48.

Submission of Thesis. On or before the first Monday in April of the year in which the degree is to be conferred, a candidate for the degree of Ph.D. in applied and computational mathematics must deliver a typewritten or printed copy of the completed thesis to his or her research supervisor.

Final Examination. The final oral examination is held within four weeks after the submission of the thesis. The examination covers the thesis and related areas.

Subject Minor in Applied and Computational Mathematics

The group of courses must differ markedly from the major subject of study and must include 54 units of advanced courses in applied mathematics. The qualifying courses exclude the basic courses listed under ACM, from ACM 100 to ACM 106, although some flexibility is allowed depending upon the department of origin. The student must pass an oral examination whose subject is directly related to the material covered in the qualifying courses. This oral examination will be waived if the student has received a grade of A in every course.

Subject Minor in Applied Computation

The subject minor in applied computation is administered jointly by the applied mathematics and computer science options, and is open to graduate students in all options. This minor emphasizes the mathematical, numerical, algorithmic, and programming methods underlying the application of computation—particularly parallel and concurrent computation—to research in science and engineering.

To pursue the applied computation minor, applied mathematics students should seek a minor adviser in computer science; computer science students should seek a minor adviser in applied mathematics; and students in other options should seek a minor adviser in either applied mathematics or computer science. The minor adviser and the student formulate a program of courses individually tailored to the student's background and needs, with the objective that the student achieve a level of competence in specific subjects relevant to applied computation that is comparable to that of candidacy-level graduate students in applied mathematics and computer science in these same subjects. These subjects include *at minimum* mathematical and numerical methods, algorithms, and advanced programming, and may also include other areas of particular relevance to a student's research area, such as specialized mathematical methods, computer graphics, simulation, or computer-aided design.

Each proposed program must be approved by a faculty committee composed of the option representatives of applied mathematics and computer science, and one faculty member appointed by the chair of each division from which students are enrolled in the program. The number of course units is variable, with a minimum of 45 units of graduate-level courses. The satisfaction of the intended level of competence is assured by the student's passing an oral examination.

Applied Mechanics

Master's Degree

Study for the degree of Master of Science in applied mechanics ordinarily will be completed in one academic year and must consist of courses numbered 100 or above totaling at least 138 units. The program must include E 150 abc and one course from among the following: ACM 100 abc, AM 125 abc, or a substitute acceptable to the faculty in applied mechanics. Note that ACM 100 may not be used to fulfill the advanced mathematics requirement for the Ph.D. in applied mechanics. A minimum of 108 units of graduate-level courses must be selected from courses in AM, ACM, Ae, CE, and ME. The M.S. program must be approved by the student's adviser and the option representative for applied mechanics.

Students admitted for study toward a master's degree but interested in pursuing subsequent study toward a Ph.D. degree should also read the section below concerning this degree.
Degree of Doctor of Philosophy

Study and research programs for the Ph.D. degree are individually planned to fit the interests and background of the student. A comprehensive research project leading to a thesis is required.

Advising and Thesis Supervision. A counseling committee of three faculty members is appointed for each student upon his or her admission to work toward a Ph.D. degree in applied mechanics, in order to advise the student on a suitable course program. One committee member acts as committee chair and interim adviser until this responsibility is assumed by the thesis adviser. This committee must meet during the first and third terms of each year of Ph.D. study.

The thesis adviser and thesis advisory committee provide the majority of mentoring to the student. In addition, the option representative and other members of the faculty are always available to provide advice and mentoring on any aspect of research, progress toward the Ph.D., future careers, and other aspects of life in graduate school and as a professional scientist or engineer.

Admission to or Continuation in Ph.D. Status. Newly admitted students, those continuing study toward the Ph.D. degree in applied mechanics, and all other graduate students wishing to become eligible for study toward this degree, must make satisfactory progress in their academic studies each year, as judged by a special joint faculty committee.

Admission to Candidacy. To be recommended for candidacy for the Ph.D. degree in applied mechanics, the student must, in addition to the general Institute requirements, meet the following:

- Complete 27 units of research.
- Complete at least 108 units of advanced courses arranged by the student in conference with his or her adviser and approved by the faculty in applied mechanics.
- Pass with a grade of at least C an additional 27 units of course work in advanced mathematics, such as AM 125 abc or a substitute acceptable to the faculty in applied mechanics.
- Pass a two-part oral candidacy examination in the second academic year of graduate residence at the Institute.

Thesis and Final Examination. A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate’s knowledge in his or her specialized field of research.

Subject Minor

A student majoring in another branch of engineering, or another division of the Institute, may elect applied mechanics as a subject minor, with the approval of the faculty in applied mechanics and the faculty in his or her major field. The group of courses shall differ markedly from the major subject of study or research, and shall consist of at least 54 units of courses approved by the faculty in applied mechanics. The student must pass an oral examination that is separate from the examination in the student’s major.

Applied Physics

Aims and Scope of the Graduate Program

The graduate program in applied physics is regarded by its faculty to be a doctoral program. Students whose goal is the master’s degree are admitted rarely, and only in special situations.

A professional in the field should be able to cope with any physics problem that confronts him or her in a technological context. Graduate study in applied physics should therefore cover considerable ground with the least possible loss of depth. Independent and original research is essential, but not for the purpose of acquiring advanced knowledge in a narrow specialty. In today’s rapidly changing technology, an applied physicist should not expect to remain precisely within the field of thesis research; the training received should enable him or her to contribute easily to related fields of physics.

Master’s Degree

Of the 135 units required for this degree, at least 54 units must be selected from APH 114, APH 125 or Ch 125 or Ph 125, APH 105, Ac/APH/CE/ME 101, and APH 156. Topics in Applied Physics, APH 110 ab, is required. The remaining portion of the 135 units is to be made up from electives approved by the option representative. No more than 27 units may be earned in APH 200.

Suggested electives include APH 105, APH 114, Ac/APH/CE/ME 101, APH/EE 130, 131, 132, APH 156, APH/BE 161, APH/BE 162, APH/EE 183, APH 190, APH 200, APH 125, Ph 129, ACM 101, ACM 104, ACM 105, AM 176, CHE 103, CHE 165, Ch 120, Ch 125, Ge 101, Ge 102, Ge 103, Ge 104, and Ge 260. As a result of consultation with his or her adviser, a student may be required to take ACM 100, depending on his or her previous experience.

Degree of Doctor of Philosophy

Candidacy. To be recommended for candidacy for the doctor’s degree the applicant must satisfy the requirements listed below:

- Competence must be demonstrated in the following subjects, at the levels indicated:
 1. Classical Physics: Mechanics and Electromagnetism
 course level: Ph 106
 2. Quantum Mechanics
 course level: Ch 125 or Ph 125
 3. Mathematical Methods
 course level: ACM 101, AM 125, or Ph 129
 4. Statistical Physics and Thermodynamics
 course level: APH 105
Graduate Information

Subject Minor

Graduate students electing a subject minor in applied physics must complete 54 units of graduate courses in applied physics. The courses may be selected from any of the applied physics courses with numbers greater than 100, excluding APh 110 and APh 200.

The student’s proposed program must be approved by the Applied Physics Graduate Studies Committee. The committee will examine the course program to determine which of the following areas of interest in applied physics it includes:

Group A: APh/CE/ME 101, APh 156
Group B: APh 105, APh 114, APh/EE 183, or Ph 136
Group C: APh/EE 130, APh/EE 131, APh/EE 132, APh 190

It is recommended that the program include courses from more than one of the above areas.

The Applied Physics Graduate Studies Committee may recommend an oral examination based upon its evaluation of the course program. When the program includes more than one of the above areas of interest, then an oral examination may not be required.

Astrophysics

Aims and Scope of the Graduate Program

Modern astronomy—certainly as practiced at Caltech—is essentially astrophysics. With the goal of understanding the physical processes that govern the universe, its constituents, and their evolution, astronomy uses the apparatus and methodology of physics to gather and interpret data. In what follows, we use the terms astronomy and astrophysics interchangeably.

The primary aim of the graduate astrophysics program at Caltech is to prepare students for creative and productive careers in astrophysical research. The astrophysics program emphasizes independent research by graduate students, who are free to pursue study in virtually any area of astrophysics. The opportunity exists to take advantage of the many observational facilities owned and operated by Caltech.

Admission

Incoming students should have a strong background in physics, and although a good preparation in astronomy is helpful, this is not required for admission to the graduate program. All applicants, including those from foreign countries, are requested to submit Graduate Record Examination scores for verbal and quantitative aptitude tests and the advanced test in physics.

Placement Examination

Each student admitted to work for an advanced degree in astrophysics is required to take the placement examination in physics (see Placement Examinations, page 314) covering material equivalent to Ph 106, Ph 125, and Ph 129. This examination will test whether the student’s background is sufficiently strong to permit advanced study in astrophysics. If it is not, students will be required to pass the appropriate courses.

Master’s Degree

While the option does not offer a master’s degree program in itself, students who fulfill the general Institute requirements for such a degree, and the specific option requirements (see below), can receive a master’s degree, either en route to a final Ph.D. degree if admitted to candidacy, or as a terminal degree if the candidacy requirements are not met.
The choice of astronomy and other science elective courses must be approved by the department. At least 36 units of the 135 units must be selected from Ay 121, Ay 122, Ay 123, Ay 124, Ay 125, Ay 126, and Ay 127. The courses Ph 106, Ph 125, and Ph 129 may be required of those students whose previous training in some of these subjects proves to be insufficient. At least 27 units of advanced courses in fields other than astronomy are required.

Degree of Doctor of Philosophy

Astrophysics Program. The student’s proposed overall program of study must be approved by the department during the first year. The following are required of all students for candidacy: Ay 121, Ay 123, Ay 124, Ay 125, Ay 126, and Ay 127. The student should take these courses in the first year. Observational astronomy students should also take Ay 122. Also required are research and reading projects. Credit for this work will be given under courses Ay 142 and Ay 143.

Physics Program. The student’s program during the first two years of graduate study should include at least 36 units of physics courses, exclusive of Ph 106, Ph 125, and Ph 129, and should include Ph 136 a and Ph 136 b, unless specifically exempted by the option representative or executive officer. Cross-listed courses (e.g., Ph/Ay) in general do not count towards the physics units requirement, unless specifically allowed by prior consultation between the student, the instructor, and the student’s option representative. This requirement may be reduced on written approval of the department for students who take substantial numbers of units in Ph 106, Ph 125 or APh 125, and Ph 129. Students in radio astronomy may substitute an advanced course in electrical engineering or applied mechanics for up to nine units of the required 36 units of physics. Theoretical astrophysics students should include at least 54 units of physics courses in their programs. Students in planetary physics may substitute appropriate advanced courses in geophysics and geochemistry. All the above courses must be passed with a grade of C or better, or a P upon prior written permission from the option representative to take the course pass/fail.

Other Requirements. An ability to explain concepts and to verbally present one’s work is vital to a successful career in research and/or teaching. To this end, all graduate students in astrophysics are required to serve as teaching assistants during their second year, and to make oral presentations as part of the course Ay 141, required of all students in their second year and all subsequent years.

The Minor. It is recommended that students take a subject minor in physics. Other fields in which subject minors are taken include geology or engineering, depending on the student’s field of specialization.

Language Requirement. Although the department believes that knowledge of foreign languages is generally useful, there is no formal foreign-language requirement. However, graduate students for whom English is a second language may be required to demonstrate fluency in oral and written English at the time of their candidacy exam. The examining committee will administer a test when this is deemed necessary.

Admission to Candidacy. To be recommended for candidacy for the Ph.D. degree in astrophysics, a student must, in addition to meeting the general Institute requirements,

- complete satisfactorily 36 units of research (Ay 142) or reading (Ay 143);
- pass with a grade of B or better, or by special examination, Ay 121, Ay 123, Ay 124, Ay 125, Ay 126, and Ay 127; and also Ay 122 for observational astronomy students;
- pass a general oral examination (see below);
- pass a thesis-related examination (see below);
- complete the physics course requirement (see above);
- satisfy a teaching requirement (at least one term as a GTA);
- fulfill the language requirement if applicable (see above); and
- be accepted for thesis research by a member of the faculty, or, by special arrangement, a staff member of the Observatories of the Carnegie Institution of Washington.

In November of their second year, all students are required to take a general oral candidacy examination. Students will be examined on the substance and status, as well as their performance on a research project, which should be started not later than the summer following the first year. They will further be examined on their broad understanding of current topics in, and fundamentals of, astrophysics. Both of these aspects of the examination are intended to evaluate the candidate’s aptitude for a research career in astrophysics. In addition, at the discretion of the executive officer, students who have not done well in one, or at most two, areas covered in the Ay 120 course series during their first year will be retested in these areas during the examination. Students must pass all of the aspects of this examination, as judged by the faculty committee conducting it, in order to continue in the Ph.D. program.

Students who receive more than two C (or lower) grades in the Ay 120 series, or who do not pass the general candidacy examination described above, will not be able to continue in the Ph.D. program. They may receive a terminal master’s degree, provided that they fulfill the requirements for it (see above).

Advising and Thesis Supervision. By the summer of their first year, students should be spending most of their time on research. During their first two years, students are free to work with any faculty they wish, on one or more projects. However, by the summer of their second year at the latest, they should have defined a thesis project and been accepted by a faculty research adviser for
that project (in cases where the thesis involves multiple projects, a second faculty adviser may supervise part of the research, but one must be selected as primary adviser). An oral candidacy exam dealing with the student’s proposed thesis research should be taken before the end of the second term of the third year. The date and time of the exam are the responsibility of the student to arrange. The examining committee is chosen by the executive officer in consultation with the student’s adviser. It will stand until the final examination, and be charged with ensuring that satisfactory progress toward the Ph.D. is being made.

If the candidate does not pass the oral candidacy exam, then the examining committee may at its discretion offer the candidate a second oral examination. This examination must be successfully completed by the end of the third term of the third year. Under no circumstances will students be permitted to continue beyond the third year without successful completion of all candidacy requirements.

After the oral candidacy exam, the adviser and the student together have primary responsibility for the student’s progress and career development. To ensure that these remain on course, both student and adviser must submit annual progress reports to the executive officer (or in the case of a conflict of interest, to the astrophysics option representative or the division chair). If at any stage the student, the adviser, or the executive officer feels that there are serious problems developing, they may consult in confidence with the astrophysics option representative, the executive officer, or the division chair. They may also request a meeting of the oral candidacy exam committee or seek the advice or help of other faculty members. Students may also seek confidential advice and help from the Counseling Center and the Ombuds Office.

Final Examination. A final draft of the thesis must be submitted at least six weeks before the commencement at which the degree is to be conferred. At least two weeks after submission of the thesis, the student will be examined orally on the scope of his or her thesis and its relation to current research in astrophysics. The examination will be conducted by a committee selected in the same way as the oral candidacy committee. The examination should occur before the end of the fifth year. Only in rare circumstances will permission be granted to continue in a sixth year. Such permission requires a written petition to the executive officer.

Typical timeline:
Year 1: Ay 121, Ay 123–127; at least three advanced physics courses; reading and independent study. Begin research.
Year 2: November—general oral candidacy examination. Research projects; select thesis and adviser. Fulfill teaching requirement. Complete 36 units of physics (54 for theorists); Ay 122 if applicable; optional advanced astronomy courses. Ay 141.
Year 3: Take oral candidacy exam on thesis before end of second term. Annual report from student and adviser. Ay 141.
Year 4: Annual report from student and adviser. Ay 141.

Subject Minor
The program for a subject minor in astrophysics must be approved by the department before admission to candidacy. In addition to general Institute requirements, the student must complete satisfactorily, with a grade of C or better, 45 units in advanced courses in astronomy.

Biochemistry and Molecular Biophysics

Aims and Scope of the Graduate Program
An integrated approach to graduate study in biochemistry and molecular biophysics has been organized primarily by the Division of Biology and the Division of Chemistry and Chemical Engineering. The curriculum is designed to provide a broad background in protein biochemistry, structural biology, and molecular genetics, in addition to an appropriate depth of knowledge in the field selected for the Ph.D. thesis research.

Admission
The option in biochemistry and molecular biophysics is open to students with undergraduate degrees in biochemistry, biology, chemistry, biophysics, physics, engineering, and related areas. All applicants for admission, including those from foreign countries, are required to submit the verbal, quantitative, and analytical scores for the Graduate Record Examination and are also strongly urged to submit the results of an advanced test in a scientific field. Applicants whose native language is not English are required to submit results of the TOEFL exam, and, after admission, are required to satisfy the English language requirements of the Institute.

Master’s Degree
Students are not normally admitted to work toward the M.S. degree. In special circumstances, the M.S. degree may be awarded, provided Institute requirements are met. In general, the degree is not conferred until the end of the second year of residence.

Degree of Doctor of Philosophy
The Option Graduate Study Committee will counsel and oversee the student’s progress upon admission to the graduate program. In the first year of graduate study, the course requirement consists of a sequence of three core courses covering topics in structural bio-
chemistry (BMB/Bi/Ch 170), the molecular basis of protein function (BMB 176), and molecular genetics (BMB 278). These courses will expose the student to contemporary issues in modern biochemistry, and to the tools and methods that are essential for biochemical research. Students are generally expected to conduct a 10–12 week research rotation in three different laboratories during the first year. Research advisers are normally selected at the end of the first year. In consultation with their adviser and the Option Graduate Study Committee, students are expected to take three advanced courses in the second year that are appropriate for their particular research interests.

Laboratory Rotations. In consultation with the Option Graduate Study Committee and individual professors, students will choose three laboratories in which to do short research projects during their first year of residence. These laboratory rotations are designed to provide the student with an introduction to different areas of biochemistry. It is possible to waive some or all of the rotations by petitioning the Option Graduate Study Committee.

Admission to Candidacy. By the end of the sixth term of residency, the student will take an oral examination to assess mastery of the field of biochemistry and to evaluate research progress. As part of this examination, each student will submit a written research report summarizing the progress in their research, and an original research proposition in a field outside the student’s chosen field of research. A candidacy examination committee will be assembled by the Option Graduate Study Committee to administer the examination. When the student advances to candidacy upon successful completion of the exam, this committee will become the thesis advisory committee and will meet with the student once a year to evaluate research progress. This committee will also serve as the Ph.D. thesis examination committee.

Thesis and Final Examination. Thesis research will be carried out under the direction of one or more faculty members in the biochemistry and molecular biophysics option. The thesis defense will consist of a thesis seminar, followed by an examination by the Ph.D. thesis committee.

Bioengineering

Aims and Scope of the Graduate Program

The bioengineering option at Caltech is designed for students interested in subjects that form the core of the new interdisciplinary science of bioengineering. These branches of science provide the basis for the growth of modern technology. Students may choose biology, chemistry, physics, engineering, and applied mathematics as their elective subjects and choose a thesis adviser within the divisions of Engineering and Applied Science, Biology, or Chemistry and Chemical Engineering.

Master’s Degree

Students are not normally admitted to work towards the M.S. degree. In special circumstances, the M.S. degree may be awarded, provided Institute requirements are met. In general, the degree is not conferred until the end of the second year of residence.

Degree of Doctor of Philosophy

The Option Tracks. To accommodate different interests within the broad scope of bioengineering, graduate students typically select a focus on one of three subject tracks: the biomolecular track, the biodevices track, and the biomechanics track.

Admission to Candidacy. To be recommended for candidacy for the Ph.D. degree in bioengineering, the student must, in addition to meeting the general Institute requirements, satisfy the following BE course requirements.

1. Advanced mathematics (27 units): ACM 100 abc, or ACM 101 abc, or AM 125 abc.
2. Core bioengineering: BE 201 abc, and the BE 201 laboratory (when offered).
3. Basic biochemistry (9 units): Bi/Ch 110.

Each student must take additional courses that vary according to the chosen option track.

Biomolecular Track: Bi/Ch 111 and Bi/Ch 113.

Biodevices and Biomechanics Tracks: A yearlong graduate-level sequence in mechanics, physics, or optoelectronics. Acceptable courses are Ae/APh/CE/ME 101 abc, Ae/AM/CE/ME 102 abc, AM 151 abc, Ph 106 ab, Ph 127 abc, CDS 140 ab, CBS 110 ab, and CDS 111. Other graduate-level courses can be selected by petition to the option representative.

Students may be excused from one or more of these requirements, depending on their course background. The qualifying examination, however, will be based on material covered in these courses.

Advanced Bioengineering. Each student will choose three advanced bioengineering courses from the following list. In order to assure that students have breadth, they will be required to take at least one course outside of the chosen option track.

- Biological flows (BE/Ae 243)
- Physics of biomolecular structure (APh/BE 161)
- Design of biological molecules and systems (ChE/BE 163)
- Cellular and tissue engineering (ChE/BE 210)
- Advanced bioengineering laboratory (APh/BE 165)
- Electronic measurements and sensors (Ph/EE 118)
- Biomedical imaging (EE/BE 166)

Other courses may be allowed by petition to the option representative.
Electives. Students must complete 36 additional units of science and engineering electives (at 100 level or higher). Suitable electives will be selected in consultation with the candidate's adviser. Electives must be distributed between both science and engineering. Suggested electives: Ph 106 abc or Ph 127 abc; APH 105 abc; ChE 103 abc; ChE 151 ab and Ac/APH/CE/ME 101 abc, or ChE 103 c; AM 151 abc, CDS 101, CDS 110 ab, CDS 111, CDS 140 ab, Bi 177, ESE/Bi 168, EE 112, CS/CNS 257 abc, BMB/Bi/Ch 170, and BMB 176.

Qualifying Examination. A qualifying examination will be administered to all bioengineering students at the end of the third term of their first year. The examination will cover material from the first-year required courses of mathematics and BE 201. Students can then either choose a biochemistry qualifying examination or a mechanics, physics, or optoelectronics qualifying examination.

Candidacy Examination. Students will be examined on the subject of the Ph.D. research at the end of the second year of residency. This examination will be a test of the candidate's preparation and knowledge to conduct research in his or her specialized field of doctoral research.

Thesis and Final Examination. A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in his or her specialized field of research.

Language Requirements. Students are encouraged to discuss with their advisers the desirability of taking foreign languages. Foreign languages are not required.

Subject Minor
A subject minor is not required for the Ph.D. degree in bioengineering. Students majoring in other fields may not take a subject minor in bioengineering.

Biology

Aims and Scope of the Graduate Program
Graduate students in biology come with very diverse undergraduate preparation—majors in physics, chemistry, mathematics, or psychology, as well as in biology and its various branches. The aims of the graduate program are to provide, for each student, individual depth of experience and competence in a particular chosen major specialty; perception of the nature and logic of biology as a whole; sufficient strength in basic science to allow continued self-education after formal training has been completed and thus to keep in the forefront of changing fields; and the motivation to serve his or her field productively through a long career.

In accordance with these aims, the graduate study program in biology includes the following parts: (a) the major program, which is to provide the student with early and intense original research experience in a self-selected subject of biology, supplemented with advanced course work and independent study in this subject; and (b) a program of course work designed to provide well-rounded and integrated training in biology and the appropriate basic sciences, which is adjusted to special interests and needs. An individual program will be recommended to each student in a meeting with the student's advisory committee (see below). The Division of Biology does not encourage applications from students who have pursued undergraduate study in biology at the Institute, because the broader perspective to be gained from graduate study in a different setting is considered to be essential for the full development of each student's potential. Exceptions to this policy may be considered by the faculty of the division if there are circumstances that indicate that it would be in the best interests of a student to pursue graduate study at the Institute.

Admission
Applicants are expected to meet the following minimal requirements: mathematics through calculus, general physics, organic chemistry, physical chemistry (or the equivalent), and elementary biology. Students with deficient preparation in one or more of these categories may be admitted but required to remedy their deficiencies in the first years of graduate training, with no graduate credit being granted for such remedial study. This will usually involve taking courses in the categories in which the student has deficiencies. In certain instances, however, deficiencies may be corrected by examinations following independent or supervised study apart from formal courses. Furthermore, the program in biology is diverse, and in particular fields such as psychobiology and experimental psychology, or in interdisciplinary programs, other kinds of undergraduate preparation may be substituted for the general requirements listed above.

When feasible, visits to the campus for personal interviews will be arranged before a final decision for admission is made. Graduate Record Examinations (verbal, quantitative, and an advanced test in any science) are required of applicants for graduate admission intending to major in biology. Applicants are encouraged to take these examinations and request that the scores be transmitted to Caltech, in November or earlier, to ensure unhurried consideration of their applications.

Advising and Thesis Supervision
An advisory committee will be constituted for each student, to provide consultation and advice throughout the period of study until admission to candidacy. Each advisory committee will consist of four faculty members, including a student's current research supervisor. The chair is a faculty member other than the research supervisor. The composition of the committee will be adjusted as necessary if the student changes research supervisors or areas of interest.
Each student meets with his or her advisory committee at the time of beginning work in the division, to formulate a plan of study; and at other times when problems arise or advice is needed.

The major professor and thesis advisory committee provide the majority of mentoring to the student. In addition, the option representative and other members of the faculty are always available to provide advice and mentoring on any aspect of research, progress toward the Ph.D., future careers, and other aspects of life in graduate school and as a professional scientist.

Continuing Requirements of the Ph.D. Program
Besides the coursework and advancement to candidacy requirements described under Coursework, graduate students are expected to serve as a teaching assistant every year that they are in residence, up to five years maximum, except in circumstances where this requirement is modified by the option representative. Students must also convene a yearly meeting of their thesis committee. Continued matriculation in the program is contingent on the committee verifying that the student is making satisfactory progress towards a Ph.D. degree.

Laboratory Rotations
Prior to choosing a laboratory or laboratories in which to pursue doctoral research, students rotate in two or more laboratories. These rotations serve to expose students to different research problems, strategies, and styles, as well as the facilities available in other laboratories.

BioLunch
Students present their research every other year at BioLunch, a weekly seminar for biological science researchers at Caltech. This seminar—along with the almost daily research seminars by visiting scientists, and at laboratory group meetings, during seminar courses, and presentations at national and international scientific meetings—provides students an opportunity to develop a sophisticated understanding of biological research and to hone communication skills.

Master’s Degree
The biology division does not admit students for work toward the M.S. degree. In special circumstances the M.S. degree may be awarded, provided Institute requirements are met. In general the degree is not conferred until the end of the second year of residence. The degree does not designate any of the disciplines of the division, but is an M.S. in biology. The 135 units required by the Institute must include Bi 250 ab and Bi 252.

Degree of Doctor of Philosophy

Major Subjects of Specialization. A student may pursue major work leading to the doctoral degree in any of the following subjects: biotechnology; genetics; cellular biology and biophysics; immunology; cellular and molecular neurobiology; integrative neurobiology; developmental biology; molecular biology and biochemistry.

At graduation, a student may choose whether the degree is to be awarded in biology or in the selected major subject. As part of their Ph.D. program, students may complete a minor in another graduate option, in accordance with the regulations of that option. Students should consult with their advisory committee in planning such a program.

Coursework. Any two courses of the three-term series Bi 250 abc, which covers the breadth of fields represented in biology at Caltech, plus one term of Bi 252 are to be taken in the first year. Students are to take Bi/BMB 251 abc in all subsequent terms that they remain in residence. Finally, all students must take, beyond the courses specified in the first year, one additional 200 series or upper-division 100 series course offered by the biology division (excluding Bi 251 but including a third course in the Bi 250 series) during the remainder of their Ph.D. studies.

Dual Major in Biotechnology. Students who wish their Ph.D. education to emphasize the development of new techniques and instruments for studying fundamental problems of biology may elect a dual major, combining biotechnology with one of the major subjects of specialization listed in the preceding paragraph. A significant component of the thesis research will be the development of an innovative technique, method of analysis, or instrument. It will also include application of the new technology to a significant biological problem. In preparation for this research, studies in biotechnology may involve significant work outside of biology, in fields such as computer science, chemistry, engineering, and applied mathematics.

Admission to Candidacy. To be recommended by the Division of Biology for admission to candidacy for the doctor’s degree, the student must have demonstrated the ability to carry out original research and have passed, with a grade of B or better, the candidacy examination in the major subject and one or two minor subjects from the list of major subjects of specialization. Students with a dual major in biotechnology must pass the candidacy examination in the major subject (omitting the normal minor subject or subjects), and a second examination covering knowledge fundamental to the particular work in biotechnology that is proposed by the student. In addition, all students will be expected to make an oral defense to their thesis advisory committee of a written research proposal, on the topic of their anticipated thesis project. This defense will occur 6 to 9 months following passage of the candidacy examination.
Thesis Committee. Before admission to candidacy, a thesis advisory committee is appointed for each student by the chair of the division upon consultation with the student and the major professor. This committee will consist of the student’s major professor as chair and four other appropriate members of the faculty. The thesis committee will meet with the student before admission to candidacy to certify that the student has demonstrated the ability to carry out independent research, and at regular intervals thereafter to review the progress of the thesis program. This committee will, with the approval of the dean of graduate studies, also serve as the thesis examination committee (see below).

Thesis and Final Examination. Two weeks after copies of the thesis are provided to the examination committee, the candidate collects the copies and comments for correction. At this time, the date for the final examination is set at the discretion of the major professor and the division chair, to allow as much time as necessary for such matters as public announcement of the examination in the Institute calendar, thesis correction, preparation of publications, and checking out and ordering of the student’s laboratory space. The final oral examination covers principally the work of the thesis, and according to Institute regulations must be held at least two weeks before the degree is conferred. Two copies of the thesis are required of the graduate for the Institute library. A third copy is required for the division library.

Additional Interdisciplinary Opportunities. A number of emerging fields stem from highly interdisciplinary areas of research, and students interested in bioengineering, biotechnology, geobiology, and computational molecular and cell biology will find additional graduate opportunities within graduate options including biochemistry and molecular biophysics, bioengineering, chemistry, chemical engineering, environmental science and engineering, computer science, computation and neural systems, and geological and planetary sciences.

Caltech–UCLA Medical Scientist Training Program (MSTP)

A joint program between Caltech and the UCLA Medical School has been established for the granting of the M.D./Ph.D. degree. Students do their preclinical and clinical work at USC, and their Ph.D. work with any member of the Caltech faculty.

Admission to this joint program is made through the usual USC process, checking a box indicating interest in the Caltech option. A maximum of two students per year will be accepted into the joint program. The M.D. degree would be from USC and the Ph.D. would be awarded by Caltech.

The current Director of the USC M.D./Ph.D. program is Dr. Brian Henderson, and Caltech Professor Paul H. Patterson is the Associate Director. For more information, see http://www.usc.edu/schools/medicine/education/degrees_programs/mdp/mdphd.html.

Subject Minor

A student majoring in another division of the Institute may, with the approval of the biology division, elect a subject minor in any of the subjects listed above under major subjects of specialization. Requirements for such a minor are determined by the faculty committee designated for each subject. A minor program in biology is also available to students of other divisions. Such a program shall consist of 45 units of upper division course work in the biology division, with each course passed with a grade of C or better. Approval of each program must be obtained from the biology graduate option representative. A student majoring in another division who elects a subject minor in biology may, if desired, arrange to have the minor designated as biology, rather than with the name of the specific minor subject.

Chemical Engineering

Aims and Scope of the Graduate Program

The general objective of the graduate work in chemical engineering is to produce individuals who are exceptionally well trained to apply mathematics, the physical, chemical, and biological sciences; and engineering to the understanding of systems involving chemical reactions and transport phenomena and to the development of new processes and materials. The program also strives to develop in each student self-reliance, creativity, professional ethics, and an appreciation of the societal impact of chemical engineering and the importance of continuing intellectual growth.
Admission

It is expected that each applicant for graduate study in chemical engineering will have studied mathematics, physics, chemistry, biology, and chemical engineering to the extent that these subjects are covered in the required undergraduate courses at Caltech. In case the applicant’s training is not equivalent, admission may be granted but the option may prescribe additional work in these subjects before recommending him or her as a candidate for a degree.

Master’s Degree

Course Requirements. At least 135 units of course work must be completed in order to satisfy the Institute requirements. These units must include ChE 151 ab, ChE 152, ChE 165, 18 additional units of advanced courses in chemical engineering, 27 units of science or engineering electives, and 18 units of general electives. Finally, the M.S. requirements include at least 27 units of research, ChE 280, which represent two terms of research under the supervision of a chemical engineering faculty member or a two-term industrial research or development project performed with a member of the faculty in cooperation with professional staff at a local industrial laboratory. At least three weeks before the end of the final term of residence, a research report on the work performed under ChE 280 must be submitted to a designated member of the faculty, who will ask that it be read and approved by two members of the faculty. In addition, the fulfillment of the research report requirement must be signed off by a designated faculty member on the M.S. candidacy form and a final copy of the research report submitted to the Office of the Dean of Graduate Studies no later than two weeks before the degree is to be conferred. Doctoral students who have been admitted to candidacy can use their approved candidacy report to satisfy the research report requirement of the M.S. degree.

Degree of Doctor of Philosophy

The work leading to the Ph.D. degree prepares students for careers in universities and in the research laboratories of industry and government. Usually the first year of graduate work is principally devoted to course work in chemical engineering and related subjects. Time is also devoted during this period to the choice and initiation of a research project. During the second year the student is expected to spend at least half time on research, and to complete the course work and candidacy requirements.

Admission. Upon arrival at Caltech, each prospective Ph.D. student will meet in consultation with members of the faculty so that they may evaluate the level of the student’s preparation with respect to that expected at the Ph.D. level in the areas of kinetics, thermodynamics, and transport phenomena. These consultations are held to help the student set up a course program for the first year of study. A written copy of the recommendations will be entered into each student’s permanent file.

Research Adviser. During the first term, the faculty meets with the first-year grad students to propose topics for Ph.D. research. Following these meetings, the students are expected to meet individually with the various faculty members to discuss proposed research and generally obtain information for choosing a research adviser. At the end of the first term, each student is required to submit three faculty names, listed in order of preference. Every possible effort will be made to accommodate the student’s first choice, subject to an opening in the desired research group, availability of necessary funding, etc. The final decision will be made by the chemical engineering faculty in consultation with the students.

Oral Qualifying Exam. Each student is required to take a subject qualifying examination at the beginning of the second quarter in residence, the purpose of which is to examine expertise in kinetics, thermodynamics, and transport phenomena. The intended level of the exam is approximately that of the corresponding undergraduate courses at Caltech. Students who fail one or more of the three subjects may be permitted, by approval of the chemical engineering faculty, to repeat the examination on the failed subject immediately after the spring term. The format and topics of the examination are distributed to the first-year students at the beginning of the fall quarter.

Course Requirements. Students are required to take ChE 151 ab, ChE 152, ChE/Ch 164, ChE 165, and an additional course from a designated list. Each student is required to complete either a subject minor, or a general program of courses outside chemical engineering consisting of at least 54 units. The choice of the 54 units is subject to certain guidelines and restrictions included in the graduate studies brochure of the option. The general program of courses must be approved in advance by the option representative. It is intended that the courses chosen should constitute some integrated program of study rather than a randomly chosen collection of courses outside chemical engineering. Within these guidelines, the only course specifically excluded is research in another option. A grade of C or better is required in any course. The requirements for a subject minor in any option are listed in this catalog.

Candidacy Report/Examination. Before the end of the spring quarter of the second year of residence, each student must submit a written progress report on his or her research for approval by a specially constituted candidacy committee consisting of faculty members familiar with his or her general area of research. An oral examination is subsequently held by this committee to evaluate the student’s ability to carry out research at the Ph.D. level. A student who fails to satisfy the candidacy requirements by the end of the second year in graduate residence will not be allowed to register in a subsequent term except by special permission of the option and the dean of graduate studies.

Admission to Candidacy. To be admitted to candidacy, the student must have passed the qualifying and candidacy examinations, must
have had the candidacy report approved, and must have submitted
an approved list of courses already taken or to be taken.

Thesis Review Committee. After a student passes the second-year
candidacy exam, a faculty committee known as the thesis review
committee will be appointed to review periodically the student’s
progress. Usually, the thesis review committee will include mem-
ers of the candidacy committee, and will be appointed by the
option representative based upon the student’s recommendations.
This committee will meet with the student before fall registration
each year, either as a group or individually, to review progress,
suggest improvements in research, etc. In order to expedite the
review, the student should submit a two or three page concise outline
of progress and of proposed future research to each member of his
or her committee before the annual review meeting.

Final Examination and Thesis. See pages 242–243 and the option
graduate studies brochure for regulations concerning final exami-
nations and theses. A copy of the corrected thesis is to be submit-
ted to the chemical engineering graduate secretary for the chemical
engineering library.

The final examination will include the candidate’s oral presenta-
tion and defense of his or her Ph.D. thesis.

Subject Minor
Graduate students electing a subject minor in chemical engineer-
ing must complete 54 units of graduate courses in chemical engi-
nering that are approved by the chemical engineering faculty. The
54 units will consist of no more than 18 units from ChE 101,
103 abc, 105, and 110 ab, and at least 36 units from ChE 151 ab,
152, ChE/Ch 164, ChE 165, and a list of chemical engineering
courses provided by the option representative. A 3.0 GPA is
required for the courses taken.

Graduate Studies Adviser, Option Representative, and Chemical
Engineering Graduate Studies Committee. During graduate studies
the students will interact with several members of the chemical
engineering faculty. The most intensive interaction will be with the
research adviser, who will advise on all aspects of Ph.D. research
and coursework and will approve various formal requirements.
They will also interact with the members of the thesis review com-
mittee, as discussed earlier. In addition, they will interact with the
option representative and the graduate studies adviser. During the
first year, the graduate studies adviser will advise the students
about choice of research adviser, choice of courses, and Ph.D. qual-
ifying exams. The option representative is responsible for GRA
(graduate research assistantship) or GTA (graduate teaching assis-
tantship) assignments, beyond the first year, and for approval of the
Candidacy and Thesis Review Committees and other formal
requirements for the M.S. and Ph.D. degrees. Students may con-
tact either of these two faculty members regarding any questions
or problems. In a case where the relationship between a student
and his or her research adviser becomes strained and the student
desires advice or help from other faculty, he or she should consult
with the Chemical Engineering Grad Studies Committee, consist-
ing of the option representative, the graduate studies adviser, and
the option executive officer.

Additional Information. Additional information about graduate
study requirements and procedures is provided in the bulletin
“Graduate Programs in Chemical Engineering,” distributed annu-
ally to first-year chemical engineering graduate students.

Chemistry

Aims and Scope of the Graduate Program
The graduate program in chemistry emphasizes research. This
emphasis reflects the Institute's traditional leadership in chemical
research and the conviction that has permeated the Division of
Chemistry and Chemical Engineering from its founding, that par-
ticipation in original research is the best way to awaken, develop,
and give direction to creativity.

Soon after a new graduate student arrives in the laboratories, he
or she attends a series of orientation seminars that introduce stu-
dents to the active research interests of the staff. Students then talk
together with each of several faculty members whose fields attract
them, eventually settle upon the outlines of a research problem
that interests them, and begin research upon it early in the first
year. Students can elect to do research that crosses the boundaries
of traditionally separate areas of chemistry, for in this relatively
compact division, they are encouraged to go where their scientific
curiosity drives them. A thesis that involves more than one adviser
is not uncommon, and interdisciplinary programs with biology,
physics, geology, chemical engineering, and environmental science
and engineering science are open and encouraged.

An extensive program of seminars will enable students to hear
of and discuss notable work in chemical physics, organic chemistry,
inorganic chemistry and electrochemistry, organometallic chem-
istry, and biochemistry and molecular biophysics. Graduate stu-
dents are also encouraged to attend seminars in other divisions.

Course Program
A student is required to complete at least 36 units of course work
in science or engineering. These courses may be either inside or
outside the chemistry option, must be numbered 100 or greater,
and must be taken on a letter-grade basis unless the course is
offered with only the pass/fail option. A grade of B or better is
required for credit. The student should discuss with his or her
adviser which courses best serve his or her individual needs.
Course work outside the scientific area in which the dissertation
research is performed is encouraged. The program of courses must
be approved by the research adviser and the Chemistry Graduate Study Committee. Alternatively, a student may complete a subject minor in another option, the course requirements being set by that option.

Master's Degree

Students are not ordinarily admitted to graduate work leading to an M.S. degree. Under special circumstances, and with prior approval of the Graduate Study Committee, a master's degree can be obtained. All master's programs for the degree in chemistry must include at least 40 units of chemical research and at least 30 units of advanced courses in science. The remaining electives may be satisfied by advanced work in any area of mathematics, science, engineering, or the humanities, or by chemical research. Two copies of a satisfactory thesis describing this research, including a one-page digest or summary of the main results obtained, must be submitted to the divisional graduate secretary at least 10 days before the degree is to be conferred. In addition, the fulfillment of the thesis requirement must be signed off by a designated faculty member on the M.S. candidacy form and a final copy of the thesis submitted to the Office of the Dean of Graduate Studies no later than two weeks before the degree is to be conferred. The copies of the thesis should be prepared according to the directions formulated by the dean of graduate studies and should be accompanied by a statement approving the thesis, signed by the staff member directing the research and by the chair of the Chemistry Graduate Study Committee.

Degree of Doctor of Philosophy

Candidacy. To be recommended for candidacy for the doctor's degree in chemistry, in addition to demonstrating an understanding and knowledge of the fundamentals of chemistry, a student must give satisfactory evidence of proficiency at a high level in the primary field of interest, as approved by the division. This is accomplished by an oral candidacy examination, which must be held during or before the fifth term of graduate residence (excluding summer terms). The candidacy committee shall consist of three members of the chemistry faculty. The committee should be considered as a resource for the student for the remainder of his or her studies. At the candidacy examination a student is asked to demonstrate scientific and professional competence and promise by discussing a research report and propositions as described below.

The research report should describe progress and accomplishments to date and plans for future research. Two original research propositions, or brief scientific theses, must accompany the report, and at least one must be well removed from the student's field of research. These propositions should reflect his or her breadth of familiarity with the literature, originality, and ability to pose and analyze suitable scientific research problems. The research report and propositions must be in the hands of the examining committee one week before the examination.

The result of the candidacy examination may be either (a) pass, (b) fail, or (c) conditional. Conditional status is granted when the committee decides that deficiencies in a student's research report, propositions, or overall progress can be remedied in a specific and relatively brief period of time. In order to change conditional to pass status, the student must correct the indicated deficiencies or in some cases schedule a new examination the following term. He or she must be admitted to candidacy at least three terms before the final oral examination. A student cannot continue in graduate work in chemistry (nor can financial assistance be continued) past the end of the sixth term of residence without being admitted to candidacy, except by petitioning the division for special permission. This permission, to be requested by a petition submitted to the Graduate Study Committee stating a proposed timetable for correction of deficiencies, must be submitted before registration for each subsequent term (including the summer following the sixth term of residence) until admission to candidacy is achieved.

Language Requirement. There is no formal foreign language requirement for the Ph.D. in chemistry. However, the division believes strongly in the professional importance to chemists of a knowledge of foreign languages and encourages their study prior to graduate work or while in graduate school.

Thesis Research Progress. Before the thirteenth term of graduate residence (excluding summer terms), the student will be expected to demonstrate satisfactory progress in the course of thesis research. To this end an informal meeting with the Ph.D. thesis committee will be held, at which time the student will present an oral summary of research completed to date as well as an outline of future research plans. The thesis committee will generally consist of the original candidacy committee plus an additional member of the faculty. Following the presentation, an appropriate timetable for completion of the degree requirements will be discussed and agreed upon. If the student has not progressed sufficiently, completion of the Ph.D. may be considered inappropriate.

Length of Graduate Residence. Any graduate student who anticipates a need to register for a 16th academic term must request a meeting of his or her thesis committee and present a petition for permission to register that includes a plan of action for the period of the requested registration and a specific date for the completion of the degree requirements. This petition must be approved by the chair of the Chemistry Graduate Study Committee, and, in cases where financial support is an issue, also by the executive officer or division chair, before it is forwarded to the dean of graduate studies. Financial support of graduate students who are required to petition to register will not normally be provided through teaching assistantships. Failure to complete the degree requirements by the date specified in the petition would require the entire approval process to be repeated.
Thesis and Final Examination. The final examination will consist in part of the oral presentation and defense of a brief résumé of the student's research and in part of the defense of a set of propositions he or she prepares. Three original research propositions are required. No more than one of these may be a carryover from the candidacy examination, and at least one must be well removed from the field of research. Each proposition shall be stated explicitly and the argument presented in writing with adequate documentation. The propositions should display originality, breadth of interest, and soundness of training; a student will be judged on the selection and formulation of the propositions as well as on the defense of them. Formulating a set of propositions should begin early in the course of graduate study.

To emphasize the importance of these propositions, there will be a separate examination on the three propositions by the Ph.D. thesis committee. This examination on the propositions is normally taken after the thesis research progress meeting, but must be held before the end of the fifth year of residence, and not less than 10 weeks in advance of the final doctoral examination. A copy of the propositions, along with suitable abstracts, must be submitted to the examining committee and to the division graduate secretary not less than two weeks before the propositions examination. These propositions must be acceptable to the committee before the final doctoral examination can be scheduled.

A copy of the thesis must be submitted to each member of the thesis committee not less than two weeks before the final doctoral examination. A copy of the thesis should also be submitted to the Graduate Office for proofreading three weeks prior to the final doctoral examination. One reproduced copy of the thesis, corrected after proofreading, is to be submitted to the division graduate secretary for the divisional library. Two final copies (one on Permalife paper) are to be submitted to the Graduate Office.

Subject Minor
Graduate students in other options taking chemistry as a subject minor will be assigned a faculty adviser in chemistry by the Chemistry Graduate Study Committee. In consultation with this adviser, the student will work out an integrated program of courses, including at least 45 units of formal course work at the 100 level or above. This program must be approved by the Chemistry Graduate Study Committee, and a grade of C or better in each course in the approved program will be required.

Civil Engineering

Preparation for the Graduate Program
Students who have not specialized in civil engineering as undergraduates, as well as those who have, may be admitted for graduate study. As preparation for advanced study and research, a good four-year undergraduate program in mathematics and the sciences may be substituted for a four-year undergraduate engineering course, with the approval of the faculty. The qualifications of each applicant will be considered individually, and, after being enrolled, the student will arrange his or her program in consultation with a member of the faculty.

Master’s Degree
For the M.S. degree a minimum of 138 units of academic credit for courses numbered 100 or above is required. The program must include three units of CE 130 abc and at least 108 units of graduate-level courses in CE and AM. Students who have not had ACM 100 abc or its equivalent will be required to include ACM 100 in their program. The M.S. program must be approved by the student's adviser and the option representative for civil engineering. Ordinarily, the degree program will be completed in one academic year.

Students admitted for study toward a master’s degree but interested in pursuing subsequent study toward a Ph.D. degree should also read the section below concerning this degree.

Degree of Civil Engineer
Greater specialization is provided by work for the engineer’s degree than for the master’s. The candidate for this degree is allowed wide latitude in selecting his or her program of study, and is encouraged to elect related course work of advanced nature in the basic sciences. The degree of Civil Engineer is considered to be a terminal degree for the student who desires advanced training more highly specialized and with less emphasis on research than is appropriate to the degree of Doctor of Philosophy. However, research leading to a thesis is required for both degrees. The student should refer to Institute requirements for the engineer’s degree.

Degree of Doctor of Philosophy
Study and research programs for the Ph.D. degree are individually planned to fit the interests and background of the student. A comprehensive research project leading to a thesis is required. Examples of areas of research are described in section two.

Advising and Thesis Supervision. A counseling committee of three faculty members is appointed for each student upon his or her admission to work toward a Ph.D. degree in civil engineering, in order to advise the student on a suitable course program. One committee member acts as committee chair and interim adviser.
Aims and Scope of the Graduate Program

An integrated approach to graduate study combining computation and neural systems is organized jointly by the Division of Biology, the Division of Engineering and Applied Science, and the Division of the Humanities and Social Sciences. This curriculum is designed to promote a broad knowledge of relevant and related aspects of experimental and theoretical molecular, cellular, neural, and systems biology; computational devices; information theory; emergent or collective systems; modeling; cognitive neuroscience; and complex systems; in conjunction with an appropriate depth of knowledge in the particular field of the thesis research. For more details, see http://www.cns.caltech.edu.

Admission

Applicants for admission to the option should have an undergraduate major in electrical engineering, biology, physics, chemistry, mathematics, or computer science and a strong interest that will permit enrolling in courses in all the relevant disciplines. All applicants for admission, including those from foreign countries, are strongly urged to submit Graduate Record Examination test scores for verbal and quantitative aptitude tests and for an advanced test in physics, biology, engineering, or mathematics.

Advisory Committees

An advisory committee of three CNS faculty members is constituted for each student by the CNS admissions committee upon admission to the program. The faculty in whose lab the student is staying first chairs this committee. The advisory committee meets with the student when he or she arrives, guides and approves first-year course choices, and answers questions and offers advice about the program and the way of life in CNS. Further meetings with this committee should be arranged as needed by the student or by an adviser. The CNS faculty are available to students during the year for formal and/or informal discussions.

Master’s Program

Only students who expect to pursue the Ph.D. degree will be admitted to the option. The master’s degree may be awarded in exceptional cases. The awarding of this degree requires fulfilling the Institute requirements for a master’s degree, satisfying the option breadth requirements (see following section), the completion of a master’s thesis, and receiving from a candidacy examination oral committee a recommendation for awarding the degree.

Laboratory Rotations

Mandatory rotations through research groups (labs) provide a unique opportunity for the student to experience the CNS culture.
To broaden the student's knowledge and to provide familiarity with different techniques and ways of thinking or doing research, each student should carry out three 12-week laboratory rotations (one per term) during the first year, and should engage in research. During each rotation, the student is expected to take part in the life and routine of the lab by attending lab meetings; participating in research projects and discussions with members of the lab; and meeting monthly with the faculty of that lab to discuss science.

First-Year Course Requirements
Six nine-unit courses are required during the first year:
CNS/Ph/CS 187, either Bi 9 or equivalent, or Bi/CNS 150, a neurobiology or modeling course, a math course, and two other CNS, Bi, EE, ACM, or Ph courses (for example, a schedule of CNS/Ph/Psy 120, CNS/Bi/EE 186, CNS 187, Bi/CNS 150, and CS/CNS/EE 156 satisfies this requirement). CNS students are required to take two additional classes: the one-unit survey course CNS 100, and the four-unit course Bi 252. Students are free to take additional classes, and a research adviser may require that a student take a specific, complementary course as a requirement for joining his or her lab.

Candidacy
The three faculty in whose labs rotations have been done are on the student's candidacy exam committee. At the end of the first year, the student is expected to decide on a research group and begin work there. The first summer is thus expected to be spent entirely on research in that lab. Advancing to candidacy requires passing two tests: the general knowledge exam, and the research and candidacy exam. These exams are supervised by the CNS option representative.

The general knowledge exam satisfies the breadth requirement. A list of about 100 questions, grouped by category, are available on the Web at http://www.cns.caltech.edu, providing a clear idea of the scope of knowledge that each student is expected to know well. Students are encouraged to organize working and discussion groups to prepare for this exam; the format and implementation of such a system, however, is left to the students.

This is an oral exam, with five faculty (including the heads of the student's three rotation labs and two others chosen for "breadth," of whom one can be from outside Caltech). It should be scheduled by the student (who contacts the committee members) to take place during the last six weeks of the third term of year one. For the exam, the student must answer questions (from more than one category) taken from the list, which is modified each year. (The exam can be retaken after three months.)

The research and candidacy exam satisfies the depth requirement. During year two, the student is expected to produce a piece

Computer Science

Aims and Scope of the Graduate Program
Graduate study in computer science is oriented principally toward Ph.D. research. The course work and thesis requirements for the M.S. degree are a required part of the Ph.D. program. There is no admission to the M.S. program as the degree objective.

Students entering the graduate program with an M.S. degree from another school may transfer credit for course work as appropriate. A student may petition the option representative to have a prior M.S. thesis or equivalent accepted in lieu of a Caltech M.S. thesis; no Caltech M.S. will be granted in this case.

The Ph.D. program requires a minimum of three academic years of residence. The M.S. should be completed within the first two years.

Students must maintain high academic standards during their graduate residence. A student's Ph.D. research must exhibit originality in the formulation, analysis, and solution of a problem that is significant to the field of study.

Master's Degree
There are five requirements to fulfill for the M.S. in computer science:

- **Total units.** Completion of a minimum of 135 units of courses numbered 100 or greater, including M.S. thesis research (CS 180). The student will consult with the adviser to ensure balance in the course work.
- **Advanced courses in computer science.** Completion of a minimum of 54 units of CS courses numbered 100 or greater in addition to units earned for reading, research, projects, and the M.S. thesis.
- **Units outside computer science.** Completion of a minimum of 27 units outside computer science. Courses jointly listed with computer science cannot be used to fulfill this requirement.
- **B.S. equivalent preparation and breadth.** In the second quarter of the first year, all incoming students take a breadth exam

Special Regulations/Computer Science
administered by the faculty. Its purpose is to ensure that students have a solid foundation in computer science and to recommend necessary courses or reading.

- **M.S. thesis.** Completion of a minimum of 45 units of CS 180, an M.S. thesis approved by a computer science faculty member, signature of a designated computer science faculty member on the M.S. candidacy form, and a copy of the M.S. thesis submitted to the Office of the Dean of Graduate Studies no later than two weeks before the degree is to be conferred.

Degree of Doctor of Philosophy

Candidacy. To be admitted to candidacy, a student must have completed the M.S. program, have entered upon a course of research approved by his or her thesis adviser, and have passed a candidacy oral examination. The candidacy oral examination will be administered by a committee which consists of four faculty, is approved by the option representative, and is chaired by the adviser. The examination will ascertain the student's breadth and depth of preparation for research in the chosen area. The examination should be taken within the first three years.

Advising and Thesis Supervision. In order to facilitate close supervision and a highly research-oriented environment, each student is admitted directly to an adviser and research group. A course of study is determined in consultation with the adviser. Occasionally students will be admitted into more than one group. Changes in affiliation may occur with common consent of the student and the new adviser.

Students meet regularly with their adviser throughout their time at Caltech, and are encouraged to do the same with other members of the faculty.

Thesis and Final Examination. A final oral examination will be scheduled and given after the Ph.D. thesis has been submitted for review to the student's adviser and thesis committee; the latter consists of at least four faculty, is approved by the option representative, and is chaired by the adviser. The thesis examination is a defense of the thesis research and a test of the candidate's knowledge in his or her specialized fields.

The option representative and executive officer are available to discuss concerns regarding academic progress.

Subject Minor in Computer Science

A subject minor is not required for the Ph.D. degree in computer science. However, students majoring in other fields may take a subject minor in computer science, provided the program is supervised by a computer science faculty adviser, is approved by the computer science option representative, and consists of 45 units sufficiently removed from the student's major program of study.

Subject Minor in Applied Computation

The subject minor in applied computation is administered jointly by the applied and computational mathematics and computer science options, and is open to graduate students in all options. This minor emphasizes the mathematical, numerical, algorithmic, and programming methods underlying the application of computation—particularly parallel and concurrent computation—to research in science and engineering.

The requirements are listed under Applied and Computational Mathematics.

Control and Dynamical Systems

Aims and Scope of the Graduate Program

The option in control and dynamical systems (CDS) is open to students with an undergraduate degree in engineering, mathematics, or science. The qualifications of each applicant will be considered individually, and, after being enrolled, the student will arrange his or her program in consultation with a member of the faculty. In some cases the student may be required to make up undergraduate deficiencies in engineering science courses.

The CDS option emphasizes the interdisciplinary nature of modern theory of dynamical systems and control. The curriculum is designed to promote a broad knowledge of mathematical and experimental techniques in dynamical systems theory and control. In addition to taking courses in the CDS option, students must select a focus area (see below).

Master's Degree

Students will be admitted to the option who expect to pursue the Ph.D. degree. The master's degree may be awarded in exceptional cases. The awarding of this degree requires fulfilling the Institute requirements for a master's degree, satisfying the focus requirements, and receiving a recommendation for awarding of the degree from the candidacy oral examination committee.

Degree of Doctor of Philosophy

Institute requirements for the Ph.D. degree are described in the section on degree requirements. Approximately two years of course work are required and two or more years are usually needed for preparation of the dissertation.

Admission to Candidacy. To be recommended for candidacy for the Ph.D. degree in control and dynamical systems, the student must, in addition to meeting the general Institute requirements, do the following:

- Complete the following courses: CDS 140 ab or Ma 147ab; CDS 201 or AM 125 abc or Ma 108 ab; CDS 202 or Ma 109 ab.
- Complete the focus requirement, consisting of at least 27 units in a particular area outside of CDS. Courses taken to
satisfy the focus must represent a coherent program of advanced study in the chosen area. Possible areas include fluids, vehicles, vibrations, transport phenomena, process design, analog VLSI, propulsion, robotics, turbomachines, power electronics, micromachines, economics, and neurobiology. The program of study must be approved by the student's counseling committee and the option representative.

- Complete an additional 45 units in CDS or other advanced courses in dynamical systems and/or mathematics.
- Prepare a Research Progress Report.
- Pass an oral examination on the major subjects. The oral examination is normally taken before the end of the second year of graduate academic residence at the Institute.

Advising and Thesis Supervision. Upon admission each student is assigned an adviser in the option and a committee of three members, chaired by the adviser, which will approve the initial course of study by the student. A qualifying exam given during the first year of study will be used to evaluate the student's preparation for continued study.

The adviser will be replaced by a research adviser, and the initial committee replaced by a (possibly identical) candidacy committee when the direction of specialization is determined, not later than the beginning of the second year. The candidacy exam is normally taken toward the end of the second year. The candidacy committee will be the judge of the completion of the engineering focus requirement, necessary before advancement to candidacy. The student's candidacy committee may be reconstituted as the thesis committee after the candidacy exam has been successfully completed.

At the early stages of thesis preparation, the student's thesis committee will meet as needed, but at least yearly, to advise the student of his or her progress and to deal with any problems that might have arisen.

A final oral examination will be given after the thesis has been formally completed. The thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in the specialized field of research. Normally this defense will consist of a one-hour public lecture followed by an examination of the thesis by the thesis committee.

Subject Minor
A student majoring in another option at the Institute may elect a subject minor in control and dynamical systems. He or she must obtain approval from the CDS faculty of a course of study containing at least 54 units of advanced courses with a CDS listing.

Electrical Engineering

Aims and Scope of the Graduate Program
Award of the Bachelor of Science degree may be followed by graduate study leading to the Master of Science degree in electrical engineering, and the more advanced degrees of Electrical Engineer or Doctor of Philosophy. Because admission to graduate studies in electrical engineering at Caltech is extremely competitive, the Admissions Committee attempts to select those applicants it judges both best qualified and best suited for the graduate program. Applicants should submit Graduate Record Examination scores.

Master's Degree
Normally, the master's degree in electrical engineering is completed in one academic year. The principal criteria for evaluating applicants for the MSEE are the excellence of their preparation for the math- and physics-oriented nature of Caltech's graduate courses, and the judgment of the Admissions Committee on their ability to successfully pursue and benefit from the course program. The Institute does not normally admit an applicant to the master's degree in a field in which the applicant already has a master's degree from another U.S. institution. Financial aid is seldom offered to those who intend to complete their graduate work with a master's degree. A joint B.S./M.S. degree is not available in electrical engineering.

135 units are required as approved by the electrical engineering graduate student adviser. Units toward this are not transferable from other schools. At least 54 units of EE courses (courses listed or cross-listed as EE) labeled 100 or above and not counting EE 191 or EE 291 are required. No more than 30 units of pass/fail grades may be counted toward this requirement. Engineering Seminar, E 150 abc, is required. Students are urged to consider including a humanities course in the remaining free electives.

Students who have been admitted to the M.S.-only program must reapply if they are interested in the Ph.D. program.

Degree of Electrical Engineer
To be recommended for the degree of Electrical Engineer the applicant must pass the same subject requirements as listed for the doctor's degree.

Degree of Doctor of Philosophy
As a rule, applicants who wish to undertake research leading to a degree of Doctor of Philosophy in electrical engineering are admitted initially only for the MSEE. They are, however, evaluated according to additional criteria, the most important of which is the applicant's interest in and potential for research in one of the areas described below. The statement of purpose required as part of the application should clearly address this match. Considerable
weight is also given to the opinions expressed in the applicant's letters of recommendation.

During the Ph.D. applicant's master's degree year, evaluation continues. It is based in part on performance in courses and in part on a one-hour oral presentation scheduled early in the second quarter. As the year progresses, the electrical engineering faculty gets to know the student, and the student makes contact with the professor in his or her area of research interest. Upon acceptance into a research group, the student begins research work and defers receiving the master's degree until formal admission into the Ph.D. program. Before the end of his or her second academic year of graduate study, the student normally takes the Ph.D. qualifying oral examination. This must, however, be done no later than the end of the third academic year.

Ph.D. applicants who already hold a master's degree in electrical engineering from another U.S. institution may be admitted directly to the Ph.D. program, but must provide sufficient information to obtain advance acceptance into a research group.

Financial aid available to a Ph.D. applicant includes teaching assistantships and fellowships. TA duties consist of grading papers or lab instruction but not classroom lecturing. A fellowship may be supplemented by a teaching assistantship, and either or both include a full tuition scholarship. Tuition scholarships alone are not available. If financial aid is not requested, or if the box on the application form labeled "willing to come without aid" is checked, information on the source of funds for each year of intended graduate study must be included.

Candidacy. To be recommended for candidacy for the doctor's degree, the applicant must satisfy the following requirements (and pass the Ph.D. qualifying oral examination) no later than the end of the third academic year:

- Complete 18 units of research in his or her field of interest.
- Obtain approval of a course of study consisting of at least 135 units of advanced courses in electrical engineering or the related subjects listed under the master's degree. Only up to 27 units in research (e.g., EE 291) may be counted in this total. No more than 30 units of pass/fail grades may be counted toward this requirement. The courses taken to satisfy the math requirement below and courses taken to fulfill the Master of Science degree requirement may be included to satisfy this requirement. Units toward this requirement are not transferable from other schools.
- Pass 27 units of mathematics courses, as approved by the student's research adviser, with letter grade no lower than C.
- Pass a qualifying oral examination covering broadly the major field. Students are strongly encouraged to do this before the end of the second year of residency.

Ph.D. Committee. The Ph.D. qualifying oral exam and the final defense exam are conducted by committees that are set up by the student and approved by the option representative. Members of these Ph.D. committees also serve as second or backup mentors in cases where such additional advising and problem solving are appropriate.

Thesis and Final Examination. The candidate is required to take a final oral examination covering the doctoral thesis and its significance in and its relation to his or her major field. This final examination will be given not less than two weeks after the doctoral thesis has been presented in final form, and before its approval. This examination must be taken at least four weeks before the commencement at which the degree is to be granted.

Advising and Thesis Supervision. Periodic meetings between the advising faculty and the graduate student are an integral part of the Ph.D. program. These meetings should be at sufficiently frequent intervals, as determined by the student and adviser. Students are also encouraged to meet with other members of the Ph.D. committee, the option representative, the executive officer, or Caltech's ombudsperson to discuss problems relating to satisfactory progress.

Subject Minor
A student majoring in another option at the Institute may elect a subject minor in electrical engineering. He or she must obtain approval from the electrical engineering faculty of a course of study containing at least 45 units (over the 100 level) of advanced courses with an EE listing (excluding EE 191 and 291). At least 36 of these should be for letter grades no lower than C. Freshman classes cannot be counted toward this.

Environmental Science and Engineering

Aims and Scope of the Graduate Program
The interdisciplinary problems posed by natural and human-induced changes in the earth's environment are among the most interesting, difficult, and important facing today's scientists and engineers. The environmental science and engineering option is an interdivisional program of study by biologists, chemists, earth scientists, engineers, and physicists to investigate the functioning of and interactions among the atmosphere, hydrosphere, biosphere, and lithosphere. The ESE option is administered by the Divisions of Chemistry and Chemical Engineering, Engineering and Applying Science, and Geological and Planetary Sciences and promotes both broad knowledge of natural and engineered environmental systems and a detailed understanding of the application of basic science to environmental issues.

Admission
Applicants for admission to the option should have undergraduate preparation in science, engineering, or mathematics. Admission is limited to students intending to pursue the Ph.D. degree. Applicants are required to submit Graduate Record Examination
(GRE) scores for the aptitude tests. Applicants from non-English-speaking nations are required to submit Test of English As a Foreign Language (TOEFL) scores.

Master’s Degree
Students enrolled in the Ph.D. program may be awarded a master’s degree if they have satisfied the basic Institute requirement of 135 units of work in courses numbered 100 or higher. These courses must include those specifically required in the ESE Ph.D. program and satisfy the ESE core requirement.

Advising
An academic adviser is appointed for each incoming student to assist in design of his or her academic program. The research adviser will be chosen by mutual agreement of the student and adviser before the end of the student's third term of graduate study. The thesis advisory committee (TAC), consisting of four faculty including the research adviser, will be constituted and will meet with the student soon after the student successfully completes the Ph.D. qualifying examination, and should thereafter meet with the student at least yearly. Committee membership may change with the student's research interests. TAC members will generally serve to approve the student's advancement to candidacy and as the examining committee for the final thesis defense.

Degree of Doctor of Philosophy
For the Ph.D. degree the student must (1) satisfy the course requirements, (2) pass the qualifying examination, (3) advance to candidacy, and (4) complete a thesis and successfully defend it in a final oral examination.

Course Requirements. The program of courses for the Ph.D. degree should be designed to educate students in the application of the basic sciences to environmental problems and to prepare them for their research. During their first year, students, in consultation with their academic advisers, must design a program of graduate study that includes a minimum of 135 units of graduate work. The Ph.D. program must include three units of ESE 150 abc and three units of ESE 101. Courses in mathematical physics, such as Ge 108, and in applied statistics and data analysis, such as ACM/ESE 118, are required for students lacking this preparation. Note that advanced courses in biology with a strong quantitative component may be substituted in appropriate cases upon petition by the student. Students are further required to take 18 units in each of the three core areas—environmental chemistry, biology, and physics—for a total of 54 units in the core courses. Courses satisfying the core requirements are

- Environmental Biology: ESE/Ge 148 c, ESE/Bi 166
- Environmental Chemistry: ESE 142, ESE/Ge/Ch 171, ESE/Ch/Ge 175 a
- Environmental Physics: ESE/Ge 148 ab

In cases of unusual preparation, students may petition to substitute an advanced elective course for a core course, but the substituted courses must be in the same area as the courses replaced. The remaining units required are to be fulfilled by taking additional core courses (not used to satisfy the core requirement) or elective courses in ESE or related disciplines. In recognition that solutions to environmental problems are limited not only by technical but also by social, political, and economic issues, students are encouraged to include relevant courses in the social sciences in their program of study. For recommended elective courses, see http://www.ese.caltech.edu/courses/electives.html. Not more than 42 units may be in reading and/or research (ESE 100, 200, 300) courses (these units are in addition to the required six units of ESE 101 and ESE 150 abc). Of these reading and/or research units, not more than 27 units may be taken during the first year of graduate study. Exceptions may be granted by petition. Courses may be taken at the Scripps Institution of Oceanography under the exchange arrangement described on page 236.

Ph.D. Qualifying Examination. The Ph.D. qualifying examination must be taken during the first term of the student's second year of residency. This examination consists principally of oral and written defense of two research propositions, supplemented by a written description of one of them. Written abstracts must be submitted for both propositions. Fundamental questions derived from the ESE core courses may also be included in the qualifying examination. Students are encouraged to consult with others concerning their ideas on propositions, but the material submitted must be the work of the student. There must be a different faculty member associated with each of the two propositions. It is expected that the student’s research adviser will supervise the proposition for which the student prepares the written description. This written description will generally be in the form of a proposal but the student may submit a research paper instead. In preparation for the qualifying examination, students are encouraged to register for nine units of research (ESE 100) in their second and third terms of residence.

Advancement to Candidacy. Students are expected to advance to candidacy before the end of the first term of their third year of residency.

Thesis and Final Examination. Copies of the completed thesis must be provided to the examining committee two weeks before the examination. The final oral examination focuses on the work of the thesis and, according to the Institute regulations, must be held at least two weeks before the degree is conferred. In addition to the two copies of the final thesis required by the Institute, a third copy must be submitted to the option office.

Subject Minor
Students majoring in another option at the Institute may elect a subject minor in environmental science and engineering. They
must obtain approval from the ESE option representative for a course of study containing at least 45 units of advanced ESE courses.

Geological and Planetary Sciences

Aims and Scope of the Graduate Program

Graduate students in the Division of Geological and Planetary Sciences enter with diverse undergraduate preparation—majors in astronomy, biology, chemistry, mathematics, and physics, as well as in geochemistry, geology, and geophysics. Graduate study and research within the division are equally diverse, and the graduate program aims to provide for students a depth of competence and experience in their major field, sufficient strength in the basic sciences to allow them to continue self-education after their formal training has been completed, and the motivation and training to keep them in the forefront of their field through a long and productive career. Students are encouraged to explore work in interdisciplinary areas both within and outside the division, and to gain experience in teaching. Although financial support is not guaranteed, all students making normal progress have in the past been supported by a combination of fellowships, research assistantships, and teaching assistantships.

Admission and Entrance Procedures

Only students who intend to work full time toward the doctor of philosophy (Ph.D.) degree are admitted. The admission process follows Institute regulations. Applicants are required to submit Graduate Record Examination (GRE) scores for the general test. Individual option requirements for GRE subject tests are specified below:

- Environmental Science and Engineering—No
- Geobiology—Submit the scores for any subject test
- Geochemistry—Strongly recommended but not required
- Geology—No
- Geophysics—No
- Planetary Science—Strongly recommended but not required.

Applicants from non-English-speaking nations are required to submit Test of English as a Foreign Language (TOEFL) scores.

Based on their applications and interests, students enter one of the major subject options of the division and are given an academic adviser who is a professorial faculty member associated with the option. The five options are geobiology, geochemistry, geology, geophysics, and planetary science. The division also jointly administers the environmental science and engineering option (see page 295). Students may later change options, but must first obtain approval by the new option. Each student must plan to satisfy the requirements for the Ph.D. degree in one option.

Entering students in the week preceding the beginning of instruction for the first term meet with their option representatives and discuss their preparation in the basic sciences. Afterward, the student meets with his or her adviser prior to registration and selects courses based in part on the results of the discussions.

First-year graduate students are encouraged to register for at least nine units of research (Ge 297) in each term of residence. The primary objective is to communicate to the students the excitement of discovery based on original investigations and to provide a broad scope of research aims. An important by-product can be the formulation of propositions for the Ph.D. qualifying oral examination or orientation toward Ph.D. research.

Advising and Thesis Supervision

The academic adviser appointed for each incoming student continues as mentor with broad responsibility for a student's academic welfare throughout the graduate program. During the second year, after passing the qualifying examination, each student should identify a professor as thesis adviser, who will normally provide a graduate research assistantship and the opportunity for continuing research. In consultation with the two faculty advisers, each student then forms a thesis advisory committee composed of at least four Caltech professors (chaired by the academic adviser). External scientists closely involved in the student's research may also be appointed. Members of the committee serve as advisers, counselors, and resources. Committee membership may be changed if a student's research interests change.

The thesis advisory committee meets with the student at least once each year for a progress review, and informally whenever the student needs or requests assistance or guidance. In addition, the faculty members in each option have their own systems for annual evaluations of student progress. A few months before completion of the thesis dissertation, the thesis examining committee will be chosen, usually including the members of the thesis advisory committee.

All students are urged to consult with division faculty in the following sequence if they have any problems: thesis and academic advisers, thesis advisory committee, option representative, academic officer, and division chair. If these division personnel cannot resolve a problem, then the student should turn to Institute offices.

Master's Degree

Students enrolled in the Ph.D. program may be awarded a master's degree when they have satisfied the basic Institute requirement of 135 units. These courses must be numbered 100 or higher, and must be part of those used to satisfy the Ph.D. requirement in one of the options of the division. Specifically required are Ge 109 and two courses from the list: Ge 101, Ge 102, Ge 103, or Ge 104.
An application for admission to candidacy for an M.S. degree must be submitted to the Office of the Dean of Graduate Studies according to the academic calendar in the Caltech Catalog (see pages 4–5).

Doctoral Degree: Division Requirements

For a Ph.D. degree the student must 1) pass the qualifying oral examination, 2) satisfy course requirements of the division and of an option, and 3) complete a thesis and successfully defend it in a final oral examination. Admission to candidacy occurs after the student has satisfied the first two requirements and has been accepted for thesis research by a division faculty member, who then becomes the student's thesis adviser.

The qualifying examination consists of oral and written defense of two research propositions, supplemented by a written description of one of them. Students are encouraged to consult with various staff members concerning their ideas on propositions, but the material submitted must represent the work of the student. There must be a different faculty member associated with each of the two propositions. The exam is administered by the qualifying examination committee, which has members from the five options of the division, and is normally taken early in the first term of the second year of residence. A more detailed outline of the qualifying examination is available in the division Academic Affairs office.

Before the end of the second year, the thesis advisory committee will be selected, as outlined above.

The division encourages students to engage in research early in their graduate careers. A student making normal progress will have submitted a paper, of which the student is senior author, by the end of the third academic year. The paper will be submitted to a refereed scientific journal and must have the approval of a faculty member of the division. Doctoral candidates must complete a thesis and submit it in final form by May 10 of the year in which the degree is to be conferred. The final oral examination for the doctorate by the thesis examining committee will be scheduled no sooner than two weeks following submission of the thesis (approved by the thesis adviser) and, in conformity with Institute regulations, it must be scheduled at least two weeks before the degree is to be conferred.

Candidates are expected to publish the major results of their thesis work. A manuscript should be reviewed by the member of the faculty supervising the major research and should be ready for submission to a refereed scientific journal at the time of the final exam. The student should be principal author. The published paper should have a California Institute of Technology address and a Division of Geological and Planetary Sciences contribution number. Published papers may be included in the thesis.

By the end of the first academic year (third term): submission by the student of (1) tentative titles of propositions for review by the qualifying examination committee and (2), a list of courses planned to satisfy the Ph.D. requirement, for review by the option.

By the end of the second academic year: (1) passage of oral exam; (2) approval by the option of courses planned to satisfy candidacy requirements; (3) submission of a tentative thesis topic and adviser, and thesis advisory committee.

By the end of the third academic year: (1) satisfactory completion of course requirements; (2) satisfactory completion of other requirements including selection of thesis topic and adviser, and thesis advisory committee; (3) admission to candidacy.

End of the fourth academic year: satisfactory progress toward completion of thesis.

After completing the fifth academic year, the student must formally petition to register for each subsequent year. Financial aid will normally not be extended beyond the sixth year.

The student's program and progress will be reviewed annually by his or her option and by the thesis advisory committee. In cases where, in the opinion of the faculty in the option, the student is clearly not showing adequate progress, they may recommend to the division chair that the student be denied permission to continue in the Ph.D. program based upon their overall assessment of the student's performance.

Basic Division Course Requirement

During the first year, every graduate student will take two of the four basic introductory courses: Ge 101–104, in areas in which the student has not had substantial training. Also required is one term of Ge 109. Throughout their graduate careers, students are expected to attend departmental seminars and seminar courses led by visiting scientists.

Requirements of the Major Subject Options

Geobiology. In addition to general Institute and basic division requirements, candidates for the Ph.D. degree in geobiology must successfully complete a minimum of 90 units at the 100 or greater level, including Ge 104, Bi/Ch 110, ESE/Bi 166, and ESE/Bi 168. These units should include advanced courses most relevant to the student's thesis research. At least 45 of the 90 units must be taken outside the Division of Geological and Planetary Sciences, preferably in biology (with a grade of C or better). They can be used to satisfy part of the requirements for a minor. A student with substantial prior experience in geobiology (e.g., M.S. degree) may use prior course work to substitute up to 43 of these units with the approval of the geobiology option representative. All students must have a basic knowledge of chemistry at the level of Ch 41 a. This requirement may be met by previous course work or through successful completion of this class.
Geochemistry. In addition to general Institute and basic division requirements, candidates for the Ph.D. degree in geochemistry are required to demonstrate an understanding of the field through a total of 90 units of course work at the 100 level or higher spread over four of the subdisciplines offered in the option: petrology/mineralogy, isotope geochemistry, cosmochemistry, and biogeochemistry. A student with substantial prior experience in some of the subdisciplines may use prior course work to substitute up to 45 of these units with the approval of the geochemistry option representative. In the oral candidacy exam, the student will be subject to examination in all four of the chosen subdisciplines. All students must have a basic knowledge of chemistry at the level of Ch 21 and mathematics at the level of Ge 108.

Geology. The geology option requirements are Ge 102 and Ge 103, which also satisfy the basic division requirement, and 36 units in 100-level science or engineering courses taken outside the GPS division, or in courses cross-listed with other divisions. Ch 21 abc may be included as part of these units. An additional 54 units are required in 100- or 200-level courses within the GPS division. Ge 121 ab, and Ge 122 or a third term of Ge 121 a or b taken from a different instructor must be included in these 54 units. Courses that cannot be used to satisfy these requirements include research and reading courses, and certain courses constituting basic preparation in the field of geology, such as Ge 106, Ge 112, Ge 114 ab, Ge 115, and Ge 120. A grade of C or better is required for all course work that satisfies these requirements. Knowledge of basic physics, mathematics, and data analysis at the level of Ge 108 and ACM/ESE 118 is required of all Ph.D. candidates in geology. Students entering the geology option with a master's degree in a science or mathematics may be exempt from up to 45 units at the discretion of the option representative.

Geophysics. In addition to general Institute and basic division requirements, candidates for the Ph.D. degree in geophysics must successfully complete the following course work requirements: Ge 101; Ge 103; either Ae/Ge/ME 160 ab, APh 105 ab or a subject equivalent; Ge 161; Ge 162; Ge 163; and Ge 111 ab. It is highly recommended that these courses be taken in the first year. Students may substitute another course for a required course if they can demonstrate to an option representative that they have already had the material in the required course. To complete the course requirements, students must take five additional 100- or 200-level science or mathematics courses.

Planetary Science. In addition to general Institute and basic division requirements, candidates for the Ph.D. degree in planetary science must satisfy the following course work requirements: Ge 101, Ge 102, and courses in planetary formation and dynamics (Ge/Ay 133), planetary atmospheres (Ge 150), planetary interiors (Ge 131), and planetary surfaces (Ge 151). In addition, students shall successfully complete 45 units of 100-level or higher courses in a coherent field of specialization. This requirement may be satisfied by completion of a subject minor or through a set of courses chosen in consultation with and approved by the adviser and the option representative. All candidates are expected to possess knowledge of physics and mathematics at the level of Ph 106 and ACM 95. This requirement may be met by previous course work or through successful completion of these classes.

Subject Minor
A student from another division of the Institute may, with the approval of the Division of Geological and Planetary Sciences, elect a minor in any one of the major subjects listed above. Such a subject minor will include at least 45 units in courses at the 100 level or higher. Normally, a member of the division faculty will participate in the student's oral thesis defense.

History
The program for a subject minor in history must be approved by the executive officer for the humanities before the admission to candidacy. In addition to meeting general Institute requirements, the student must complete satisfactorily, with a grade of C or better, 45 units in advanced courses in history.

History and Philosophy of Science
Graduate students in science, mathematics, or engineering may take a minor in history and philosophy of science (HPS). The graduate minor is devoted to the study of the historical evolution and philosophical underpinnings of the physical and biological sciences. Historical work in the minor includes the origins of experimental practice, the social and institutional contexts of science, the origins and applications of quantitative methods, specific developments since antiquity in physics, biology, and chemistry, as well as biographical and comparative studies. Philosophical research deals with issues in causation, explanation, scientific inference, the foundations of probability and decision theory, philosophy of mind and psychology, philosophy of neuroscience, and scientific fraud and misconduct.

The minor thus fosters the acquisition of broad knowledge about the scientific enterprise and related foundational problems, as well as more detailed analysis of the progress of and philosophical problems in particular branches of science. It is a valuable supplement to a technical degree since it helps equip students to understand the nature of scientific progress and to grapple with the conceptual basis of science and its wider ramifications. Students who successfully complete the HPS minor will be recognized with official credit for the achievement on their transcripts.
Requirements
Graduate students who take an HPS minor are expected to complete Hu/H/HPS 10, HPS 102 ab, HPS/Pl 120, at least three units of HPS 103, and 18 units of additional work in HPS, to be completed by taking courses in HPS/H or HPS/Pl numbered 99 or higher. Students need not complete the requirements for the minor within the first two years of graduate study.

Materials Science
Aims and Scope of the Graduate Program
The graduate program is designed to give students an understanding of general phenomena in synthesis–structure–property relationships in all materials, plus a detailed understanding of phenomena for at least one particular class of materials. Students may enter the graduate program in materials science with undergraduate preparation in physics, chemistry, engineering, or materials science. Students interested in terminating their graduate study at the master's level are not normally admitted. Students in the Ph.D. program are required to complete a set of core courses, pass an oral candidacy examination, complete a thesis describing original research in materials science or a related field, and publicly defend their thesis work.

Master's Degree
Each student is assigned to a member of the faculty, who will serve as the student's adviser. The adviser and option representative for materials science will approve his or her course of study.

Study for the degree of Master of Science in Materials Science will ordinarily require three terms of courses. The courses shall be chosen from the list of core courses below, although 27 units of research (MS 200 or equivalent) may be substituted for 27 units of lecture or laboratory courses. Completion of 138 units of these courses within two years with no grade less than a C constitutes the academic requirements for the M.S. degree.

Core Courses
1. MS 131, MS 132, MS 133: Structure and Bonding in Materials, Diffraction and Structure of Materials, Kinetic Processes in Materials.
2. APh 105 a or ChE 165, APh 105 b or ChE/Ch 164, MS 105: Thermodynamics, Statistical Mechanics, Phase Transformations.
3. Two quarters of courses focused on specific materials, such as APh 114 ab: Solid-State Physics; Ch/ChE 147, ChE/Ch 148: Polymer Chemistry and Physics; Ge 114, Ge 214, Ge 260: Mineralogy, Spectroscopy of Minerals, Physics of Earth Materials.
4. Two quarters of courses focused on internal interactions in materials, such as Ph 125 ab, Ch 125 ab: Quantum Mechanics; Ae/AM/CE 102 abc or Ae/Ge/ME 160 ab: Continuum Mechanics of Fluids and Solids; Ch 120 a: Nature of the Chemical Bond; Ch 121 ab: Atomic Level Simulations of Materials and Molecules.
5. 18 units of courses comprising either the third terms of the sequences taken in 3 and 4 above, or other courses appropriate for the student's research interests, such as MS 125.
6. Mathematics at the level expected of research in the student's field. This may be satisfied by the courses ACM 100, or AM 125 abc, or ACM 101 abc, or Ph 129 abc, or may be waived at the discretion of the student's adviser and option representative.
7. MS 110 abc (3 units) or APh 110 (2 units) or E 150 abc (3 units), seminar.

Degree of Doctor of Philosophy
Residency. Work toward the degree of Doctor of Philosophy in materials science requires a minimum of three years following the completion of the bachelor's degree or equivalent.

Language Requirement. There is no language requirement for the Ph.D. degree.

Minor. No minor is required for the Ph.D. degree. Students are, however, encouraged to take advanced courses appropriate to their particular interests.

Advising and Thesis Supervision. In the first year, each student shall choose a research adviser who will have primary responsibility for supervising the student's course program and research. The important adviser–advisee relationship requires effort from both parties, and some general expectations are outlined earlier in this section of the catalog. In addition, each student who has passed the candidacy examination shall select a faculty mentor, who will review the student’s progress at least annually.

Admission to or Continuation in Ph.D. Status. To be advanced to candidacy for the doctor's degree the student must satisfy three requirements:

a. Courses. To continue in the graduate program, the student must maintain a B- average for each term. Advancement to candidacy requires the successful completion of the program listed under “Core Courses” above. Alternatively, if the student has taken equivalent courses elsewhere, he or she must prove competency in these areas through an oral examination in each subject.

b. Oral Candidacy Examination. The student will prepare a brief presentation on a topic in his or her proposed area of research. The core of the examination is based on the student's course work and how it is related to the topic of the presentation. This examination should be taken no later than the end of the student's second year of residence.
c. Research Competence. The student must have a doctoral research adviser, and must have completed at least 18 units of MS 200.

Thesis and Final Examination. The candidate is required to take a final oral examination covering the doctoral thesis and its significance in and relation to his or her major field. It will consist of a public thesis seminar and an associated oral examination on the thesis and related fields. This examination will be held at least two weeks after the doctoral thesis has been presented in its final form, and prior to its approval. This examination must be taken at least four weeks before the commencement at which the degree is to be granted.

Subject Minor
A student majoring in another option at the Institute may elect a subject minor in materials science. He or she must obtain approval from the materials science faculty of a course of study containing at least 45 units of advanced courses. Normally a member of the materials science faculty will participate in the candidacy examination in the student's major department.

Mathematics

Aims and Scope of the Graduate Program
The principal aim of the graduate program is to develop the student's ability to do original research in mathematics. Independent and critical thinking is fostered by direct contact with faculty members. (An indication of the current research interests of the faculty is found on page 113.) Faculty advisers help students plan their programs of study leading to a Ph.D. in mathematics. Entering students are advised by the director of the Ph.D. program, who assists them in selecting appropriate courses, depending upon their previous studies.

Course Program
The graduate courses are listed in section five. The three core courses—Ma 110 in analysis, Ma 120 in algebra, and Ma 151 in geometry and topology—are required of all graduate students unless excused by the director of the Ph.D. program. Students are expected to complete these core courses in preparation for the qualifying examinations (see below), usually in the first year. (Entering students are allowed to take a qualifying examination in September or October in order to demonstrate knowledge of one or more of the core areas. By passing the examination, they are excused from taking the corresponding course.) In addition, students are required to complete nine quarters of other advanced mathematics courses, at least two of which are discrete mathematics: combinatorics, logic, complexity, and computability. Under special circumstances (e.g., finishing the degree in three years), exceptions to these requirements may be granted by the director of the Ph.D. program.

Beginning no later than the second year, students will be expected to begin independent research work and will be strongly encouraged to participate in seminars.

Master's Degree
Entering graduate students are normally admitted directly to the Ph.D. program, since the Institute does not offer a regular program in mathematics leading to the master's degree. A master's degree may be awarded in exceptional circumstances either as a terminal degree or preliminary to the Ph.D. Sufficiently advanced undergraduates may be admitted to graduate standing to pursue a master's degree simultaneously with the bachelor's program.

The recipient of a master's degree will be expected to have acquired, in the course of studies as an undergraduate or graduate student, a comprehensive knowledge of the main fields of mathematics comparable to 180 units of work in mathematics with course numbers greater than 90.

The general Institute requirements specify that the recipient of a master's degree must have taken at least 135 units of graduate work as a graduate student at the Institute, including at least 81 units of advanced graduate work in mathematics. This advanced work is interpreted as work with a course number greater than 109 and may include a master's thesis.

Degree of Doctor of Philosophy
Qualifying Examinations. Qualifying examinations in the three core areas—analysis, algebra, and geometry/topology—are offered in October and June. These examinations emphasize mastery of the basic concepts and theorems and the ability to apply them to specific cases. Students are required to take and pass two of the three examinations, and for the one not taken, to complete the corresponding core course with a grade of B or better. Normally, the examination requirements are completed at the end of the first year or the beginning of the second.

Summer Study. Although there are no courses given in the summer, graduate students are expected to carry out studies and research in their chosen area of mathematics. In the summer after the first year, they will work under the guidance of a faculty member to investigate a possible area for their thesis research.

Thesis Adviser. It is expected that by the fall quarter of the second year, students will find a member of the faculty who agrees to serve as their thesis adviser. The progress of all continuing students is assessed by the faculty each fall, and students will consult with their advisers about their progress and planning of their studies and research.
Students receive help and advice not only from their thesis adviser and other faculty mentors, but also whenever needed from the director of the Ph.D. program, the executive officer, and the faculty ombudsman in mathematics. (See also the section Guidelines for Graduate Student Advising on page 233.)

Admission to Candidacy. Before the end of their third year, students are expected to finish the process of applying for admission to candidacy for the Ph.D. degree. This formal step requires completion of the requirements for qualifying examinations and core courses, as well as a satisfactory oral presentation to a committee of faculty members. The presentation will describe both the general area of the student's proposed thesis research and the specific problem or problems to be addressed. A written summary of the presentation, typically 3–10 pages, must be given to the committee members at least one week before the presentation. The student and his or her adviser will arrange the formation of this committee, which will have three members, including the adviser.

Thesis and Final Examination. On or before the first Monday in May of the year in which the degree is to be conferred, candidates for the degree of Doctor of Philosophy must deliver copies of their theses to their advisers, to the Graduate Office, and to the members of the committee that will conduct the final oral examination on the thesis. The examination must be held at least three weeks before the date on which the degree will be conferred and at least two weeks after the delivery of the copies of the thesis.

Subject Minor

Students majoring in other fields may take a subject minor in mathematics. Minor programs must include 54 units of advanced work approved by a representative of the mathematics department, who will ensure that the work represents a concentrated study in one or more of the main fields of mathematics. A special oral examination in the subject minor will be given soon after completion of the minor program.

Travel Grants

Special funding is available to graduate students to attend conferences and workshops in the United States or abroad (please see Bohnenblust Travel Grants on page 250).

Mechanical Engineering

Aims and Scope of the Graduate Program

The aim of the graduate program in mechanical engineering at Caltech is to prepare students for research and professional practice in an era of rapidly advancing interdisciplinary technology. The program combines individual depth of experience and competence in a particular chosen major specialty, and a strong background in the basic and engineering sciences, with laboratory and design experience. It strives to develop professional independence, creativity, leadership, and the capacity for continuing professional and intellectual growth.

Original research in mechanical engineering is an essential component of the graduate program. Independent and critical thinking is encouraged by participation in seminars and by discussions with faculty members. Research groups in mechanical engineering are small, creating an environment where students work closely and collaboratively with the faculty.

The degrees of Master of Science, Mechanical Engineer, and Doctor of Philosophy are offered.

Research areas in mechanical engineering at Caltech include mechanics (including active materials, fracture mechanics, and mechanics of materials), mechanical systems (including control and analysis of dynamic systems, engineering design of electromechanical systems, design theory and methodology, kinematics, optimization, robotics, and structural design), and fluid and thermal systems (including acoustics, cavitation, chemical vapor deposition, combustion, fluid flow, heat and mass transport, multiphase and multicomponent flows, propulsion, and turbulence). Research in these areas is applied to a wide variety of problems including control of aircraft engines, design of vehicle structures, granular flows, hyper-redundant robots, jet noise reduction, locomotion and grasping, medical applications of robotics, navigation algorithms, structured design of micro-electro-mechanical systems (MEMS), thin film deposition, transportation systems, propulsion systems, and rapid assessment of early designs.

Admission

As preparation for advanced study and research, entering graduate students must have a thorough background in undergraduate mathematics, physics, and engineering. An outstanding four-year undergraduate program in mathematics and sciences may be substituted for an undergraduate engineering course, with the approval of the faculty. The qualifications of each applicant will be considered individually, and, after being enrolled, the student will arrange his or her program in consultation with a member of the faculty. In some cases the student may be required to make up undergraduate deficiencies in engineering science courses. However, in every case the student will be urged to take some courses that will broaden his or her understanding of the overall field, as well as courses in the specialty. Most graduate students are also required to take further work in applied mathematics.

Master's Degree

The degree of Master of Science in mechanical engineering provides the student with advanced training beyond the undergraduate fundamentals, and may include an introduction to research. A minimum of 138 units of courses numbered 100 or above, that meet
the distribution requirements listed below, must be passed with a grade of at least C for completion of the master’s degree in mechanical engineering. All units must be taken for grades, except for courses offered only on a pass/fail basis. Each student’s program must be approved by the option representative in mechanical engineering.

Required Program

- **Graduate Mechanical Engineering core**—54 units
 These units should provide a solid base for the student’s engineering interest. The courses may be selected from the following list: Ae/APh/CE/ME 101 abc, Ae/Ge/ME 160 ab, ME 118, ME 119 ab, Ae/ME 120 ab, Ae/AM/CE 102 ab, AM 151 abc or CDS 140 ab; and CDS 110 ab.

- **Mathematics, Engineering, and Research electives**—54 units
 Students who have not taken the equivalent of ACM 100 abc are required to take ACM 100 abc for 36 units. Mechanical engineering students are urged to consider taking 27 units of courses in automation and robotics (ME 115 ab, ME 131, CS/ME 132); engineering design (ME 171); multi-phase flows (ME 202 abc); propulsion (AE 121 abc); experimental methods (AE/APh 104 abc); or any additional courses listed in the Graduate Mechanical Engineering courses. Other courses may also be taken in Ae, AM, ACM, ME, JP, MS, EE, ESE, APh, CDS, CS, ChE, CNS. Students who are considering study beyond the master’s degree are encouraged to take research units, ME 300, up to a maximum of 27.

- **Free Electives**—27 units. These units may be selected from any course with a number of 100 or greater, except that research units may not be included.

- **Engineering Seminar, E 150**—3 units.
 Students admitted for study toward a master’s degree but interested in pursuing subsequent study toward a Ph.D. degree should also read the section below relating to this degree.

Degree of Mechanical Engineer
Greater specialization is provided by work for the engineer’s degree than by work for the master’s. The degree of Mechanical Engineer is considered to be a terminal degree for the student who desires more highly specialized advanced training with less emphasis on research than is appropriate to the degree of Doctor of Philosophy. However, research leading to a thesis is required for both degrees. The student should refer to Institute requirements for the engineer’s degree.

Not less than 55 units of work shall be for research and thesis; the exact number shall be determined by a supervising committee, appointed by the dean of graduate studies. Courses should be closely related to mechanical engineering. The specific courses (to be taken and passed with a grade of C or better by the candidate) will be finally determined by the supervising committee. The courses must include an advanced course in mathematics or applied mathematics, such as AM 125 abc or ACM 101 abc, that is acceptable to the faculty in mechanical engineering. A suitable course program may usually be organized from the more advanced courses listed under Ae, AM, ACM, CDS, JP, ME, and MS.

Degree of Doctor of Philosophy
The Ph.D. degree in mechanical engineering is focused on research, and prepares students to develop new understanding and advanced technology to address contemporary problems. Study and research programs for the Ph.D. degree are individually planned to fit the interests and background of the student. A comprehensive research project resulting in an original contribution to the field documented by a dissertation is required. Institute requirements for the Ph.D. degree are described in the section on degree requirements. Approximately two years of course work are required, and two or more additional years are usually needed for preparation of the dissertation.

Advising and Thesis Supervision. An interim adviser is appointed for each student upon admission to a graduate degree in mechanical engineering. The interim adviser will serve as the primary mentor until the student finds a research adviser.

It is the responsibility of the student to find an academic and research adviser within three terms of graduate residence at Caltech. In consultation with the adviser, the student must form a Ph.D. dissertation supervision committee within one year of graduate residence at Caltech. This committee shall consist of at least three members of the Caltech professorial faculty, with at least two members from the faculty in mechanical engineering. The adviser shall serve as chair of this committee. This committee shall meet as requested by the student. Further, this committee shall meet annually to review progress and to approve the registration of the student beyond the fifth year of graduate residence at Caltech.

The adviser and the thesis supervision committee provide the majority of mentoring to the student. In addition, the option representative and other members of the faculty are always available to provide advice and mentoring on any aspect of research, progress toward the Ph.D., future careers, and other aspects of life in graduate school and as a professional scientist.

Admission to Candidacy. To be recommended for candidacy for the Ph.D. degree in mechanical engineering, the student must, in addition to meeting the general Institute requirements, do the following:

- Obtain the agreement of a professorial faculty member to serve as his or her academic and research adviser and form a three-member dissertation supervision committee with the adviser as the chair.
The requirement of a minimum grade of C will be waived for an advanced course which (i) lists one of the courses in Areas 1, 2, and 3 as a prerequisite, and (ii) is offered only pass/fail.

If the student elects to take a subject minor, these units cannot be used to satisfy any of the Ph.D. degree requirements in mechanical engineering.

The faculty will evaluate the student’s research progress, class performance, adviser’s input, and oral candidacy exam results to determine whether a student will be admitted to candidacy for the Ph.D. degree.

Registration beyond Fifth Year of Graduate Residence. The annual approval of the Ph.D. dissertation supervision committee is necessary for registration beyond the fifth year of graduate residence at Caltech.

Thesis and Final Examination. The thesis examination will be given after the thesis has been formally completed. This examination will be a defense of the doctoral thesis and a test of the candidate’s knowledge in the specialized field of research. The format of the examination will be a public seminar presented by the candidate, with an open question period, followed by a private examination by the examining committee. The examining committee shall consist of at least four Caltech professorial faculty members, at least three of whom shall be from the Division of Engineering and Applied Science, and at least two of whom shall be mechanical engineering faculty members. One member of the committee shall be from outside the student’s area of Ph.D. research. The student’s adviser shall act as chair of the committee.

Subject Minor

A student majoring in another branch of engineering or another division of the Institute may, with the approval of the faculty in mechanical engineering and the faculty in his or her major field, elect mechanical engineering as a subject minor. The program of courses must differ markedly from the major subject of study or research, and must consist of at least 54 units of advanced work. The student must also pass an oral examination that is separate from the examination in the student’s major.

Physics

Aims and Scope of the Graduate Program

The physics option offers a program leading to the degree of Doctor of Philosophy. This program prepares students for careers in scientific research or research combined with teaching, and so its most important part is independent research. Courses are offered that give a broad treatment of both fundamental physics and specialized physics research topics. These are intended both to help a beginning graduate student prepare for research and to broaden an advanced student’s knowledge of physics. Caltech
A Master of Science degree may be awarded upon completion of a program of courses. Students are not normally admitted to work toward the M.S. in physics unless they are also working toward a Ph.D.

Admission

Application forms for admission to graduate standing and for financial assistance can be obtained from the Office of the Dean of Graduate Studies, California Institute of Technology, Pasadena, CA 91125, or can be downloaded from http://www.gradoffice.caltech.edu. Completed applications should reach the Graduate Office by January 15. Applicants are strongly advised to take the Graduate Record Examination (GRE) and the Advanced Physics Test. Information can be obtained from the Educational Testing Service, 20 Nassau Street, Princeton, NJ 08540 (http://www.gre.org).

Placement Examinations

Students admitted to work for an advanced degree in physics are required to take placement examinations, typically given the Monday of general orientation week before the student's first term of graduate study. These informal exams are used as a guide in selecting the proper course of study. The exams cover material in general principles and the ability to apply these to concrete problems, rather than detailed informational knowledge. The results of the placement exams are not formally recorded as a part of the student's record. In cases in which there is a clear basis for ascertaining the status of the entering graduate student, the placement exams may be waived.

Master's Degree

A Master of Science degree in physics will be awarded, upon request, to physics Ph.D. students who have completed the oral and written candidacy examinations. Alternatively, a master's degree will be awarded to any Caltech graduate student in good standing upon satisfactory completion of a program approved by the option representative that fulfills the following requirements:

- **Ph 125 abc** 27 units
 (If this course, or its equivalent, was taken as part of an undergraduate program, it may be replaced by 27 units of any quantum-mechanics-based course.)

Degree of Doctor of Philosophy

In addition to the general Institute requirements for a Ph.D., the particular requirements for a doctorate in physics include admission to candidacy as described below, writing a thesis that describes the results of independent research, and passing a final oral examination based on this thesis and research. Physics graduate students may exercise the pass/fail option on any and all courses taken.

Admission to Candidacy. To be admitted as a candidate for a Ph.D., a student must pass two terms of Physics Seminar (Ph 242), pass written candidacy examinations covering basic physics, satisfy the Advanced Physics requirements described below, and pass an oral candidacy examination. These requirements are designed to ensure that students have an adequate preparation in the basic tools of physics, as well as a broad general knowledge of advanced physics.

Basic Physics Requirement. To be admitted to candidacy, physics students must demonstrate proficiency in all areas of basic physics, including classical mechanics (including continuum mechanics), electricity and magnetism, quantum mechanics, statistical physics, optics, basic mathematical methods of physics, and the physical origin of everyday phenomena. A solid understanding of these fundamental areas of physics is considered essential, so proficiency will be tested by written candidacy examinations.

No specific course work is required for the basic physics requirement, but some students may benefit from taking several of the basic graduate courses, such as Ph 106, Ph 125, and Ph 127. A syllabus describing the exam contents will be available, and students are encouraged to study independently for the exams, rather than taking a heavy load of basic physics courses.

The written exams are offered at frequent intervals, typically once per term, and the separate sections may be taken at different times. This flexible scheduling of the written exams allows students to prepare for the exams while simultaneously learning about research areas, either through advanced courses, reading courses, or participating in a research group.
Advanced Physics Requirement. In addition to demonstrating a proficiency in basic physics, students must also establish a broad understanding of modern physics through study in six of the following eight areas of advanced physics:

1. elementary particle physics
2. nuclear physics
3. atomic/molecular/optical physics
4. condensed-matter physics
5. gravitational physics
6. astrophysics
7. mathematical physics
8. interdisciplinary physics (e.g., biophysics, applied physics, chemical physics)

The advanced physics requirement can be fulfilled by passing exams in the separate areas, or by passing courses. Each area is meant to be covered by the equivalent of a one-term course. There will be a list of course substitutions for each of the areas, which will include courses outside of physics. Other courses may be substituted with permission from the Physics Graduate Committee.

Oral Candidacy Exam. This exam is primarily a test of the candidate's suitability for research in his or her chosen field. The chair of the examination committee will be the professor the student plans to do research with, and normally the student will have already begun research (Ph 172 or Ph 173) on a definite topic with that professor. The examination will cover the student's research work and its relation to the general field of specialization. Before being allowed to take this exam, a student must have satisfied all the other requirements for admission to candidacy.

Research Requirements. There are no specific research requirements, but in general a substantial effort is required to master the techniques in a given field and carry out a significant piece of original research. Students are strongly advised to start doing part-time research as soon as possible, and to carry it on in parallel with formal course work, taking reading and research units (Ph 171–173) prior to being admitted to candidacy. Typically, students continue graduate study and research for about two years after admission to candidacy. Further information can be found at http://www.pma.caltech.edu/information.html.

Scheduling. Although students are encouraged to begin doing research soon after arriving at Caltech, they should also try to complete the requirements for candidacy as quickly as possible before focusing completely on a particular research area. Thus Ph 242 should be taken by all students in their first year of graduate study. The written candidacy exams should be attempted by the end of a student's first year of study, and be passed by the end of the second year. The Advanced Physics requirements should also be completed by the end of the second year, but may be extended into the third year depending on the availability of specific courses. If these deadlines are not met, a student must petition the Physics Graduate Committee before registration for subsequent terms will be allowed.

Advising and Thesis Supervision. After taking the placement exams described above, physics graduate students meet with the chair of the admissions committee to decide on a first-year course schedule. At this time it is appropriate for students, especially those admitted with GRAs, to consult with the admissions chair, the option representative, the executive officer, and/or individual faculty members to select a tentative research group, if this hasn't already occurred over the summer. At any time, a student may consult with the option representative concerning such matters as advising and switching research groups. When the student is ready to form his or her candidacy committee, this is done in consultation with the executive officer. This committee, besides examining the student's knowledge of his or her chosen field, will consider the appropriateness and scope of the proposed thesis research. Supervision of the thesis research is the responsibility of the thesis adviser, and the student should maintain close contact with his or her adviser. In some circumstances, such as interdisciplinary work with an adviser from another department, a special committee may be formed to follow the progress of the research as well.

The Minor. A minor is not required, but a student may elect to pursue a minor in another option.

Language Requirements. There are no language requirements for a Ph.D. in physics.

Thesis and Final Examination. A final oral examination will be given not less than two weeks after the thesis has been presented in final form. This examination will cover the thesis topic and its relation to the general body of knowledge of physics. The candidate is responsible for completing the thesis early enough to allow the fulfillment of all division and Institute requirements, with due regard for possible scheduling conflicts.

Subject Minor

Students desiring a subject minor in physics should discuss their proposed program with the chair of the Physics Graduate Committee. Forty-five units are required for approval of a subject minor in physics. Physics courses with numbers over 100 will be allowed for the subject minor. At least 18 of the 45 units must be chosen from the physics electives list (see list under Master's Degree in Physics), excluding Ph 129 and any specific courses in physics required for the student's major program. An oral exam may be required by the Physics Graduate Committee. This exam will include both academic topics and topics on current physics research areas. The oral exam may be waived if at least one term of Ph 242 has been taken successfully, or if all 45 units are in letter-graded (not pass/fail) courses.
Social Science

Aims and Scope of the Graduate Program

Over the past two decades, it has become ever more apparent that many of the most serious problems faced by the nation have both an economic and a political component. Graduate education, however, has remained largely compartmentalized, with most programs producing students who, while well trained in economics or in political science, are not trained in both, and are largely ignorant about neighboring disciplines such as anthropology, history, neuroscience, and psychology. The Caltech Ph.D. program in social science is designed to produce scholars who are well grounded in the theoretical perspectives, the quantitative techniques, and the experimental methods of economics and of political science. Students also have the opportunity to apply these tools to become experts in quantitative history, law, anthropology, psychology, and neuroscience. In addition to providing students with a solid foundation in the underlying disciplines, the program has a substantial policy component that brings institutional design—an analysis that merges work in theory, experimentation, and history—to policy studies in a way that is done at no other institution.

Most graduates of the program work in departments of economics, political science, public policy, and in schools of business at major universities. A smaller number have taken positions as economic analysts, program evaluators, and planners for government or private business. In addition, a special program enables students to obtain joint degrees in social science from Caltech and in law from cooperating professional schools. Graduates of this joint program are well qualified to teach in law schools, practice law, and hold other positions in academia and government.

Master’s Degree

Entering graduate students are admitted to the Ph.D. program. The M.S. degree is awarded in exceptional cases. Of the 135 units of graduate work required by Institute regulations, at least 81 units should be advanced work in social science. Students petitioning for an M.S. are required to take an examination.

Admission

The requirements for admission to the graduate program in social science are in the field of mathematics. Entering students are expected to have completed 1) courses in calculus at the levels of Ma 2 ab; 2) a course in linear algebra; and 3) a course in mathematical statistics. Students who have not completed some of these courses may be admitted with the understanding that they will complete these mathematical requirements after entering the program. Entering students must provide Graduate Record Examination scores and may be asked to take placement examinations in mathematics to determine their level of achievement. The extent of remedial work, if any, will be determined by the option’s director of graduate studies (DGS) in consultation with the student.

Students are also expected to take any additional mathematics courses relevant to their research. For example, research in many areas of social science requires mathematical competence at the level of Ma 108.

Course Program

The Ph.D. program is designed to enable students to complete the requirements in four or five years (depending on their background, interests, and motivation).

During the first year of residence, core requirements consist of four three-quarter courses: SS 201 abc (analytical foundations of social science); SS 202 abc (political theory); SS 205 abc (foundations of economics); and SS 222 abc (econometrics). Successful progress during the first three quarters of residency requires that the student complete a minimum of 36 units of work in each quarter with an average grade of B or better, and with no grade less than C. A student is expected to complete these courses by the end of the first year of study. The DGS will review each student's progress at the end of every quarter during the first year and bring deficiencies to the attention of the student and the faculty at large. While these core courses are not required for a degree, the student bears the burden of demonstrating competence in each area and must show that omission from his or her program of one or more of these courses will not impede normal progress toward the degree. A decision to omit a course requires written approval by the DGS and should be made in consultation with the DGS and the relevant faculty.

At the end of the third quarter (of the first year), all students must complete a minimum of 36 units each quarter (with an average grade of B or better). Some courses are coordinated three-quarter “workshop” sequences in which later quarters presume understanding of material from the earlier quarters, and which require students to write a paper in each quarter. Workshop sequences are generally taught in experimental economics, applied economics, economic theory, political science, and quantitative history. Students may take an 18-unit SS 300 supervised research course in the spring quarter (but not in other quarters). Courses should be chosen in consultation with the
DGS and those faculty members who are working in the area in which the student wishes to do his or her thesis research. Students should bear in mind that an unusual strength of the program is its multidisciplinary nature, so they are encouraged to sample a variety of fields. Independent reading and study courses do not count toward the 36 units per quarter requirement except for 18 units in the spring quarter.

Students must complete one paper, which can be co-authored, by the end of the spring term. This paper will be evaluated by a committee of two relevant faculty members appointed by the DGS no later than the beginning of the spring term. Students are strongly encouraged to meet with their committee during the writing of the paper. If either of the faculty do not believe that the student has satisfactorily completed the paper requirement, the matter will be considered by the full faculty.

Organization of Thesis Committee

While the DGS is responsible for each student's general academic welfare throughout the duration of the program, a student should begin organizing his or her thesis committee. A student should select a (thesis) adviser (that is, a committee chair) at the beginning of the third year. The adviser must be a member of the social science faculty. The choice of an adviser is important since the adviser is the primary judge of a student's progress in research and bears principal responsibility for the quality of that research. The adviser is also charged with the administrative responsibility for organizing the remainder of the committee. Thus a student should select an adviser whose own work is closely related to his or her research interests. It is, however, always possible to change advisers if the student's research shifts focus. Since general supervision over the direction and progress of the dissertation rests with the adviser, the student should raise with the adviser such matters as the design of the dissertation, the planned content of each portion of the dissertation, or any major changes in the topic. This rule also applies to discussions about the acceptability of completed portions of the dissertation prior to the oral defense. Should other committee members need to be consulted about any of these issues, the adviser is the appropriate party to initiate such a consultation. The student is expected to discuss the substantive content of the dissertation with the remainder of the committee and to keep the committee informed of his or her progress on a regular basis. The student is, of course, free to discuss substantive issues with any member of the faculty.

A second committee member (also a member of the social science faculty) should also be chosen no later than the beginning of the third year. The second member should be able to evaluate the entire dissertation and vouch for its quality. For that reason, a second committee member should be chosen as soon as possible.

Because of Caltech's unique multidisciplinary program in social science, a student often selects topics that are broader than the specializations of individual faculty members. In such cases, the student is encouraged to select the adviser and the second committee member early in the process of dissertation research, and possibly to choose faculty members from different fields—or even disciplines. If the student and adviser believe that additional committee member(s) from outside the social science faculty are necessary and appropriate, the student must petition the DGS. The option bears no financial obligation to ensure any outside member's appearance at the thesis defense.

In the third year, students must take at least 18 units of coursework (other than SS 300 supervised research) in each of the fall and winter quarters. Spring quarter consists of 9 units of coursework and a 27-unit SS 300 research workshop. In addition, students must take at least one SS 280 course, designed to expose students to influential writings in social science not typically covered in the SS 200 courses.

A final requirement of the third year, during spring term, is the writing and presentation of a third-year paper (similar to the second-year paper but more advanced). One of the second- and third-year papers must be solo-authored. Note that the faculty will expect the third-year paper to be a substantial improvement in quality over the second-year paper. It may also lead naturally to a dissertation.

During the third quarter of the third year, and under any conditions at least two quarters before completion of the dissertation, a student, in consultation with his or her adviser, should select a third committee member. This choice should be based on the content of the ongoing dissertation research, and might well be made for the purpose of providing specialized help (perhaps in theory, econometrics, institutions, experimental methods, or history). The third member is not generally responsible for the full breadth of research covered by the dissertation; in fact, the third member typically offers an outside perspective which is similar to the perspectives of most of the student’s likely future colleagues and readers.

Progress Review Leading to Candidacy

After the completion of the third-year paper presentation, the student's overall performance and research potential of the past three years will be evaluated by the social science faculty. This evaluation takes into account grades from coursework, performance on preliminary examinations, and the quality of the second- and third-year papers. Students should be technically skilled enough (as evaluated by grades and exams) to do original research, and creative and articulate enough to ask and answer interesting scientific questions and describe those questions and answers articulately. If this evaluation is favorable, and an option faculty member has agreed to supervise the student's thesis research, the student will be
When the student is ready to schedule an oral dissertation proposal seminar or defense, he or she must provide a written copy of the dissertation to the DGS at least two weeks prior to the planned seminar date. The DGS will insure that the thesis meets minimal standards for successful completion of the Ph.D. degree and will also distribute copies to all members of the dissertation committee.

The dissertation is expected to represent publishable, original research with a coherent theme. To that end, the dissertation should have some unifying principle and descriptive title. Moreover, successful completion implies that the faculty has certified that the candidate is a trained, professionally knowledgeable, and potentially productive scholar in his or her chosen area of work. While exact quantification is impossible, a thesis should represent a major part of a publishable book, or two or three articles that are acceptable to first-rate professional journals.

Subject Minor
Graduate students taking social science as a subject minor shall complete a program of not less than 45 units in advanced courses in a coherent program of study that has been approved by the DGS.
Courses

Courses numbered below 100 are taken primarily by undergraduate students. Those numbered from 100 to 199 are taken by both undergraduates and graduates, and those numbered 200 and above are taken primarily by graduate students.

The school year is divided into three terms. The number of units assigned in any term to any subject represents the number of hours spent in class, in laboratory, and estimated to be spent in preparation per week. In the following schedules, figures in parentheses denote hours in class (first figure), hours in laboratory (second figure), and hours of outside preparation (third figure).

At the end of the seventh week of each term, a list of courses to be offered the following term is published by the Registrar's Office. On the day of registration (see Academic Calendar), an updated and revised course schedule is published announcing the courses, class hours, and room assignments for the term. Students may not schedule two courses taught at the same time.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae</td>
<td>Aeronautics</td>
</tr>
<tr>
<td>An</td>
<td>Anthropology</td>
</tr>
<tr>
<td>ACM</td>
<td>Applied and Computational</td>
</tr>
<tr>
<td>AM</td>
<td>Applied Mechanics</td>
</tr>
<tr>
<td>Art</td>
<td>Art History</td>
</tr>
<tr>
<td>Ay</td>
<td>Astrophysics</td>
</tr>
<tr>
<td>BMB</td>
<td>Biochemistry and Molecular</td>
</tr>
<tr>
<td>BE</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Bi</td>
<td>Biology</td>
</tr>
<tr>
<td>BEM</td>
<td>Business Economics and</td>
</tr>
<tr>
<td>ChE</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Ch</td>
<td>Chemistry</td>
</tr>
<tr>
<td>CE</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>CNS</td>
<td>Computation and Neural</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science</td>
</tr>
<tr>
<td>CDS</td>
<td>Control and Dynamical</td>
</tr>
<tr>
<td>Ec</td>
<td>Economics</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>E</td>
<td>Engineering</td>
</tr>
<tr>
<td>En</td>
<td>English</td>
</tr>
<tr>
<td>ESL</td>
<td>English As a Second Language</td>
</tr>
<tr>
<td>ESE</td>
<td>Environmental Science and</td>
</tr>
<tr>
<td>Ge</td>
<td>Geological and Planetary</td>
</tr>
<tr>
<td>H</td>
<td>History</td>
</tr>
<tr>
<td>HPS</td>
<td>History and Philosophy of</td>
</tr>
<tr>
<td>Hum</td>
<td>Humanities</td>
</tr>
<tr>
<td>ISP</td>
<td>Independent Studies</td>
</tr>
<tr>
<td>L</td>
<td>Languages</td>
</tr>
<tr>
<td>Law</td>
<td>Law</td>
</tr>
<tr>
<td>MS</td>
<td>Materials Science</td>
</tr>
<tr>
<td>Ma</td>
<td>Mathematics</td>
</tr>
<tr>
<td>ME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Mu</td>
<td>Music</td>
</tr>
<tr>
<td>PA</td>
<td>Performance and Activities</td>
</tr>
<tr>
<td>PI</td>
<td>Philosophy</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education</td>
</tr>
<tr>
<td>Ph</td>
<td>Physics</td>
</tr>
<tr>
<td>PS</td>
<td>Political Science</td>
</tr>
<tr>
<td>Psy</td>
<td>Psychology</td>
</tr>
<tr>
<td>SS</td>
<td>Social Science</td>
</tr>
</tbody>
</table>
Ae 100. Research in Aeronautics. Units to be arranged in accordance with work accomplished. Open to suitably qualified undergraduates and first-year graduate students under the direction of the staff. Credit is based on the satisfactory completion of a substantive research report, which must be approved by the Ae 100 adviser and by the option representative.

Ae/APh/CE/ME 101 abc. Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: AE 100 or ACM 95/100 or equivalent (may be taken concurrently). Fundamentals of fluid mechanics. Microscopic and macroscopic properties of liquids and gases; the continuum hypothesis; review of thermodynamics; general equations of motion; kinematics; stresses; constitutive relations; vorticity; circulation; Bernoulli’s equation; potential flow; thin-airfoil theory; surface gravity waves; buoyancy-driven flows; rotating flows; viscous creeping flow; viscous boundary layers; introduction to stability and turbulence; quasi one-dimensional compressible flow; shock waves; unsteady compressible flow; acoustics. Instructor: Colonius.

Ae/APh/CE/ME 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6); first, second, third terms. Prerequisite: ME 35 abc or equivalent. Static and dynamic stress analysis. Two- and three-dimensional theory of stressed elastic solids. Analysis of structural elements with applications in a variety of fields. Variational theorems and approximate solutions, finite elements. A variety of special topics will be discussed in the third term such as, but not limited to, elastic stability, wave propagation, and introductory fracture mechanics. Instructor: Bhattacharya.

Ae 103 abc. Propulsion, Dynamics, and Control of Aircraft. 9 units (3-0-6); first, second, third terms. Prerequisites: ACM 95/100 abc or equivalent (may be taken concurrently); basic fluid mechanics; CDS 110 a or equivalent for third term only. First term: elementary airfoil and wing theory, basic compressible flow, and performance evaluations (range, climb, turning). Second term: combustion and propulsion, with an emphasis on gas turbines, but also including propellers, ram/scramjets, PDEs, and rockets. Third term: aerodynamic stability derivatives, control surfaces, small amplitude dynamical motions, and application of classical and modern control theory to feedback control of rigid aircraft. Not offered 2005–06.

Ae/APh 104 abc. Experimental Methods. 9 units (3-0-6) first term; (1-3-5) second, third terms. Prerequisites: ACM 95/100 abc or equivalent (may be taken concurrently). Lectures on experiment design and implementation. Measurement methods, transducer fundamentals, instrumentation, optical systems, signal processing, noise theory, analog and digital electronic fundamentals, with data acquisition and processing systems. Experiments (second and third terms) in solid and fluid mechanics with emphasis on current research methods. Instructor: Ravichandran.

Ae 105 abc. Aerospace Engineering. 9 units (3-0-6); first, second, third terms. Prerequisites: AE 17 or ME 18 and ME 19 or equivalent. Ae 101 and 102 may be taken concurrently. (a) Fundamentals of aerospace engineering and mechanics, launch vehicles and systems, rocket and space propulsion fundamentals, orbital mechanics and astrodynamics, trajectory and orbit design and maintenance, launch ascent and planetary reentry aerodynamics. (b) Spacecraft mechanical, structural, and thermal design; power in space; space environment and survivability; spacecraft and payload design; communications. (c) Space mission analysis and design, space logistics and reliability, mission and lifecycle cost analysis, and space systems integration. Student team projects focusing on a mission design study during third term. Not offered 2005–06.

CE/Ae/AM 108 abc. Computational Mechanics. 9 units (3-0-6). For course description, see Civil Engineering.

Ae 115 ab. Spacecraft Navigation. 9 units (3-0-6); second, third terms. Prerequisite: CDS 110 a. This course will survey all aspects of modern spacecraft navigation, including astrodynamics, tracking systems for both low-Earth and deep-space applications (including the Global Positioning System and the Deep Space Network observables), and the statistical orbit determination problem (in both the batch and sequential Kalman filter implementations). The course will describe some of the scientific applications directly derived from precision orbital knowledge, such as planetary gravity field and topography modeling. Numerous examples drawn from actual missions as navigated at JPL will be discussed. Instructor: Watkins.

Ae/ME 120 ab. Combustion Fundamentals. 9 units (3-0-6); second, third terms. Prerequisite: ME 119 a or equivalent. The course will cover thermodynamics of pure substances and mixtures, equations of state, chemical equilibrium, chemical kinetics, combustion chemistry, transport phenomena, and the governing equations for multicomponent gas mixtures. Topics will be chosen from non-premixed and premixed flames, the fluid mechanics of laminar flames, flame mechanisms of combustion-generated pollutants, and numerical simulations of multi-component reacting flows. Not offered 2005–06.

Ae 121 abc. Space Propulsion. 9 units (3-0-6); each term. Open to all graduate students and to seniors with instructor’s permission. Modern aspects of rocket, electrical, and nuclear propulsion systems and the principles of their application to lifting, ballistic, and spaceflight trajectories. Combustion and burning characteristics of solid and liquid propellants, liquid–propellant fuel systems, and combustion instability. Fundamentals of electric propulsion including ion thrusters, MHD, Hall effect, and arcjets. Introduction to spacecraft station keeping, stability, and control. Instructor: Polk.

Ae 204 ab. Technical Fluid Mechanics. 9 units (3-0-6); first, second terms. Prerequisite: Ae/APh/CE/ME 101 abc or equivalent. External and internal flow problems encountered in engineering, for which only empirical methods exist. Turbulent shear flow, separation, transition, three-dimensional and nonsteady effects. Basis of engineering practice in the design of devices such as mixers, ejectors, diffusers, and control valves. Studies of flow-induced oscillations, wind effects on structures, vehicle aerodynamics. Instructors: Dimotakis, Gharib.

Ae 208 abc. Fluid Mechanics Seminar. 1 unit (1-0-0); first, second, third terms. A seminar course in fluid mechanics. Weekly lectures on current developments are presented by staff members, graduate students, and visiting scientists and engineers. Graded pass/fail only. Instructor: Shepherd.

Note: The following courses, with numbers greater than 209, are one-, two-, or three- term courses offered to interested students. Depending on conditions, some of the courses may be taught as tutorials or reading courses, while others may be conducted more formally.

Ae/AM/MS/ME 213. Mechanics and Materials Aspects of Fracture. 9 units (3-0-6); third term. Prerequisites: Ae/AM/CE/ME 102 abc (concurrently) or equivalent and instructor’s permission. Analytical and experimental techniques in the study of fracture in metallic and nonmetallic solids. Mechanics of brittle and ductile fracture; connections between the continuum descriptions of fracture and micromechanisms. Discussion of elastic-plastic fracture analysis and fracture criteria. Special topics include fracture by cleavage, void growth, rate sensitivity, crack deflection and toughening mechanisms, as well as fracture of nontraditional materials. Fatigue crack growth and life prediction techniques will also be discussed. In addition, “dynamic” stress wave dominated, failure initiation growth and arrest phenomena will be covered. This will include traditional dynamic fracture considerations as well as discussions of failure by adiabatic shear localization. Instructor: Bouchaud.

Ae/AM/ME 215. Dynamic Behavior of Materials. 9 units (3-0-6); third term. Prerequisites: ACM 100 abc or AM 125 abc; Ae/AM/CE/ME 102 abc. Fundamentals of theory of wave propagation: plane waves, wave guides, dispersion relations; dynamic plasticity, adiabatic shear banding; dynamic fracture; shock waves, equation of state. Not offered 2005–06.

Ae/AM/ME 223. Plasticity. 9 units (3-0-6); third term. Prerequisite: Ae/AM/CE/ME 102 abc or instructor’s permission. Theory of dislocations in crystalline media. Characteristics of dislocations and their influence on the mechanical behavior in various crystal structures. Application of dislocation theory to single and polycrystal plasticity. Theory of the inelastic behavior of materials with negligible time effects. Experimental background for metals and fundamental postulates for plastic stress-strain relations. Variational principles for incremental plastic-elastic problems, uniqueness. Upper and lower bound theorems of limit analysis and shakedown. Slip line theory and applications. Additional topics may include soils, creep and rate-sensitive effects in metals, the thermodynamics of plastic deformation, and experimental methods in plasticity. Not offered 2005–06.

Ae/AM/ME 225. Special Topics in Solid Mechanics. Units to be arranged. Subject matter will change from term to term depending upon staff and student interest but may include such topics as structural dynamics; aeroelasticity; thermal stress; mechanics of inelastic and composite materials; and nonlinear problems. Not offered 2005–06.

Ae 234. Hypersonic Aerodynamics. 9 units (3–0-6); third term. Prerequisite: Ae/APh/CE/ME 101 abc or equivalent, AM 125 abc, or instructor’s permission. An advanced course dealing with aerodynamic problems of flight at hypersonic speeds. Topics are selected from hypersonic small-disturbance theory, blunt-body theory, boundary layers and shock waves in real gases, heat and mass transfer, testing facilities and experiment. Not offered 2005–06.

Ae 236. Separated Flows. 9 units (3–0-6); third term. Topics include a review of boundary-layer theory, Kirchhoff model of separation, triple-deck theory, Sychev model, effect of turbulence on separation, location of separation points in various practical applications, classes of three-dimensionality, separation in three-dimensional steady flow, topological structure of steady three-dimensional separation, open separation, local solutions, and shock-wave boundary-layer interaction. Not offered 2005–06.

Ae 237 ab. Nonsteady Gasdynamics. 9 units (3–0-6); second term. (a) Dynamics of shock waves, expansion waves, and related discontinuities in gases. Adiabatic phase-transformation waves. Interaction of waves in one- and two-dimensional flows. Boundary layers and shock structure. Applications and shock tube techniques. (b) Shock and detonation waves in solids and liquids. Equations of state for hydrodynamic computations in solids, liquids, and explosive reaction products. CJ and

Ae 239 ab. Turbulence. 9 units (3–0–6); second, third terms. Prerequisites: Ae/APh/CE/ME 101 abc; AM 125 abc or ACM 101 abc; Ae 201 ab (may be taken concurrently). Homogeneous isotropic turbulence and structure of fine scales. Reynolds-averaged equations and the problem of closure. Physical and spectral models. Subgridscale modeling. Structure of scalar fields, fractals, and irregular level sets. Turbulent mixing. Not offered 2005–06.

Ae 240. Special Topics in Fluid Mechanics. Units to be arranged; first term. Subject matter changes depending upon staff and student interest. Not offered 2005–06.

Ae 241. Special Topics in Experimental Fluid and Solid Mechanics. 9 units (3–0–6). Prerequisites: Ae/APh/CE/ME 101 abc or equivalent or instructor's permission. Selected topics, to be announced, subject matter depending on current interests. Not offered 2005–06.

BE/Ae 243. Biological Flows: Transport and Circulatory Systems. 9 units (3–0–6). For course description, see Bioengineering.

Ae/Ge/ME 266 ab. Dynamic Fracture and Frictional Faulting. 9 units (3–0–6); first, second terms. Prerequisites: Ae/AM/CE/ME 102 abc or Ae/Ge/ME 160 ab or instructor's permission. Introduction to elastodynamics and waves in solids. Dynamic fracture theory, energy concepts, cohesive zone models. Friction laws, nucleation of frictional instabilities, dynamic rupture of frictional interfaces. Radiation from moving cracks. Thermal effects during dynamic fracture and faulting. Crack branching and faulting along nonplanar interfaces. Related dynamic phenomena, such as adiabatic shear localization. Applications to engineering phenomena and physics and mechanics of earthquakes. Not offered 2005–06.

ANTHROPOLOGY

An 22. Introduction to Sociocultural Anthropology. 9 units (3–0–6); first term. The course will introduce students to the concept of culture, including systems of belief, psychology, healing, and ritual from a cross-cultural perspective. It will also cover topics such as ecological adaptation, social and political organization, kinship, family structure, and economics from a cross-cultural and evolutionary perspective. The course will offer a substantial section on cultural change that will include discussions of globalization, development, and urbanization. Throughout the course, examples will be taken from ethnographic sources. While many of the examples in this course will be from relatively exotic places, parallels to the lives of those in contemporary developed societies will also be discussed. Not offered 2005–06.

An 23. Human Evolution. 9 units (3–0–6); first term. An exploration of how humans evolved, and the implications of human evolution for understanding the human condition. The course surveys natural selection theory; basic Mendelian, population, and molecular genetics; systems; nonhuman primate ecology, behavior, and cognition; the human fossil record; the emergence of modern human morphology and behavior; patterns of modern human genetic variation; the human life cycle; human behavioral ecology; evolutionary psychology; and gene/culture coevolution theory. Instructor: Manson.

An 101. Selected Topics in Anthropology. 9 units (3–0–6). Offered by announcement. Instructor: Staff.

An 102. Culture, Cognition, and Language. 9 units (3–0–6); third term. Prerequisite: An 22. This course explores the evidence both in favor of and against the well-known Sapir-Whorf hypothesis of linguistic relativity and determinism, which appears to be making a comeback. Topics covered include color cognition and language, spatial cognition and language, child language across cultures, cognition and language among the deaf, and language dysfunction across cultures, including the aphasias and semantic category deficits. Instructor: Staff.

An 103. Biology of Women. 9 units (3–0–6); third term. An evolutionary perspective on the biology of women, encompassing life events from conception to old age. This course will focus on biological sex differentiation, menarche, reproduction and lactation, and menopause in light of current research on genetics, hormones, development, and culture. Topics include sexuality, PMS, and pregnancy sickness. Instructor: Abrams.
An 104. Primate Behavior. 9 units (3–0–6); first term. This course examines the behavior patterns of nonhuman primates (apes, monkeys, and prosimians), and theory-driven explanations of these patterns. Topics include evolutionary theories of social behavior (e.g., kin selection, reciprocity, and sexual selection); dominance hierarchies; conflict and reconciliation; coalitions, alliances and “friendships”; mate competition and mate choice; parental behavior; communication, the evolution of intelligence; social learning; tool use; and cultural transmission. Implications of these findings for understanding human behavior are briefly covered. Instructor: Manson.

An 124. Peoples and Cultures of Latin America. 9 units (3–0–6); third term. This course introduces and explores some of the main themes in the anthropology of Latin America. After a brief discussion of geography, it will discuss the archaeology of state-level societies, such as the Inca, and foragers, such as Amazonian groups. In both cases, it will link modern descendants of these populations with the archaeological record and known history. From this base, the course will move on to cover population, religion, social organization, race, and economies in contemporary societies, with numerous ethnographic examples. This course seeks to explore differences as well as present commonalities within the region. Not offered 2005–06.

APPLIED AND COMPUTATIONAL MATHEMATICS

ACM 100 abc. Introductory Methods of Applied Mathematics. 12 units (4–0–8); first, second, third terms. Prerequisites: Ma 1 abc, Ma 2 ab, or equivalents. Introduction to functions of a complex variable; linear ordinary differential equations; special functions; eigenfunction expansions; integral transforms; linear partial differential equations and boundary value problems. Instructors: Meiron, Pierce.

ACM 101 abc. Methods of Applied Mathematics I. 9 units (3–0–6); first, second, third terms. Prerequisite: ACM 95/100 abc. Analytical methods for the formulation and solution of initial and boundary value problems for ordinary and partial differential equations. Techniques include the use of complex variables, generalized eigenfunction expansions, transform methods and applied spectral theory, linear operators, nonlinear methods, asymptotic and approximate methods, Weierstrass, and integral equations. Instructors: Meiron, Hou.

ACM 104. Linear Algebra. 9 units (3–0–6); second term. Prerequisite: ACM 100 abc or instructor’s permission. Vector spaces, bases, Gram-Schmidt, linear maps and matrices, linear functionals, the transposed matrix and duality, kernel, image and rank, invertibility, triangularization, determinants and multilinear forms, powers of matrices and difference equations, the exponential of a matrix and ODEs, eigenvalues, Gershgorin’s disc theorem, eigenspaces, SVD, polar decomposition. Nilpotent-semisimple decomposition and the Jordan normal form.

ACM 105. Applied Real and Functional Analysis. 9 units (3–0–6); first term. Prerequisite: ACM 100 abc or instructor’s permission. The Lebesgue integral on the line, general measure and integration theory, convergence theorems, Fubini, Tonelli, the Lebesgue integral in n dimensions and the transformation theorem, Lp spaces, convolution, Fourier transform and Sobolev spaces with application to PDEs, the convolution theorem, Friedrich’s mollifiers, dense subspaces and approximation, normed vector spaces, completeness, Banach spaces, linear operators, the Baire, Banach-Steinhaus, open mapping and closed graph theorems with applications to differential and integral equations, dual spaces, weak convergence and weak solvability theory of boundary value problems, spectral theory of compact operators. Instructor: Leonard.

ACM 106 abc. Introductory Methods of Computational Mathematics. 9 units (3–0–6); first, second, third terms. Prerequisites: Ma 1 abc, Ma 2 ab, ACM 95/100 abc or equivalent. The sequence covers the introductory methods in both theory and implementation of numerical linear algebra, approximation theory, ordinary differential equations, and partial differential equations. The course covers methods such as direct and iterative solution of large linear systems; eigenvalue and vector computations; function minimization; nonlinear algebraic solvers; preconditioning; time-frequency transforms (Fourier, wavelet, etc.); root finding; data fitting; interpolation and approximation of functions; numerical quadrature; numerical integration of systems of ODEs (initial and boundary value problems); finite difference, element, and volume methods for PDEs; level set methods. Programming is a significant part of the course. Instructors: Bruno, Ying.

ACM 113. Introduction to Optimization. 9 units (3–0–6); first term. Prerequisites: ACM 95/100 abc, ACM 104 or equivalent, or instructor’s permission. Unconstrained optimization: optimality conditions, line search and trust region methods, properties of steepest descent, conjugate gradient, Newton and quasi-Newton methods. Linear programming: optimality conditions, the simplex method, primal-dual interior-point methods. Nonlinear programming: Lagrange multipliers, optimality conditions, logarithmic barrier methods, quadratic penalty methods, augmented Lagrangian methods. Integer programming: cutting plane methods, branch and bound methods, complexity theory, NP complete problems. Instructor: Candes.

ACM/CS 114 ab. Parallel Algorithms for Scientific Applications. 9 units (3–0–6); second, third terms. Prerequisites: ACM 106 or equivalent. Introduction to parallel program design for numerically intensive scientific applications. First term: parallel programming methods; distributed-memory model with message passing using the message passing

ACM/EE 116. Introduction to Stochastic Processes and Modeling. 9 units (3-0-6); first term. Prerequisite: Ma 2 ab or instructor’s permission. Introduction to fundamental ideas and techniques of stochastic analysis and modeling. Random variables, expectation and conditional expectation, joint distributions, covariance, moment generating function, central limit theorem, weak and strong laws of large numbers, discrete time stochastic processes, stationarity, power spectral densities and the Wiener-Khinchine theorem, Gaussian processes, Poisson processes, Brownian motion. The course develops applications in selected areas such as signal processing (Wiener filter), information theory, genetics, queuing and waiting line theory, and finance. Instructors: Candes, Owhadi.

ACM 126 ab. Wavelets and Modern Signal Processing. 9 units (3-0-6); second, third terms. Prerequisites: ACM 104, ACM 105 or under -graduate equivalent, or instructor’s permission. The aim is to cover the interactions existing between applied mathematics, namely applied and computational harmonic analysis, approximation theory, etc., and statistics and signal processing. The Fourier transform: the continuous Fourier transform, the discrete Fourier transform, FFT, time-frequency analysis, short-time Fourier transform. The wavelet transform: the continuous wavelet transform, discrete wavelet transforms, and orthogonal bases of wavelets. Statistical estimation. Denoising by linear filtering. Inverse problems. Approximation theory: linear/nonlinear approximation and applications to data compression. Wavelets and algorithms: fast wavelet transforms, wavelet packets, cosine packets, best orthogonal bases matching pursuit, basis pursuit. Data compression. Nonlinear estimation. Topics in stochastic processes. Topics in numerical analysis, e.g., multigrids and fast solvers. Not offered 2005–06.

Ma/ACM 142 abc. Ordinary and Partial Differential Equations. 9 units (3-0-6). For course description, see Mathematics.

Ma/ACM 144 ab. Probability. 9 units (3-0-6). For course description, see Mathematics.

ACM 151 ab. Asymptotic and Perturbation Methods. 9 units (3-0-6); first, second terms. Prerequisite: ACM 101 abc or equivalent, may be taken concurrently with instructor’s permission. Approximation methods for formulating and solving applied problems, with examples taken from various fields of science. Applications to various linear and nonlinear ordinary and partial differential equations. Singular and multiscale perturbation techniques, boundary-layer theory, coordinate straining, a method of averaging. Bifurcation theory, amplitude equations, and nonlinear stability. Not offered 2005–06.

ACM 190. Reading and Independent Study. Units by arrangement. Graded pass/fail only.

ACM 210 ab. Numerical Methods for PDEs. 9 units (3-0-6); second, third terms. Prerequisite: ACM 106 or instructor’s permission. Finite difference and finite volume methods for hyperbolic problems. Stability and error analysis of nonoscillatory numerical schemes: i) linear convection: Lax equivalence theorem, consistency, stability, convergence, truncation error, CFL condition, Fourier stability analysis, von Neumann condition, maximum principle, amplitude and phase errors, group velocity, modified equation analysis, Fourier and eigenvalue stability of systems, spectra and pseudospectra of nonnormal matrices, Kreiss matrix theorem, boundary condition analysis, group velocity and GKS normal mode analysis; ii) conservation laws: weak solutions,
APPLIED MECHANICS

Ae/AM/CE/ME 102 abc. Mechanics of Structures and Solids. 9 units (3–0–6). For course description, see Aeronautics.

CE/Ae/AM 108 abc. Computational Mechanics. 9 units (3–0–6). For course description, see Civil Engineering.

AM 125 abc. Engineering Mathematical Principles. 9 units (3–0–6); first, second, third terms. Prerequisite: ACM 95/100 abc. Topics include linear spaces, operators and matrices, integral equations, variational principles, ordinary and partial differential equations, stability, perturbation theory. Applications to problems in engineering and science are stressed. Instructor: Beck.

AM 151 abc. Dynamics and Vibrations. 9 units (3–0–6); first, second, third terms. Prerequisite: ACM 95/100 abc or instructor's permission. Variational principles and Lagrange's equations. Response of mechanical systems to periodic, transient, and random excitation. Free and forced response of discrete and continuous systems. Approximate analysis methods. Introduction to nonlinear oscillation theory and stability. Instructor: Staff.

AM 175 abc. Advanced Dynamics. 9 units (3–0–6); first, second, third terms. Prerequisites: AM 125 abc and AM 151 abc or equivalents. Topics include linear and nonlinear vibrations of discrete and continuous systems, stability and control of dynamical systems, and stochastic processes with applications to random vibrations. Not offered 2005–06.

AM 176 abc. Nonlinear Dynamical Systems and Chaos. 9 units (3–0–6); first, second, third terms. Prerequisite: AM 125 abc or instructor's permission. Basic ideas from dynamical systems theory. One-dimensional maps, circle maps, rotation numbers, kneading theory, strange attractors, structural stability, hyperbolicity, symbolic dynamics, invariant manifolds, Poincaré maps, the Smale horseshoe. Techniques of local bifurcation theory are developed with emphasis on center manifolds and normal forms, global bifurcations, chaos, homoclinic and heteroclinic motions. Applications will be taken from a variety of areas, including fluid mechanics, structural mechanics, control theory, circuit theory, orbital mechanics, condensed-matter physics, and classical field theory. Not offered 2005–06, but see CDS 140.

Courses

APPLIED MECHANICS

Ae/AM/CE/ME 102 abc. Mechanics of Structures and Solids. 9 units (3–0–6). For course description, see Aeronautics.

CE/Ae/AM 108 abc. Computational Mechanics. 9 units (3–0–6). For course description, see Civil Engineering.

AM 125 abc. Engineering Mathematical Principles. 9 units (3–0–6); first, second, third terms. Prerequisite: ACM 95/100 abc. Topics include linear spaces, operators and matrices, integral equations, variational principles, ordinary and partial differential equations, stability, perturbation theory. Applications to problems in engineering and science are stressed. Instructor: Beck.

AM 151 abc. Dynamics and Vibrations. 9 units (3–0–6); first, second, third terms. Prerequisite: ACM 95/100 abc or instructor's permission. Variational principles and Lagrange's equations. Response of mechanical systems to periodic, transient, and random excitation. Free and forced response of discrete and continuous systems. Approximate analysis methods. Introduction to nonlinear oscillation theory and stability. Instructor: Staff.

AM 175 abc. Advanced Dynamics. 9 units (3–0–6); first, second, third terms. Prerequisites: AM 125 abc and AM 151 abc or equivalents. Topics include linear and nonlinear vibrations of discrete and continuous systems, stability and control of dynamical systems, and stochastic processes with applications to random vibrations. Not offered 2005–06.

AM 176 abc. Nonlinear Dynamical Systems and Chaos. 9 units (3–0–6); first, second, third terms. Prerequisite: AM 125 abc or instructor's permission. Basic ideas from dynamical systems theory. One-dimensional maps, circle maps, rotation numbers, kneading theory, strange attractors, structural stability, hyperbolicity, symbolic dynamics, invariant manifolds, Poincaré maps, the Smale horseshoe. Techniques of local bifurcation theory are developed with emphasis on center manifolds and normal forms, global bifurcations, chaos, homoclinic and heteroclinic motions. Applications will be taken from a variety of areas, including fluid mechanics, structural mechanics, control theory, circuit theory, orbital mechanics, condensed-matter physics, and classical field theory. Not offered 2005–06, but see CDS 140.

Courses
AM 200. Special Problems in Advanced Mechanics. Hours and units by arrangement. By arrangement with members of the staff, properly qualified graduate students are directed in independent studies in mechanics.

Ae/AM/MS/ME 213. Mechanics and Materials Aspects of Fracture. 9 units (3–0–6). For course description, see Aeronautics.

Ae/AM/CE/ME 214 abc. Computational Solid Mechanics. 9 units (3–0–6). For course description, see Aeronautics.

Ae/AM/ME 215. Dynamic Behavior of Materials. 9 units (3–0–6). For course description, see Aeronautics.

Ae/AM/ME 223. Plasticity. 9 units (3–0–6). For course description, see Aeronautics.

Ae/AM/ME 225. Special Topics in Solid Mechanics. Units to be arranged. For course description, see Aeronautics.

AM 250. Research in Applied Mechanics. Hours and units by arrangement. Research in the field of applied mechanics. By arrangement with members of the staff, properly qualified graduate students are directed in research.

APPLIED PHYSICS

........................

Ch/APh 2. Introduction to Energy Sciences. 9 units (4–0–5).

For course description, see Chemistry.

APh/EE 9 ab. Solid-State Electronics for Integrated Circuits. 6 units (2–2–2); first, second terms; six units credit for the freshman laboratory requirement. Prerequisite: successful completion of APh/EE 9 a is a prerequisite for enrollment in APh/EE 9 b. Introduction to solid-state electronics, including physical modeling and device fabrication. Topics: semiconductor crystal growth and device fabrication technology, carrier modeling, doping, generation and recombination, pn junction diodes, MOS capacitor and MOS transistor operation, and deviations from ideal behavior. Laboratory includes computer-aided layout, and fabrication and testing of light-emitting diodes, transistors, and inverter devices. Students learn photolithography, and use of vacuum systems, furnaces, and device-testing equipment. Instructor: Scherer.

APh 23. Demonstration Lectures in Optics. 6 units (2–0–4); second term. Prerequisite: Ph 1 abc. Nine lectures cover fundamentals of optics with emphasis on modern optical applications, intended to exhibit basic optical phenomena including interference, dispersion, birefringence, diffraction, and laser oscillation, and the applications of these phenomena in optical systems employing two-beam and multiple-beam interferometry, Fourier-transform image processing, holography, electro-optic modulation, and optical detection and heterodyning. System examples to be selected from optical communications, radar, and adaptive optical systems. Instructor: Painter.

APh 24. Introductory Modern Optics Laboratory. 6 units (0–4–2); third term. Prerequisite: APh 23. Laboratory experiments to acquaint students with the contemporary aspects of modern optical research and technology. Experiments encompass many of the topics and concepts covered in APh 23. Instructor: Painter.

APh 77 bc. Laboratory in Applied Physics. 9 units (0–9–0); second, third terms. Selected experiments chosen to familiarize students with laboratory equipment, procedures, and characteristic phenomena in plasmas, fluid turbulence, fiber optics, X-ray diffraction, microwaves, high-temperature superconductivity, black-body radiation, holography, and computer interfacing of experiments. Instructor: Scherer.

APh 78 abc. Senior Thesis, Experimental. 9 units (0–9–0); first, second, third terms. Prerequisite: instructor’s permission. Supervised experimental research experience, open only to senior-class applied physics majors. Requirements will be set by individual faculty members, but will include a written report based upon actual laboratory experience. The selection of topic and the final report must be approved by the Applied Physics Undergraduate Committee. Students desiring additional units should register in APh 100. Not offered on a pass/fail basis. Instructors: Atwater and applied physics faculty.

APh 79 abc. Senior Thesis, Theoretical. 9 units (0–9–0); first, second, third terms. Prerequisite: instructor’s permission. Supervised theoretical research experience, open only to senior-class applied physics majors. Requirements will be set by individual faculty members, but will include a written report based upon actual laboratory experience. The selection of topic and the final report must be approved by the Applied Physics Undergraduate Committee. Not offered on a pass/fail basis. This course cannot be used to satisfy the laboratory requirement in APh. Instructors: Atwater and applied physics faculty.

APh 100. Advanced Work in Applied Physics. Units in accordance with work accomplished. Special problems relating to applied physics, arranged to meet the needs of students wishing to do advanced work. Primarily for undergraduates. Students should consult with their advisers before registering. Graded pass/fail.
Ae/APh/CE/ME 101 abc. Fluid Mechanics. 9 units (3-0-6).
For course description, see Aeronautics.

Ae/APh 104 abc. Experimental Methods. 9 units (3-0-6 first term; 1-3-3 second, third terms). For course description, see Aeronautics.

APh 105 abc. States of Matter. 9 units (3-0-6); first, second, third terms. Prerequisite: APh 17 abc or equivalent. A survey emphasizing unifying concepts, such as order parameters, scaling laws, quasi-particle excitations, and correlation functions. Topics: long-range ordered states such as crystals, superfluids, and ferromagnets; phase transitions; critical phenomena; ideal classical and degenerate gases; theory of liquids; band theory of solids; fluctuations; noise. Instructors: Johnson, Phillips.

APh 109. Introduction to the Micro/Nanofabrication Lab. 9 units (0-6-3); first, second, third terms. Introduction to techniques of micro- and nanofabrication, including solid-state, optical, and micrometric devices. Students will be trained to use fabrication and characterization equipment available in the applied physics micro- and nanofabrication lab. Topics include Schottky diodes, MOS capacitors, light-emitting diodes, microlenses, microfluidic valves and pumps, atomic force microscopy; scanning electron microscopy, and electron-beam writing. Instructor: Ghaffari.

APh 110. Topics in Applied Physics. 2 units (2-0-0); first, second terms. A seminar course designed to acquaint juniors and first-year graduate students with the various research areas represented in the option. Lecture each week given by a different faculty member of the option, reviewing in general terms, his or her field of research. Graded pass/fail. Instructor: Bellan.

APh 114 abc. Solid-State Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: APh 125 ab or Pb 125 ab or equivalent. Introductory lecture and problem course dealing with experimental and theoretical problems in solid-state physics. Topics include crystal structure, symmetries in solids, lattice vibrations, electronic states in solids, transport phenomena, semiconductors, superconductivity, magnetism, ferroelectricity, defects, and optical phenomena in solids. Instructors: Bockrath, Atwater.

APh 125 abc. Quantum Mechanics of Matter. 9 units (3-0-6); first, second, third terms. Quantum mechanics and applications to problems in solids, liquids, and gases. Topics: central force problems; hydrogen atom; multielectron atoms; approximation methods: time-independent and time-dependent perturbation theory, variational method, WKB approximation; eigenstates of molecules; theories for chemical bonding; optical transitions in matter; scattering: Born approximation, partial wave expansions, electron and photon scattering in matter; the electromagnetic field; quantum theory of crystalline solids. Not offered 2005–06.

APh/EE 103. Optical System Design. 9 units (3-0-6); first term. This course reviews EM theory and introduces optical system design principles. EM theory: tensor matrix, kDB space, Poynting theorem. Polarization: Jones matrix and Stokes vectors. Ray tracing: ABCD matrix, optical aberrations, Zemax optical system design program. Microscopy: system design, conventional and confocal. Interferometry: system design, homodyne, heterodyne, shot noise, spectral domain analysis, optical gyroscope, and optical coherence tomography. Instructors: Yang, Psaltis.

APh/EE 131. Optical Wave Propagation. 9 units (3-0-6); second term. This course focuses on optical wave propagation and related applications. Topics to be covered include Huygens' principle, Fourier optics, Gaussian waves, imaging, gratings, spectroscopy, interferometry, Fabry-Perot cavities, coherence, holography, femtosecond optics, dispersion, Kramers-Kronig relation, Mic scattering theory, photonic band gaps, and near-field imaging. Instructors: Psaltis, Yang.

APh 133. Optical Computing. 9 units (3-0-6); second term. Prerequisite: APh/EE 132 or equivalent exposure to optics. An introductory course in devices and techniques used for the optical implementation of information processing systems. Subjects to be covered include optical linear transformations, nonlinear optical switching devices, holographic interconnections, optical memories, photorefractive crystals, and optical realizations of neural computers. Not offered 2005–06.

APh 150. Topics in Applied Physics. Units to be arranged; first, second terms. Content will vary from year to year, but at a level suitable for advanced undergraduate or beginning graduate students. Topics are chosen according to the interests of students and staff. Visiting faculty may present portions of this course. Instructor: Vahala.

APh 156 abc. Plasma Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Pb 106 abc or equivalent. An introduction to the principles of plasma physics. A multi-tiered theoretical infrastructure will be developed consisting of the Hamilton-Lagrangian theory of charged particle motion in combined electric and magnetic fields, the Vlasov kinetic theory of plasma as a gas of interacting charged particles, the two-fluid model of plasma as interacting electron and ion fluids, and the magnetohydrodynamic model of plasma as an electrically conducting fluid subject to combined magnetic and hydrodynamic forces. This infrastructure will be used to examine waves, transport processes,
equilibrium, stability, and topological self-organization. Examples relevant to plasmas in both laboratory (fusion, industrial) and space (magnetosphere, solar) will be discussed. Instructor: Bellan.

APh/BE 161. Physical Biology of the Cell. 9 units (3-0-6); second term. Physical models applied to the analysis of biological structures ranging from individual proteins and DNA to entire cells. Topics include the force response of proteins and DNA, models of molecular motors, DNA packing in viruses and eukaryotes, mechanics of membranes, and membrane proteins and cell motility. Instructor: Phillips.

APh/BE 162. Physical Biology Laboratory. 9 units (0-6-3); second term. Prerequisite: concurrent enrollment in APh/BE 161. This laboratory course accompanies APh/BE 161 and is built around experiments that amplify material covered in that course. Particular topics include background on techniques from molecular biology, mechanics of lipid bilayer vesicles, DNA packing in viruses, fluorescence microscopy of cells, experiments on cell motility, and the construction of genetic networks. Instructor: Phillips.

APh/BE 165. Advanced Bioengineering Laboratory. 9 units (0-6-3); third term. Prerequisite: BE 201 or equivalent. Laboratory experiments at the interface of molecular biology and biophysics. Topics will vary from year to year and will be selected from the following list: use of atomic force microscopy to image and to manipulate proteins and DNA, use of fluorescent probes for single-molecule observation, physics of fluids in small devices, use of microfluidic devices for cell sorting and for stretching DNA, and application of optical tweezers to measure forces on single molecules. Not offered 2005–06.

EE/APh 180. Solid-State Devices. 9 units (3-0-6). For course description, see Electrical Engineering.

APh 183 abc. Fundamentals of Electronic Devices. 9 units (3-0-6); first, second, third terms. Introduction to the fundamentals of modern electronic and optoelectronic devices. Topics include pn junctions, bipolar transistors, field-effect transistors, magnetic devices, light-emitting diodes, lasers, detectors, solar cells, chemical sensors, and MEMS. Emphasis will be placed on nanostructures and nanofabrication techniques. Where appropriate, integration and systems-level issues will be included. Instructor: McGill.

APh 190 abc. Quantum Electronics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 125 or equivalent. Generation, manipulations, propagation, and applications of coherent radiation. The basic theory of the interaction of electromagnetic radiation with resonant atomic transitions. Laser oscillation, important laser media, Gaussian beam modes, the electro-optic effect, nonlinear-optics theory, second harmonic generation, parametric oscillation, stimulated Brillouin and Raman scattering. Other topics include light modulation, diffraction of light by sound, integrated optics, phase conjugate optics, and quantum noise theory. Instructor: Yariv.

APh 200. Applied Physics Research. Units in accordance with work accomplished. Offered to graduate students in applied physics for research or reading. Students should consult their advisers before registering. Graded pass/fail.

Ph/APh 223 abc. Advanced Condensed-Matter Physics. 9 units (3-0-6). For course description, see Physics.

APh 250. Advanced Topics in Applied Physics. Units and term to be arranged. Content will vary from year to year; topics are chosen according to interests of students and staff. Visiting faculty may present portions of this course. Instructor: Staff.

APh 300. Thesis Research in Applied Physics. Units in accordance with work accomplished. APh 300 is elected in place of APh 200 when the student has progressed to the point where his or her research leads directly toward a thesis for the degree of Doctor of Philosophy. Approval of the student's research supervisor and department adviser or registration representative must be obtained before registering. Graded pass/fail.

ART HISTORY

These courses are open only to students who have fulfilled the freshman humanities requirement.

Art 11. Selected Topics in Art History. 9 units (3-0-6). Offered by announcement. Instructor: Staff.

Art 23. Major Figures in Art. 9 units (3-0-6); first term. A course devoted to the study of a single artist of world importance, the name of the artist to be announced prior to registration. This study, grounded in the artist's life and, where possible, his/her writings, will analyze and interpret his/her major works in chronological sequence in their artistic and historic contexts, and attempt, by close aesthetic examination, to account for their greatness—and, sometimes, their failure. Not offered 2005–06.

Art 46. The Age of the Great Cathedrals. 9 units (3-0-6); third term. A study of the arts of Western Europe from the disintegration of the Roman Empire circa A.D. 476, to the 14th century. The diverse historical forces at work during this long period produced a correspondingly varied art. Emphasis will be on the later Middle Ages, circa 1200–1350, a period marked by a synthesizing of inherited traditions into a comprehensive whole. Major monuments of architecture, such as the cathedrals of Notre Dame, Chartres, Reims, Cologne, Strasbourg, and Westminster, as well as sculpture, illuminated manuscripts, mosaics, panel painting, and stained glass will be examined within the aesthetic and social framework of countries as culturally
Art 49. From Van Eyck to Rembrandt: Northern European Art, 1400–1650. 9 units (3-0-6); third term. A survey of artistic developments in Northern Europe from the late Middle Ages through the Renaissance and baroque periods. The course will focus upon the complexity of northern art, from its origins in the still-forceful medieval culture of 15th-century Flanders, to its confrontation with Italian Renaissance humanism in the 16th century. The effects of this cultural synthesis and the eventual development of distinct national schools of painting in the 17th century are examined through the works of the period’s dominant artists, including Van Eyck, Dürer, Holbein, Velázquez, Rubens, Hals, and Rembrandt. Instructor: Howard.

Art 50. Baroque Art. 9 units (3-0-6); first term. A survey of the arts of painting, sculpture, and architecture from the late 16th century to the late 18th century. A confident and optimistic age, the baroque fostered the rise of national schools that produced artistic giants like Bernini, Caravaggio, Rubens, Rembrandt, Velázquez, Claude, Poussin, Tiepolo, and Guardi. The masterpieces of these and other artists reflect the wide variety of baroque art and will be studied within the context of certain commonly held ideals and of the differing economic, political, and religious systems that characterized the period. Instructor: Howard.

Art 51. European Art of the 18th Century: From the Rococo to the Rise of Romanticism. 9 units (3-0-6); first term. The course will encompass 18th-century European painting, sculpture, architecture, and the decorative arts. During this period a variety of styles and subjects proliferated in the arts, as seen in the richly diverse works of artists such as Watteau, Boucher, Chardin, Fragonard, Tiepolo, Canaletto, Hogarth, Gainsborough, Blake, David, Piranesi, and Goya, which reflect a new multiplicity in ways of apprehending the world. Instructor: Bennett.

Art 52. British Art. 9 units (3-0-6). A survey course on British painting, sculpture, and architecture in the 17th, 18th, and 19th centuries. By examining the works of well-known British artists such as Hogarth, Blake, Gainsborough, Reynolds, Constable, and Turner, the class will focus on the multiplicity of styles and themes that developed in the visual arts in Britain from 1740 to 1840 and are part of the wider artistic phenomenon known as romanticism. This introduction to the British visual arts will be enriched by several class meetings in the Huntington Art Gallery. Instructor: Bennett.

Art 55. Art of the 19th Century. 9 units (3-0-6); second term. A survey of 19th-century art with an emphasis on French painting created between 1780 and 1880. The lectures will focus on issues such as the new image of the artist, the tension between public and private state-

Art 65. History of Western Architecture. 9 units (3-0-6). A survey of major developments in Western architecture and urbanism from the classical civilizations of Greece and Rome to the 20th century. The course focuses upon the visual, spatial, and functional properties and the cultural significance of key building types ranging from Greek temples, Roman civil and administrative structures, Gothic cathedrals, Renaissance and baroque churches and city palaces, to the technology-based skyscrapers and other forms of 20th-century modernism. Not offered 2005–06.

Art 66. Ancient Art: From the Pyramids to the Colosseum. 9 units (3-0-6); second term. A survey of the art of the earliest civilization of the ancient near east and Mediterranean from the Bronze Age to A.D. 300. The major monuments—architectural, sculptural, and pictorial—of Mesopotamia, Egypt, the Aegean, Greece, and Rome will be examined as solutions to problems of form and function presented by communal political, economic, and religious life. Emphasis will be placed on the creation of Greco-Roman art, the foundation of the Western artistic tradition. Instructor: Woods.

Art 67. Italian Renaissance Art. 9 units (3-0-6); first term. A basic study of the greatest achievements of Italian painting, sculpture, and architecture in the 15th and 16th centuries. Masterpieces by a succession of artists such as Giotto, Masaccio, Brunelleschi, Donatello, Alberti, the Bellini, Leonardo da Vinci, Michelangelo, Raphael, Titian, Veronese, and others will be examined for their formal beauty and power, and studied as manifestations of individual genius in the context of their time and place: Italy, fragmented politically, yet at the peak of its cultural dominance. Not offered 2005–06.

Art 68. Modern Art. 9 units (3-0-6); third term. An in-depth survey of international painting and sculpture of the first half of the 20th century. Crucial movements, among them fauvism, German expressionism, cubism, dadaism, surrealism, and American abstraction and realism between the two world wars, will be studied, and masterworks by a number of major artists of this period (e.g., Picasso, Matisse, Nolde, Duchamp, Magritte, Hopper) will be closely examined. Instructor: Dini.

Art 69. The Arts of Dynastic China. 9 units (3-0-6); second term. A survey of the development of Chinese art in which the major achievements in architecture, sculpture, painting, calligraphy, and ceramics will be studied in their cultural contexts from prehistory through the Manchu domination of the Qing Dynasty (1644–1911). Emphasis will be placed on the aesthetic appreciation of Chinese art as molded by the philosophies, religions, and history of China. Instructor: Wolfgram.
Art 70. Traditions of Japanese Art. 9 units (3-0-6). An introduction to the great traditions of Japanese art from prehistory through the Meiji Restoration (1868–1912). Students will examine major achievements of sculpture, painting, temple architecture, and ceramics as representations of each artistic tradition, whether native or adapted from foreign sources. Fundamental problems of style and form will be discussed, but aesthetic analysis will always take place within the conditions created by the culture. Not offered 2005–06.

Art 71. Arts of Buddhism. 9 units (3-0-6). Offered by announcement. An examination of the impact of Buddhism on the arts and cultures of India, Southeast Asia, China, Korea, and Japan from its earliest imagery in the 4th century B.C.E. India through various doctrinal transformations to the Zen revival of 18th-century Japan. Select monuments of Buddhist art, including architecture, painting, sculpture, and ritual objects, will serve as focal points for discussions on their aesthetic principles and for explorations into the religious, social, and cultural contexts that underlie their creation. Not offered 2005–06.

ASTROPHYSICS

Ay 1. The Evolving Universe. 9 units (3-3-3); third term. This course is intended primarily for freshmen not expecting to take more advanced astronomy courses and will satisfy the menu requirement of the Caltech core curriculum. Introduction to modern astronomy that will illustrate the accomplishments, techniques, and scientific methodology of contemporary astronomy. The course will be organized around a set of basic questions, showing how our answers have changed in response to fresh observational discoveries. Topics to be discussed will include telescopes, stars, planets, the search for life elsewhere in the universe, supernovae, pulsars, black holes, galaxies and their active nuclei, and the Big Bang. There will be a series of laboratory exercises intended to highlight the path from data acquisition to scientific interpretation. Students will also be required to produce a term paper on an astronomical topic of their choice and make a short oral presentation. In addition, a field trip to Palomar Observatory will be organized. Not offered on a pass/fail basis. Instructor: Steidel. Additional information concerning this course can be found at http://astro.caltech.edu/academics/ay1.

Ge/Ay 11 c. Planetary Sciences. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

Ay 20. Basic Astronomy and the Galaxy. 9 units (3-0-6); first term. Prerequisites: Ma 1 abc, Ph 1 abc, or for freshmen with a strong high-school background in math and physics. Astronomical terminology. Stellar masses, distances, and motions. Star clusters and their galactic distributions. Stellar spectra, magnitudes, and colors. Structure and dynamics of the galaxy. Instructor: Blain.

Ay 30. Current Trends in Astronomy. 3 units; third term. Weekly seminar open to declared Ay majors at the discretion of the instructor; nonmajors who have taken astronomy courses may be admitted. This seminar is held in faculty homes in the evening and is designed to encourage student communication skills as they are introduced to faculty members and their research. Graded pass/fail. Instructor: Steidel.

Ay 31. Writing in Astronomy. 3 units; third term. This course is intended to provide practical experience in the types of writing expected of professional astronomers. Example styles include research proposals, topical reviews, professional journal manuscripts, and articles for popular magazines such as Astronomy or Sky and Telescope. Each student will adopt one of these formats in consultation with the course instructor and write an original piece. An outline and several drafts reviewed by both a faculty mentor familiar with the topic and the course instructor are required. This course is open only to those who have taken upper-level astronomy courses. Fulfills the Institute scientific writing requirement. Instructor: Hillenbrand.

Ay 40. Inventing Reality: The Human Search for Truth. 9 units (3-0-6); third term. In this course, students will trace the history of cosmological thought by reading directly from the original writings of such thinkers as Aristotle, Newton, Einstein, and Hubble, en route to an understanding of how current observations are being used to determine the origin, evolution, and fate of the universe. While the primary focus will be cosmology, related topics in classical physics, quantum mechanics, and philosophy will also be considered. Not offered 2005–06.

Ay 43. Reading in Astronomy and Astrophysics. Units in accordance with work accomplished. Student must have a definite reading plan and obtain instructor’s permission before registering. Graded pass/fail.

Ay 78 abc. Senior Thesis. 9 units. Prerequisite: To register for this course, the student must obtain approval of the astronomy option representative and the prospective thesis adviser. Open only to senior astronomy majors. This research must be supervised by a faculty member, student’s thesis adviser. The written thesis must be completed and approved by the adviser before the end of the third term. Students wishing assistance in finding an adviser and/or a topic for a senior thesis are invited to consult with the astronomy option representative. A grade will not be assigned in Ay 78 until the end of the third term. P grades will be given the first two terms, and then changed at the end of the course to the appropriate letter grade.

Ay 102. Physics of the Interstellar Medium. 9 units (3-0-6); second term. Prerequisite: Ay 20. An introduction to observations of the interstellar medium and relevant physical processes. The structure and hydrodynamic evolution of ionized hydrogen regions associated with massive stars and supernovae, thermal balance in neutral and ionized phases, star formation and global models for the interstellar medium. Instructor: Readhead.

Ay 105. Optical Astronomy Instrumentation Lab. 9 units (1-6-2); second term. Prerequisite: Ay 20. An opportunity for astronomy and physics undergraduates (juniors and seniors) to gain firsthand experience with the basic instrumentation tools of modern optical and infrared astronomy. The 10 weekly lab experiments are expected to include radiometry measurements, geometrical optics, optical aberrations and ray tracing, spectroscopy, fiber optics, CCD electronics, CCD characterization, photon counting detectors, vacuum and cryogenic technology, and stepper motors and encoders. Instructor: Ellis.

Ay 121. Radiative Processes. 9 units (3-0-6); first term. Prerequisites: Ay 101 (undergraduates); Ph 125 or equivalent. The interaction of radiation with matter: radiative transfer, emission, and absorption. Compton processes, synchrotron radiation, collisional excitation, spectroscopy of atoms and molecules. Instructor: Readhead.

Ay 122. Astronomical Measurements and Instrumentation. 9 units (3-0-6); first term. Prerequisite: Ph 106 or equivalent. Measurement and signal analysis techniques throughout the electromagnetic spectrum. Telescopes and interferometers; detectors and receivers; photometry and radiometry; imaging devices and image processing; spectrometers; space telescopes. Instructors: Djorgovski, Readhead.

Ay 123. Structure and Evolution of Stars. 9 units (3-0-6); first term. Prerequisite: Ay 101 (undergraduates); Ph 125 or equivalent. Thermodynamics, equation of state, convection, opacity, radiative transfer, stellar atmospheres, nuclear reactions, and stellar models. Evolution of low- and high-mass stars, supernovae, and binary stars. Instructors: Kamionkowski, Sari.

Ay 124. Structure and Dynamics of Galaxies. 9 units (3-0-6); second term. Prerequisites: Ay 21 (undergraduates); Ph 106 or equivalent. Stellar dynamics and properties of galaxies; kinematics and dynamics of our galaxy; spiral structure; stellar composition, masses, and rotation of external galaxies; star clusters; galactic evolution; binaries, groups, and clusters of galaxies. Instructors: Phinney, Scoville.

Ay 125. High-Energy Astrophysics. 9 units (3-0-6); third term. Prerequisites: Ay 21 (undergraduates); Ph 106 or equivalent. High-energy astrophysics and the final stages of stellar evolution; supernovae, binary stars, accretion disks, pulsars; extragalactic radio sources; active galactic nuclei; black holes. Instructor: Kulkarni.

Ay 126. Interstellar Medium. 9 units (3-0-6); second term. Prerequisite: Ay 102 (undergraduates). Physical processes in the interstellar medium. Ionization, thermal and dynamic balance of interstellar medium, molecular clouds, hydrodynamics, magnetic fields, H II regions, supernova remnants, star formation, global structure of interstellar medium. Instructor: A. Sargent.

Ay 127. Cosmology and Galaxy Formation. 9 units (3-0-6); third term. Prerequisites: Ay 21 (undergraduates); Ph 106 or equivalent. Cosmology; extragalactic distance determinations; relativistic cosmological models; galaxy formation and clustering; thermal history of the universe, microwave background; nucleosynthesis; cosmological tests. Instructor: Phinney.

Ge/Ay 137. Planetary Physics. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

Ay 141 abc. Research Conference in Astronomy. 3 units (1-0-2); first, second, third terms. Oral reports by astronomy students on current research. These provide an opportunity for practice in the organization and presentation of reports. A minimum of two presentations will be expected from each student each year. This course fulfills the option oral communication requirement and is required of all astronomy graduate students who have passed their preliminary exams. It is also recommended for astronomy seniors. Graded pass/fail. Instructors: Ellis, Steidel; Kulkarni, Sari; A. Sargent, Readhead.

Ay 142. Research in Astronomy and Astrophysics. Units in accordance with work accomplished. The student should consult a member of the department and have a definite program of research outlined. Approval by the student’s adviser must be obtained before registering. 36 units of Ay 142 or Ay 143 required for candidacy. Graded pass/fail.

Ay 143. Reading and Independent Study. Units in accordance with work accomplished. The student should consult a member of the department and have a definite program of reading and independent study outlined. Approval by the student’s adviser must be obtained before registering. 36 units of Ay 142 or Ay 143 required for candidacy. Graded pass/fail.
cooperativity characteristic of multisubunit protein complexes and will emphasize the relationship between protein structure and function. Instructors: Mayo, Jensen.

BMB 251 abc. Current Research in Cellular and Molecular Biology. 1 unit (1-0-0). For course description, see Biology.

BMB 278. Fundamentals of Molecular Genetics. 9 units (3-0-6); third term. Prerequisite: BMB 176. Principles and mechanisms of DNA repair and replication, transcription and splicing, and protein synthesis. Instructors: Campbell, Parker.

BMB 299. Graduate Research. Units to be arranged; first, second, third terms. Students may register for research units after consultation with their adviser.
BE 201 abc. Physiology for Bioengineering. 12 units (3-5-4); first, second, third terms.
 a. Cell physiology of eukaryotic cells, with an emphasis on the correlation of structure and function at the molecular, organelle, and cellular levels. Survey of physiological organization as cooperative assemblies of epithelial sheets, tissues, and organs.
 b. Provides a foundation in physiology for bioengineering students. Systematic approach to examination of the functions of major systems, and the regulatory mechanisms controlling normal function. Detailed examination of specific systems pertinent to major areas of bioengineering research, including membranes, channels and transport, the muscular system, the nervous system, the sensory system and its integration, and the cardiac system.
 c. Continues the approach of part b with a detailed examination of the circulatory, renal, respiratory, digestive, and hormonal/neurohormonal systems. Instructor: Gharib.

ChE/BE 210. Biomolecular Cell Engineering. 9 units (3-0-6).
For course description, see Chemical Engineering.

BE 240. Special Topics in Bioengineering. Units and term to be arranged. Topics relevant to the general educational goals of the bioengineering option. Graded pass/fail.

Ae/BE 242. Biological Flows: Propulsion. 9 units (3-0-6).
For course description, see Aeronautics.

BE 250. Research in Bioengineering. Units and term to be arranged.
By arrangement with members of the staff, properly qualified graduate students are directed in bioengineering research.

BIOLOGY

Bi 1. Drugs and the Brain. 9 units (4-0-5); third term. This course introduces nonbiologists to recent advances in biology, biomedical science, and applied biology. The scientific community is beginning to understand the mechanisms of drug addiction, the causes of major neurological diseases, and some medical therapies for these diseases. Because many of these advances involve molecular biology and genetics, the course treats the fundamental aspects of drug actions on the nervous system, from the quantitative, molecular, physical, and chemical viewpoints. Instructors: Lester, staff.

Bi 2. Current Research in Biology. 6 units (2-0-4); first term. Intended for students considering the biology option; open to freshmen. Current research in biology will be discussed, on the basis of reading assigned in advance of the discussions, with members of the divisional faculty. Graded pass/fail. Instructors: Revel, staff.

Bi 8. Introduction to Molecular Biology; Organization and Expression of Genetic Information. 9 units (3-0-6); second term.
This course and its sequel, Bi 9, cover biology at the cellular level. After introducing basic concepts necessary for understanding biological systems at the molecular level, Bi 8 emphasizes cellular processes involved in the organization and expression of genetic information, including what is commonly called molecular biology, and introduces topics in developmental biology and immunology. Graded pass/fail. Instructors: Varshavsky, Chan.

Bi 9. Cell Biology. 9 units (3-0-6); third term. Continues coverage of biology at the cellular level, begun in Bi 8. Topics: cytoplasmic structure, membrane structure and function, cell motility, and cell-cell recognition. Emphasis on both the ultrastructural and biochemical approaches to these topics. Instructors: Dunphy, staff.

Bi 10. Cell Biology Laboratory. 6 units (1-3-2); third term. Prerequisite: Bi 8; designed to be taken concurrently with Bi 9. Introduction to basic methods in cell and molecular biological research, including polymerase chain reaction, molecular cloning, expression and purification of recombinant fusion proteins in bacteria, enzymology, and gel electrophoresis of proteins and nucleic acids. Instructor: Deshaies.

Bi 22. Undergraduate Research. Units to be arranged; first, second, third terms. Special problems involving laboratory research in biology; to be arranged with instructors before registration. Graded pass/fail. Instructor: Staff.

Bi 23. Biology Tutorial. Units to be arranged; maximum of 6 units per term; second, third terms. Study and discussion of special problems in biology, usually involving regular tutorial sessions with instructors. To be arranged through the instructor before registration. Graded pass/fail. Instructors: Strauss, staff.

Bi 24. Biology Communication. 3 units (0-0-3); first, second, third terms. Students either write a 3,000-word paper on a biological subject, or use a scientific paper written as part of a biology course (such as BMB/Bi/Ch 170 or Bi 188, which require papers), then work individually with their faculty adviser to produce an acceptable final version. Fulfills the Institute scientific writing requirement. Graded pass/fail. Instructor: Staff.
Bi 80. Biology Major Seminar. 3 units (1-0-2); first term. Prerequisite: Bi 9 or instructor’s permission. May be repeated for credit, with instructor’s permission. Discussions and student presentations designed for biology majors from sophomores to seniors, to provide information and practice oral communication techniques. Topics will include career choices; admission to medical or graduate school; student research projects, including senior thesis research; and current biological topics of interest. Graded pass/fail. Instructors: Revel, Schuman.

Bi 90 abc. Undergraduate Thesis. 12 or more units per term; first, second, third terms. Prerequisites: 18 units of Bi 22 (or equivalent research experience) in the research area proposed for the thesis, concurrent registration for Bi 80 during first term, and instructor’s permission. Intended to extend opportunities for research provided by Bi 22 into a coherent individual research project, carried out under the supervision of a member of the biology faculty. Normally involves three or more consecutive terms of work in the junior and senior years. The student will formulate a research problem based in part on work already carried out, evaluate previously published work in the field, and present new results in a thesis format. First two terms graded pass/fail; final term graded by letter on the basis of the completed thesis. Instructors: Revel, staff.

Ph/Bi 103 b. Neuroscience for Physicists and Engineers. 9 units (3-0-6). For course description, see Physics.

Bi/Ch 110. Introduction to Biochemistry. 12 units (4-0-8); first term. Prerequisite: Ch 41 abc or instructor’s permission. Lectures and recitation introducing the molecular basis of life processes, with emphasis on the structure and function of proteins. Topics will include the derivation of protein structure from the information inherent in a genome, biological catalysis, the intermediary metabolism that provides energy to an organism, and the use of DNA manipulations, cloning, and expression of proteins in foreign hosts to study protein structure and function. Instructors: Hay, staff.

Bi/Ch 111. Biochemistry of Gene Expression. 12 units (4-0-8); second term. Prerequisites: Bi/Ch 110; Bi 8 and Bi 122 recommended. Lectures and recitation on the molecular basis of biological structure and function. Emphasizes the storage, transmission, and expression of genetic information in cells. Specific topics include DNA replication, recombination, repair and mutagenesis, transcription, RNA processing, and protein synthesis. Instructors: Richards, Campbell.

Bi/Ch 113. Biochemistry of the Cell. 12 units (4-0-8); third term. Prerequisites: Bi/Ch 110; Bi 9 recommended. Lectures and recitation on the biochemistry of basic cellular processes in the cytosol and at the cell surface, with emphasis on signal transduction, membrane trafficking, and control of cell division. Specific topics include cell-cell signaling, control of gene expression by cell surface molecules, tumorigenesis, endocytosis, exocytosis, viral entry, and cell cycle regulation. Instructors: Chan, Shan.

Bi 114. Immunology. 12 units (4-0-8); second term. Prerequisites: Bi 8, Bi 9, Bi 122 or equivalent, and Bi/Ch 110 recommended. The course will cover the molecular and cellular mechanisms that mediate recognition and response in the mammalian immune system. Topics include cellular and humoral immunity, the structural basis of immune recognition, antigen presentation and processing, developmental regulation of gene rearrangement, biochemistry of lymphocyte activation, lymphokines and the regulation of cellular responses, T and B cell development, and mechanisms of tolerance. Instructors: Bjorkman, Rothenberg.

Bi 115. Virology. 6 units (2-0-4); third term. Prerequisites: Bi 8, Bi 9. Introduction to the chemistry and biology of viruses. Emphasis on replication strategies of animal viruses, with consideration also given to epidemiology of viruses, nature and control of virus diseases, evolution of viruses, and some aspects of bacterial and plant virus replication. Instructor: Strauss. Given in alternate years; offered 2005–06.

Bi 117. Developmental Biology. 9 units (3-0-6); second term. Prerequisites: Bi 8 and Bi 9. A survey of the development of multicellular organisms. Topics will include the beginning of a new organism (fertilization), the creation of multicellularity (cellularization, cleavage), reorganization into germ layers (gastrulation), induction of the nervous system (neurulation), and creation of specific organs (organogenesis). Emphasis will be placed on the molecular mechanisms underlying morphogenetic movements, differentiation, and interactions during development, covering both classical and modern approaches to studying these processes. Instructor: Bronner-Fraser.

CNS/Bi/Psy 120. The Neuronal Basis of Consciousness. 9 units (4-0-5). For course description, see Computation and Neural Systems.

Bi 122. Genetics. 9 units (3-0-6); first term. Prerequisite: Bi 8 or Bi 9, or instructor’s permission. Lecture and discussion course covering basic principles of genetics. Instructors: Hay, Sternberg.

Bi 123. Genetics Laboratory. 9 units (3-0-6); second term. Prerequisite: Bi 122. Laboratory exercises illustrating the principles of genetics, with emphasis on Mendelian inheritance in multicellular eukaryotes, including Drosophila melanogaster and Caenorhabditis elegans. Instructors: Hay, staff.

Bi 125. Principles and Methods of Gene Transfer and Gene Manipulation in Eukaryotic Cells. 6 units (2-0-4); second term. Prerequisite: Bi/Ch 110. Lecture and discussion course dealing with modern approaches to “genetic intervention” in eukaryotic cells. Topics: mutagenesis of cultured animal cells and selection schemes; gene transfer into cultured cells mediated by naked DNA, chromosomes, and viruses; transformation of yeast by chromosomal DNA and plasmids; nuclear transformation of plant cells by Agrobacteria plasmids; nuclear transplantation and gene injection into amphibian eggs and oocytes; selective drug-induced gene amplification in cultured animal cells; somatic cell hybridization. Instructor: Attardi. Given in alternate years; not offered 2005–06.
Bi 129. Cellular Dynamics: Advanced Topics in Cell Biology of Neurons and Nonneuronal Cells. 9 units (3-0-6); third term.
Prerequisite: Bi 9 or instructor's permission. Topics to be covered may include proteomics, modeling of signal transduction cascades, protein modification, protein synthesis and degradation, signaling through lipid messengers, calcium signaling, metabolic control, transport within polarized cells, and cytoskeletal dynamics. Instructors: Schuman, Zinn.

Psy/Bi/CNS 131. The Psychology of Learning and Motivation. 9 units (3-0-6). For course description, see Psychology.

Bi/Ch 132. Biophysics of Macromolecules. 9 units (3-0-6); first term. Recommended prerequisite: Bi/Ch 110. Structural and functional aspects of nucleic acids and proteins, including hybridization; electrophoretic behavior of nucleic acids; principles and energetics of folding of polypeptide chains in proteins; allosteric and cooperativity in protein action; enzyme kinetics and mechanisms; and methods of structure determination, such as X-ray diffraction and magnetic resonance. Structure and function of metalloenzymes. Instructors: Barton, Beauchamp.

SS/Psy/Bi/CNS 140. Social Neuroscience. 9 units (3-0-6). For course description, see Social Science.

Bi 145. Anatomy and Physiology. 9 units (4-0-5); first term. Recommended prerequisites: Bi 8, 9, 12, 110, or instructor's permission. Bi 110 may be taken concurrently. Bi 114 may be helpful. The course aims to relate Caltech biology core courses (predominantly molecular and cellular) to the basic structure and function of the human body. The course will present key concepts in anatomy and embryology to support its focus on key topics and principles of physiology. Topics will concentrate on cardiovascular, pulmonary, renal, and musculoskeletal physiology, in an organ-based fashion. Other topics will include neuroendocrine, immunologic, hematologic, gastrointestinal, hepatobiliary, and reproductive physiology. Instructors: Fraser, staff.

Bi/CNS 150. Neurobiology. 10 units (4-0-6); first term. Lectures and discussions on general principles of the organization and function of nervous systems, providing both an overview of the subject and a foundation for advanced courses. Topics include neurocytology and gross neuroanatomy; developmental neurobiology; the biophysical basis for action potentials, synaptic transmission, and sensory transduction; and the integration of these processes in sensory and motor pathways of the central nervous system. Laboratory demonstrations offer experience with the experimental preparations discussed in the course. Instructors: Zinn, Kennedy.

Bi 152. Introduction to Neuroethology. 6 units (2-0-4); second term. Introduction to the neurobiological study of natural behavior of animals. Topics include such questions as how animals recognize and localize signals in their natural environments, how animals move, how behavior develops, what and how animals learn, and how natural selection shapes the evolution of brain and behavior. Instructor: Konishi. Given in alternate years; not offered 2005–06.

Bi 156. Molecular Basis of Behavior. 9 units (3-0-6); second term. Prerequisite: Bi 150 or instructor's permission. A lecture and discussion course on the neurobiology of behavior. Topics may include biological clocks, eating behavior, sexual behavior, addiction, mental illness, and neurodegenerative diseases. Instructor: Patterson. Given in alternate years; offered 2005–06.

Bi/CNS 157. Comparative Nervous Systems. 9 units (2-3-4); third term. An introduction to the comparative study of the gross and microscopic structure of nervous systems. Emphasis on the vertebrate nervous system; also, the highly developed central nervous systems found in arthropods and cephalopods. Variation in nervous system structure with function and with behavioral and ecological specializations and the evolution of the vertebrate brain. Instructor: Allman. Given in alternate years; not offered 2005–06.

Bi/CNS 158. Vertebrate Evolution. 9 units (3-0-6); third term. An integrative approach to the study of vertebrate evolution combining comparative anatomical, behavioral, embryological, genetic, paleontological, and physiological findings. Special emphasis will be given to: (1) the modification of developmental programs in evolution; (2) homeostatic systems for temperature regulation; (3) changes in the life cycle governing longevity and death; (4) the evolution of brain and behavior. Given in alternate years; offered 2005–06.

Bi/CNS 161. Cellular and Molecular Neurobiology Laboratory. 9 units (0-9-0); second term. Prerequisite: Bi 150 or instructor's permission. Experiments on the molecules of membrane excitability—ion channels, receptors, and transporters. Students synthesize mRNA in vitro for these molecules from cDNA clones and inject the mRNA into Xenopus oocytes. Students then perform electrophysiological experiments on the oocytes, including voltage-clamp recording of macroscopic currents and patch-clamp recording of single channels. Students analyze the data to reveal quantitative biophysical concepts. Graded pass/fail. Given in alternate years; offered 2005–06.

Bi/CNS 162. Cellular and Systems Neuroscience Laboratory. 12 units (2-7-3); third term. Prerequisite: Bi 150 or instructor's permission. A laboratory-based introduction to experimental methods used for electrophysiological studies of the central nervous system. Through the term, students investigate the physiological response properties of neurons in insect and mammalian brains, using extra- and intracellular recording techniques. Students are instructed in all aspects of experimental procedures, including proper surgical techniques, electrode fabrication, stimulus presentation, and computer-based data analysis. Graded pass/fail. Instructors: Laurent, Schuman. Given in alternate years; offered 2005–06.
ESE/Bi 166. Microbial Physiology. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

ESE/Bi 168. Microbial Metabolic Diversity. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

BMB/Bi/Ch 170. Principles of Three-Dimensional Protein Structure. 9 units (3-3-3). For course description, see Biochemistry and Molecular Biophysics.

CNS/Bi 172. Clinical Neuropsychology. 6 units (3-0-3). For course description, see Computation and Neural Systems.

CNS/Bi 176. Cognition. 12 units (6-0-6). For course description, see Computation and Neural Systems.

Bi 177. Principles of Modern Microscopy. 9 units (3-0-6); first term. Lectures and discussions on the underlying principles behind digital, video, differential interference contrast, phase contrast, confocal, and two-photon microscopy. The course will begin with basic geometric optics, characteristics of lenses and microscopes, and principles of accurate imaging. Specific attention will be given to how different imaging elements such as filters, detectors, and objective lenses contribute to the final image. Course work will include critical evaluation of published images and design strategies for simple optical systems. Emphasis in the second half of the course will be placed on the analysis and presentation of two- and three-dimensional images. No prior knowledge of microscopy will be assumed. Instructor: Fraser.

CNS/Bi/BE/Ph 178. Evolution and Biocomplexity. 9 units (3-0-6). For course description, see Computation and Neural Systems.

Bi 180. Methods in Molecular Genetics. 12 units (2-8-2); first term. Prerequisites: Bi 122, Bi 10, or instructor's permission. An introduction to current molecular genetic techniques including basic microbiological procedures, transposon and UV mutagenesis, gene transfer, preparation of DNA, restriction, ligation, electrophoresis (including pulsed-field), electroporation, Southern blotting, PCR, gene cloning, sequencing, and computer searches for homologies. The first half of the course involves structured experiments designed to demonstrate the various techniques. The second half is devoted to individual research projects in which the techniques are applied to original studies on an interesting, but not well studied, organism. Graded pass/fail. Instructor: Bertani. Additional information concerning this course can be found at http://www.its.caltech.edu/~bi180.

Bi 182. Developmental Gene Regulation and Evolution of Animals. 6 units (2-0-4); second term. Prerequisites: Bi 8 and at least one of the following: Bi 111, Bi 114, or Bi 122 (or equivalents). Lectures on and discussion of the regulatory genome; phylogenetic relationships in animals and the fossil record; how developmental gene regulation works; regulatory basis of development in the simplest systems; making parts of the adult animal body plan; pattern formation and deep regulatory networks; the Precambrian world and a gene-regulatory view of the evolutionary origin of animal forms; processes of cis-regulatory evolution; diversification in the arthropods; and the special character of vertebrate evolution. Instructor: Davidson.

CNS/Bi/EE 186. Vision: From Computational Theory to Neuronal Mechanisms. 12 units (4-4-4). For course description, see Computation and Neural Systems.

CNS/Bi/Ph/CS 187. Neural Computation. 9 units (3-0-6). For course description, see Computation and Neural Systems.

Bi 188. Human Genetics and Genomics. 6 units (2-0-4); second term. Prerequisite: Bi 122; or graduate standing and instructor's permission. Introduction to the genetics of humans. Subjects covered include human genome structure, genetic diseases and predispositions, the human genome project, forensic use of human genetic markers, human variability, and human evolution. Given in alternate years; offered 2005–06.

Bi 190. Advanced Genetics. 6 units (2-0-4); third term. Prerequisite: Bi 122. Lectures and discussions covering advanced principles of genetic analysis. Emphasis on genetic approaches to the study of development in Saccharomyces, Caenorhabditis, Drosophila, and Arabidopsis. Instructor: Sternberg. Given in alternate years; not offered 2005–06.

CS/CNS/Bi 191 ab. Biomolecular Computation. 9 units (3-0-6) second term; (2-4-3) third term. For course description, see Computer Science.

Bi 201. Neuroimmunology. 9 units (3-0-6); second term. Recommended prerequisites: Bi 114 and Bi 170. A reading course involving student presentations of papers on interactions between the nervous and immune systems. Topics will include emotional state and neural regulation of immune status, cytokine mediation of sickness behavior, stress and cancer, immune cell and cytokine involvement in neural function and in neural injury, and hormone-cytokine networks. Instructor: Patterson. Given in alternate years; not offered 2005–06.

Bi 211. Topics in Membrane and Synaptic Physiology. 6 units (3-0-3); first term. Graduate seminar discussing the original literature on the biophysics and molecular biology of ion channels, neurotransmitter receptors, transporters, and other molecules underlying the excitability of cell membranes. Instructor: Lister. Given in alternate years; offered 2005–06.

Bi 212. Topics in Neuroethology. 6 units (2-0-4); second term. Reading and discussions of original papers related to animal behavior
and its analysis by neuroethological methods. Knowledge of neurophysiology is required. Instructor: Konishi. Given in alternate years; offered 2005–06.

Bi 214. Hematopoiesis: A Developmental System. 6 units (2-0-4); third term. Prerequisite: Bi 114, or Bi 182, or Bi 117 plus Bi/Ch 111, or graduate standing. An advanced course with lectures and seminar presentations, based on reading from the current literature. The characteristics of blood cells offer unique insights into the molecular basis of lineage commitment and the mechanisms that control the production of diverse cell types from pluripotent precursors. The course will cover the nature of stem cells, the lineage relationships among differentiated cell types, the role of cytokines and cytokine receptors, apoptosis and lineage-specific proliferation, and how differentiation works at the level of gene regulation and regulatory networks. Roles of prominent regulatory molecules in hematopoietic development will be compared with their roles in other developmental systems. Emphasis will be on explanation of cellular and system-level phenomena in terms of molecular mechanisms. Instructor: Rothenberg. Given in alternate years; offered 2005–06.

Bi/CNS 216. Behavior of Mammals. 6 units (2-0-4); first term. A course of lectures, readings, and discussions focused on the genetic, physiological, and ecological bases of behavior in mammals. A basic knowledge of neuroanatomy and neurophysiology is desirable. Instructor: Allman. Given in alternate years; offered 2005–06.

Bi/CNS 217. Central Mechanisms in Perception. 6 units (2-0-4); first term. Reading and discussions of behavioral and electrophysiological studies of the systems for the processing of sensory information in the brain. Instructor: Allman. Given in alternate years; not offered 2005–06.

Bi 218. Molecular Neurobiology Graduate Seminar. 6 units (2-0-4); second term. Topics to be announced. Instructor: Anderson. Given in alternate years; not offered 2005–06.

CNS/Bi 221. Computational Neuroscience. 9 units (4-0-5). For course description, see Computation and Neural Systems.

Bi 225. Topics in Cellular and Molecular Genetics. 6 units (2-0-4); second term. Reading and discussion of current papers on the theory and practice of “genetic intervention” in higher eukaryotic cells. Approaches will include DNA and chromosome-mediated transformation of cells in culture, gene amplification, cell fusion, gene injection into eggs, and use of somatic cell genetics techniques for gene cloning. Emphasis on the use of these approaches to study problems in areas such as cell differentiation, cell cycle control, cell compartmentation, and membrane physiology and assembly. Instructor: Attardi. Given in alternate years; offered 2005–06.

Bi 227. Methods in Modern Microscopy. 12 units (2-6-4); first term. Prerequisite: instructor’s permission. Discussion and laboratory-based course covering the practical use of the confocal microscope, with special attention to the dynamic analysis of living cells and embryos. Course will begin with basic optics, microscope design, Koehler illumination, and the principles of confocal microscopy. After introductory period, the course will consist of semi-independent weeklong modules organized around different imaging challenges. Early modules will focus on three-dimensional reconstruction of fixed cells and tissues, with particular attention being paid to accurately imaging very dim samples. Later modules will include time-lapse confocal analysis of living cells and embryos, including Drosophila, zebra fish, chicken, and Xenopus embryos. Dynamic analysis will emphasize the use of fluorescent proteins. No prior experience with confocal microscopy will be assumed; however, a basic working knowledge of microscopes is highly recommended. Preference is given to graduate students who will be using confocal microscopy in their research. Instructor: Fraser.

Bi/ChE 228. Electron Microscopy of Soft Materials. 9 units (1-6-2); first term. This course will cover the basic design and operation of electron microscopes and the preparation of soft materials such as polymers and biological specimens for electron microscopic analysis, including cryo- and ultra-microtomy. The weekly lab assignments will guide students through sample preparation, imaging, and image analysis of samples of their choice, with the intention that it will directly facilitate their graduate research. No prior knowledge will be assumed. Students will research the original literature to evaluate alternative sample preparation and imaging conditions. Undergraduate students require advance instructor’s permission. Graded pass/fail. Instructors: Jensen, staff.

Ch/Bi 231. Advanced Topics in Biochemistry. 6 units (2-0-4). For course description, see Chemistry.

Ge/Bi 244. Paleobiology Seminar. 5 units. For course description, see Geological and Planetary Sciences.

Ge/Bi 246. Molecular Geobiology Seminar. 6 units (2-0-4). For course description, see Geological and Planetary Sciences.

CNS/Bi 247. Cerebral Cortex. 6 units (2-0-4). For course description, see Computation and Neural Systems.

Bi 250 a. Topics in Molecular and Cellular Biology. 9 units (3-0-6); first term. Prerequisite: graduate standing. Lectures and discussion covering research methods, logic, techniques and strategies, fundamental and general principles of modern biology, and unsolved problems. Students will learn to critique papers on molecular biology, cell biology, and genetics. Instructors: Deshaies, staff.
Bi/CNS 250 b. Topics in Systems Neuroscience. 9 units (3-0-6); second term. Prerequisite: graduate standing. The class focuses on quantitative studies of problems in systems neuroscience. Students will study classical work such as Hodgkin and Huxley’s landmark papers on the ionic basis of the action potential, and will move from the study of interacting currents within neurons to the study of systems of interacting neurons. Topics will include lateral inhibition, mechanisms of motion tuning, local learning rules and their consequences for network structure and dynamics, oscillatory dynamics and synchronization across brain circuits, and formation and computational properties of topographic neural maps. The course will combine lectures and discussions, in which students and faculty will examine papers on systems neuroscience, usually combining experimental and theoretical/modeling components. Instructors: Laurent, Siapas.

Bi 250 c. Topics in Systems Biology. 9 units (3-0-6); third term. Prerequisite: graduate standing. The class will focus on quantitative studies of cellular and developmental systems in biology. It will examine the architecture of specific genetic circuits controlling microbial behaviors and multicellular development in model organisms. The course will approach most topics from both experimental and theoretical/computational perspectives. Specific topics include chemotaxis, multistability and differentiation, biological oscillations, stochastic effects in circuit operation, as well as higher-level circuit properties such as robustness. The course will also consider the organization of transcriptional and protein-protein interaction networks at the genomic scale. Instructors: Elowitz, Sternberg.

Bi/BMB 251 abc. Current Research in Cellular and Molecular Biology. 1 unit (1-0-0). Prerequisite: graduate standing. Presentations and discussion of research at Caltech in biology and chemistry. Discussions of responsible conduct of research are included. Instructors: Sternberg, Deshaies, Hay.

Bi 252. Responsible Conduct of Research. 4 units (2-0-2); third term. This lecture and discussion course covers relevant aspects of the responsible conduct of biomedical and biological research. Topics include guidelines and regulations, ethical and moral issues, research misconduct, data management and analysis, research with animal or human subjects, publication, conflicts of interest, mentoring, and professional advancement. This course is required of all trainees supported on the NIH training grants in cellular and molecular biology and neuroscience, and is recommended for other graduate students in biology division labs. Undergraduate students require advance instructor’s permission. Graded pass/fail. Instructors: Meyerowitz, Sternberg, staff.

SS/Psy/Bi/CNS 255. Topics in Emotion and Social Cognition. 9 units (3-0-6). For course description, see Social Science.

Bi 260. How to Present a Seminar. 6 units (3-0-3); third term. Prerequisite: Graduate standing in biology or instructor’s permission. General data presentation techniques, including how to design a seminar, how to develop or set up a problem, the design of clear visual aids, the appropriate and clear description of data, and the presentation of conclusions and future directions. We will also focus on general speaking skills and discuss how to give a good journal club presentation. Students will have the opportunity to practice speaking skills and work on individual presentations. Graded pass/fail. Instructors: Laurent, Schuman. Given in alternate years; not offered 2005–06.

Bi 270. Special Topics in Biology. Units to be arranged; first, second, third terms. Students may register with permission of the responsible faculty member.

CNS/Bi 286 abc. Special Topics in Computation and Neural Systems. Units to be arranged. For course description, see Computation and Neural Systems.

Bi 299. Graduate Research. Units to be arranged; first, second, third terms. Students may register for research units after consultation with their adviser.

BUSINESS ECONOMICS AND MANAGEMENT

BEM/Ec/SS 20. Scientific Writing and Oral Presentation in the Social Sciences. 6 units (2-0-4); second term. This class provides the opportunity for students to improve their written and oral presentation skills in the social sciences. Students should come prepared with complete drafts of papers from another course or a SURF project, which they will substantially revise and improve in a style typical of peer-reviewed journals in their discipline. These papers must be the students’ original work and must be papers with social science content. An initial introduction to the art of scientific writing will be provided by the staff of the Hixon Writing Center. In addition, each student will work closely with an HSS mentor whose own research is close to the student’s paper topic. Fulfills the Institute scientific writing requirement and the option oral presentation requirement for HSS majors. Instructor: Yariv.

BEM 101. Introduction to Accounting. 9 units (3-0-6); first term. An introduction to accounting in business. Topics include financial accounting, cost accounting. Instructor: Swenson.

BEM 103. Introduction to Finance. 9 units (3-0-6); first term. Ec 11 recommended. An introduction to corporate finance. Economic theory is used to study asset valuation and financial decision making in business. Topics include financial decision making under certainty, introduction to valuation of risky assets (stocks and bonds), the corporate investment decision, dividend policy, and the corporate financing decision. Instructor: Staff.
BEM 105. Options. 9 units (3-0-6). Prerequisites: BEM 103, some familiarity with statistics. Ec 11 recommended. An introduction to modern option pricing theory. The focus is the valuation of contingent claims. Both American and European options are considered. The binomial and Black-Scholes option pricing models are derived. The theory is also applied to risky debt and portfolio choice. Instructor: Bossaerts.

BEM 106. Competitive Strategy. 9 units (3-0-6); third term. Prerequisite: Ec 11. This course develops concepts appropriate for formulating strategy in a competitive environment, using a combination of case analysis and lectures. The course covers differentiation strategies, positioning to neutralize incumbency advantages, the product life cycle, organizational design as competitive strategy, signaling, cooperation strategies, pricing and price discrimination as competitive strategy, strategic use of option theory, and the war of attrition. Instructor: McAfee.

BEM 107. Advanced Corporate Finance: Governance, Transacting, and Valuation. 9 units (3-0-6); third term. Prerequisite: BEM 103. This course builds on the concepts introduced in BEM 103 and applies them to current issues related to the financial management, regulation, and governance of both ongoing corporations and new start-up companies. The fundamental theme is valuation. The course discusses how valuation is affected by, among others, the role of directors, regulation of mergers and acquisitions, and management incentives. Instructor: Cornell.

BEM 110. Topics in Business Economics. 9 units (3-0-6). Prerequisite: instructor's permission. Offered by announcement. Selected topics in business economics. Not offered 2005–06.

BEM 116. Advanced Business Strategy for Technology. 9 units (3-0-6); third term. Prerequisite: BEM 106. This course develops tools to determine strategy for firms facing rapid technological change, great uncertainty, low marginal costs and high fixed costs of production, and short product life cycles. The focus is on firms with high levels of human capital (so-called high-tech firms). Special attention is paid to the product life cycle, patent strategy, pricing, and hiring and retention of talented individuals. Working in teams, students will be asked to formulate strategy in real business situations. Instructor: McAfee. Not offered 2005–06.

BEM/Ec 146. Organization Design. 9 units (3-0-6). Prerequisite: Ec 11. An introduction to the analysis, design, and management of organizations with an emphasis on incentives and information. Principles from economics, political science, and game theory will be applied to problems in project and team management, in organizations computing, and in allocating and pricing shared facilities. Instructor: Camerer.

BEM 190. Undergraduate Research Project. Units to be arranged; any term. Prerequisites: BEM 103, 106, and instructor's permission. This course offers advanced undergraduates the opportunity to pursue research on a business problem individually or in small groups. Graded pass/fail.

CHEMICAL ENGINEERING

ChE 10. Introduction to Chemical Engineering. 3 units (2-0-1); second term; open to freshmen only. A series of weekly seminars given by chemical engineering faculty or an outside speaker, on a topic of current research. Topics will be presented at an informal, introductory level. Graded pass/fail.

ChE 64. Principles of Chemical Engineering. 9 units (3-0-6); third term. Prerequisite: ChE 63 ab. Systems approach to conservation of mass and energy. Equilibrium staged separations. Instructor: Seinfeld.

ChE 80. Undergraduate Research. Units by arrangement. Research in chemical engineering offered as an elective in any term other than in the senior year. Graded pass/fail.

ChE 90 ab. Senior Thesis. 9 units (0-4-5); first, second, third terms. A research project carried out under the direction of a chemical engineering faculty member. A grade will not be assigned to ChE 90 prior to completion of the thesis, which normally takes two terms. A P grade will be given for the first term and then changed to the appropriate letter grade at the end of the course. Instructor: Davis.

Ch/ChE 91. Scientific Writing. 3 units (1-0-2). For course description, see Chemistry.

ChE 101. Chemical Reaction Engineering. 9 units (3-0-6); second term. Prerequisites: ChE 63 ab and ChE 64. Elements of chemical kinetics and chemically reacting systems. Homogeneous and heterogeneous catalysis. Chemical reactor analysis. Instructor: Arnold.
ChE 103 abc. Transport Phenomena. 9 units (3-0-6); first, second, third terms. Prerequisite: ACM 95/100 abc or concurrent registration. A rigorous development of the basic differential equations of conservation of momentum, energy, and mass in fluid systems. Solution of problems involving fluid flow, heat transfer, and mass transfer. Instructor: Vicic.

ChE 105. Dynamics and Control of Chemical Systems. 9 units (3-0-6); third term. Prerequisites: ChE 101 or equivalent, ACM 95 abc or concurrent registration. Analysis and design of dynamic chemical systems, spanning biomolecular networks to chemical processing. Topics include control strategies for regulating dynamic performance, formulation of mechanistic and empirical models, linear analysis of feedback systems, introduction to multivariate control. Instructor: Asthagiri.

ChE 110 ab. Optimal Design of Chemical Systems. 9 units (3-0-6); second, third terms. Prerequisites: ChE 63, ChE 101, ChE 103, or equivalent. Introduction to process design; flow sheets for chemical processes; synthesis of multicomponent separation sequences and reaction paths; synthesis of heat exchange networks; optimization; process economics; simulation of chemical processes; design of a major process. Not offered 2005–06.

ChE 126 ab. Chemical Engineering Laboratory. 9 units (1-6-2); second, third terms. Prerequisites: ChE 63, ChE 101, ChE 103, or equivalent. Projects illustrative of problems in transport phenomena, unit operations, surface and gas-phase chemical reactions/kinetics, process monitoring and control, and reactor design are performed. Microreactor concepts and applications in gas conversion. Short-term, open-ended research projects emphasizing hands-on experience, oral presentations, and journal-style written reports of scientific results. Instructors: Arnold, Giapis.

ChE 130. Biomolecular Engineering Laboratory. 9 units (1-5-3); third term. Prerequisites: ChE 63 ab, ChE 101 (concurrently) or instructor’s permission. Design, construction, and characterization of engineered biological systems that will be implemented in bacteria, yeast, and cell-free systems. Research problems will fall into the general areas of biomolecular engineering and synthetic biology. Emphasis will be on projects that apply rational and evolutionary design strategies toward engineering biological systems that exhibit dynamic, logical, or programmed behaviors. Instructor: Smolke.

Ch/ChE 140 ab. Principles and Applications of Semiconductor Photoelectrochemistry. 6 units (4-0-2). For course description, see Chemistry.

Ch/ChE 147. Polymer Chemistry. 9 units (3-0-6). For course description, see Chemistry.

ChE/ChE 148. Polymer Physics. 9 units (3-0-6); third term. Prerequisite: ChE/ChE 147 or instructor’s permission. An introduction to the physics that govern polymer structure and dynamics in liquid and solid states, and to the physical basis of characterization methods used in polymer science. The course emphasizes the scaling aspects of the various physical properties. Topics include conformation of a single polymer chain under different solvent conditions; dilute and semidilute solutions; thermodynamics of polymer blends and block copolymers; rubber elasticity; polymer gels; linear viscoelasticity of polymer solutions and melts; glass transition and crystallization. Not offered 2005–06.

ChE 151 ab. Physical and Chemical Rate Processes. 12 units (3-0-9); first, second terms. The foundations of heat, mass, and momentum transfer for single and multiphase fluids will be developed. Governing differential equations; laminar flow of incompressible fluids at low and high Reynolds numbers; forced and free convective heat and mass transfer, diffusion, and dispersion. Emphasis will be placed on physical understanding, scaling, and formulation and solution of boundary-value problems. Applied mathematical techniques will be developed and used throughout the course. Instructor: Kornfield.

ChE 152. Heterogeneous Kinetics and Reaction Engineering. 9 units (3-0-6); first term. Prerequisite: ChE 101 or equivalent. Survey of heterogeneous reactions and reaction mechanisms on metal and oxide catalysts. Characterization of porous catalysts. Reaction, diffusion, and heat transfer in heterogeneous catalytic systems. Instructor: Wagner.

ChE/Ch 155. Chemistry of Catalysis. 9 units (3-0-6); third term. Discussion of homogeneous and heterogeneous catalytic reactions, with emphasis on mechanistic principles and on the relationships between the two areas. Topics include homogeneous hydrogenation; catalysis by metals; homogeneous oxidation; catalysis by metal oxides; acid-base catalysis and zeolites. Not offered 2005–06.

ChE/EESE 158. Aerosol Physics and Chemistry. 9 units (3-0-6); second term. Open to graduate students and seniors with instructor’s permission. Fundamentals of aerosol physics and chemistry; aerodynamics and diffusion of aerosol particles; condensation and evaporation; thermodynamics of particulate systems; nucleation; coagulation; particle size distributions; optics of small particles. Instructor: Seinfeld.

ChE/BE 163. Introduction to Engineering Biological Molecules and Systems. 9 units (3-0-6); third term. Prerequisites: Bi/Ch 110 and ChE 101, or instructor’s permission. Current research problems in biomolecular engineering will serve to introduce principles and methods of molecular evolution, protein design, metabolic engineering, and design of genetic regulatory networks. Not offered 2005–06.
ChE/Ch 164. Introduction to Statistical Thermodynamics. 9 units (3-0-6); second term. Prerequisite: Ch 21 ab or equivalent. An introduction to the fundamentals and simple applications of statistical thermodynamics. Foundation of statistical mechanics; partition functions for various ensembles and their connection to thermodynamics; fluctuations; noninteracting quantum and classical gases; heat capacity of solids; adsorption; phase transitions and order parameters; linear response theory; structure of classical fluids; computer simulation methods. Instructor: Wang.

ChE 165. Chemical Thermodynamics. 9 units (3-0-6); first term. Prerequisite: ChE 63 ab or equivalent. An advanced course emphasizing the conceptual structure of modern thermodynamics and its applications. Review of the laws of thermodynamics; thermodynamic potentials and Legendre transform; equilibrium and stability conditions; metastability and phase separation kinetics; thermodynamics of single-component fluid and binary mixtures; models for solutions; phase and chemical equilibria; surface and interface thermodynamics; electrolytes and polymeric liquids. Instructor: Smolke.

ChE 174. Special Topics in Transport Phenomena. 9 units (3-0-6); third term. Prerequisites: ACM 95/100, ChE 151 ab. May be repeated for credit. Advanced problems in heat, mass, and momentum transfer. Introduction to mechanics of complex fluids; physicochemical hydrodynamics; microstructured fluids; colloidal dispersions; microfluidics; selected topics in hydrodynamic stability theory; transport phenomena in materials processing. Other topics may be discussed depending on class needs and interests. Not offered 2005–06.

ChE 189. Special Topics in Materials Processing. 9 units (3-0-6); third term. Prerequisites: ChE 63, ChE 103, or equivalent. Fundamental physics and chemistry of partially ionized, chemically reactive, low-pressure plasmas and their roles in electronic materials processing. Basic plasma equations and equilibrium. Plasma and sheath dynamics. Gas-surface interactions. Plasma diagnostics and monitoring. Plasma-assisted etching and deposition in integrated circuit fabrication. Visiting faculty or scientists may present portions of this course. Instructor: Giapis. Given in alternate years; offered 2005–06.

ChE/BE 210. Biomolecular Cell Engineering. 9 units (3-0-6); first term. Quantitative analysis of molecular mechanisms governing mammalian cell behavior. Topics include topology and dynamics of signaling and genetic regulatory networks, receptor-ligand trafficking, and biophysical models for cell adhesion and migration. Instructor: Asthagiri. Given in alternate years; offered 2005–06.

Bi/ChE 228. Electron Microscopy of Soft Materials. 9 units (1-6-2). For course description, see Biology.

ChE 280. Chemical Engineering Research. Offered to Ph.D. candidates in chemical engineering. Main lines of research now in progress are covered in detail in section two.

ChE 165. Chemical Thermodynamics. 9 units (3-0-6); first term. Prerequisite: ChE 63 ab or equivalent. An advanced course emphasizing the conceptual structure of modern thermodynamics and its applications. Review of the laws of thermodynamics; thermodynamic potentials and Legendre transform; equilibrium and stability conditions; metastability and phase separation kinetics; thermodynamics of single-component fluid and binary mixtures; models for solutions; phase and chemical equilibria; surface and interface thermodynamics; electrolytes and polymeric liquids. Instructor: Smolke.

ChE 174. Special Topics in Transport Phenomena. 9 units (3-0-6); third term. Prerequisites: ACM 95/100, ChE 151 ab. May be repeated for credit. Advanced problems in heat, mass, and momentum transfer. Introduction to mechanics of complex fluids; physicochemical hydrodynamics; microstructured fluids; colloidal dispersions; microfluidics; selected topics in hydrodynamic stability theory; transport phenomena in materials processing. Other topics may be discussed depending on class needs and interests. Not offered 2005–06.

ChE 189. Special Topics in Materials Processing. 9 units (3-0-6); third term. Prerequisites: ChE 63, ChE 103, or equivalent. Fundamental physics and chemistry of partially ionized, chemically reactive, low-pressure plasmas and their roles in electronic materials processing. Basic plasma equations and equilibrium. Plasma and sheath dynamics. Gas-surface interactions. Plasma diagnostics and monitoring. Plasma-assisted etching and deposition in integrated circuit fabrication. Visiting faculty or scientists may present portions of this course. Instructor: Giapis. Given in alternate years; offered 2005–06.

ChE/BE 210. Biomolecular Cell Engineering. 9 units (3-0-6); first term. Quantitative analysis of molecular mechanisms governing mammalian cell behavior. Topics include topology and dynamics of signaling and genetic regulatory networks, receptor-ligand trafficking, and biophysical models for cell adhesion and migration. Instructor: Asthagiri. Given in alternate years; offered 2005–06.

Bi/ChE 228. Electron Microscopy of Soft Materials. 9 units (1-6-2). For course description, see Biology.

ChE 280. Chemical Engineering Research. Offered to Ph.D. candidates in chemical engineering. Main lines of research now in progress are covered in detail in section two.
Ch 5 ab. Advanced Techniques of Synthesis and Analysis. 12 units (1-9-2); Ch 5 a and Ch 5 b 9 units (1-6-2); second, third terms. Prerequisite: Ch 4 ab. Modern synthetic chemistry. Specific experiments may change from year to year. Multistep syntheses of natural products, coordination complexes, and organometallic complexes will be included. Experiments to illustrate the fundamental principles of inorganic and organometallic chemistry. Methodology will include advanced techniques of synthesis and instrumental characterization. Instructors: Peters, Dougherty.

Ch 6 ab. Application of Physical Methods to Chemical Problems. 10 units (0-6-4); second, third terms. Prerequisites: Ch 1, Ch 4 ab, and Ch 21 or equivalents (may be taken concurrently). Introduction to the application of modern physical methods to chemical problems, with emphasis in the area of molecular spectroscopy. Techniques including X-ray crystallography, laser Raman spectroscopy, microwave spectroscopy, electron spin resonance, ultraviolet photoelectron spectroscopy, and Fourier transform ion cyclotron resonance spectroscopy are used to examine the structure, properties, and reaction dynamics of molecules in the gas phase, in solution, and at surfaces. Instructors: Okumura, Beauchamp, Collier.

Ch 7. Advanced Experimental Methods in Bioorganic Chemistry. 9 units (1-6-2); third term. Prerequisites: Ch 41 abc, and Bi/Ch 110, Ch 4 ab. Enrollment by instructor's permission. Preference will be given to students who have taken Ch 5 a or Bi 10. This advanced laboratory course will provide experience in the powerful contemporary methods for polypeptide and oligonucleotide synthesis. Experiments will address nucleic acid and amino acid protecting group strategies, biopolymer assembly and isolation, and product characterization. A strong emphasis will be placed on understanding the chemical basis underlying the successful utilization of these procedures. In addition, experiments to demonstrate the application of commercially available enzymes for useful synthetic organic transformations will be illustrated. Instructor: Dervan.

Ch 10 abc. Frontiers in Chemistry. 3 units (2-0-1); first, second terms. 8 units (1-6-1); third term. Open for credit to freshmen and sophomores. Prerequisites: Ch 10 c; prerequisites are Ch 10 ab, Ch 3 a, and either Ch 1 ab, Ch 41 ab, or Ch 21 ab, and instructor's permission. Ch 10 ab is a weekly seminar by a member of the chemistry department on a topic of current research; the topic will be presented at an informal, introductory level. The other weekly session will acquaint students with the laboratory techniques and instrumentation used on the research topics. Ch 10 c is a research-oriented laboratory course, which will be supervised by a chemistry faculty member. Weekly class meetings will provide a forum for participants to discuss their research projects. Graded pass/fail. Instructors: Barton, Dervan.

Ch 14. Chemical Equilibrium and Analysis. 6 units (2-0-4); third term. A systematic treatment of ionic equilibria in solution. Topics covered include acid-base equilibria in aqueous and nonaqueous solutions, complex ion formation, chelation, oxidation-reduction reactions, and some aspects of reaction mechanisms. Instructors: Rees, Brandow.

Ch 15. Chemical Equilibrium and Analysis Laboratory. 10 units (0-6-4); first term. Prerequisites: Ch 1 ab, Ch 3 a, Ch 14, or instructor's permission. Laboratory experiments are used to illustrate modern instrumental techniques that are currently employed in industrial and academic research. Emphasis is on determinations of chemical composition, measurement of equilibrium constants, evaluation of rates of chemical reactions, and trace-metal analysis. Instructor: Brandow.

Ch 21 abc. The Physical Description of Chemical Systems. 9 units (3-0-6); first, second, third terms. Prerequisites: Ch 1 ab, Ph 2 ab, Ma 2 ab. Atomic and molecular quantum mechanics, spectroscopy, thermodynamics, statistical mechanics, and chemical kinetics. Instructors: McKoy, Blake, Okumura.

Ch 24 ab. Introduction to Biophysical Chemistry. 9 units (3-0-6); second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc, Ch 21 a or Ph 2 ab. Fundamental physical chemistry, with emphasis on those topics most important in biology. Thermodynamics and its applications to aqueous solutions and living systems, membrane potentials and the thermodynamics of transport, reaction kinetics and mechanisms, transport properties, applications of molecular spectroscopy in biology, and statistical mechanics with applications to biological polymers. Instructors: Rees, S. Chan.

Ch 41 abc. Organic Chemistry. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 1 ab or instructor's permission. The synthesis, structures, and mechanisms of reactions of organic compounds. Instructors: Grubbs, Hsieh-Wilson, Stoltz.

Ch 80. Chemical Research. Offered to B.S. candidates in chemistry. Units in accordance with work accomplished. Prerequisite: consent of research supervisor. Experimental and theoretical research requiring a report containing an appropriate description of the research work.

Ch 81. Independent Reading in Chemistry. Units by arrangement. Prerequisite: instructor's permission. Occasional advanced work involving reading assignments and a report on special topics. No more than 12 units in Ch 81 may be used as electives in the chemistry option.

Ch 90. Oral Presentation. 3 units (2-0-1); second term. Training in the techniques of oral presentation of chemical and biochemical topics. Practice in the effective organization and delivery of technical reports before groups. Graded pass/fail. Instructor: Bigle.
Ch/ChE 91. Scientific Writing. 3 units (1-0-2); third term. Training in the writing of scientific research papers. Each student must complete a 3,000-word paper styled after an article in *The Journal of the American Chemical Society* on a subject of chemical or biochemical relevance. The manuscript may be based on a paper submitted by the student for a previous class or on a SURF report, but it must be the student's original writing and be within the intellectual scope of the chemistry and chemical engineering division. Each student will work individually with a faculty member under the supervision of the course instructor. Fulfills the Institute scientific writing requirement. Instructor: Weitekamp.

Ch 102. Introduction to Inorganic Chemistry. 9 units (3-0-6); third term. Prerequisite: Ch 41 ab. Structure and bonding of inorganic species with special emphasis on spectroscopy, ligand substitution processes, oxidation-reduction reactions, and biological inorganic chemistry. Letter grades only. Instructor: Peters.

Bi/Ch 110. Introduction to Biochemistry. 12 units (4-0-8).
For course description, see Biology.

Bi/Ch 111. Biochemistry of Gene Expression. 12 units (4-0-8).
For course description, see Biology.

Ch 112. Inorganic Chemistry. 9 units (3-0-6); first term. Prerequisite: Ch 102 or instructor's permission. Introduction to group theory, ligand field theory, and bonding in coordination complexes and organotransition metal compounds. Systematics of synthesis, bonding, and reactivities of commonly encountered classes of transition metal compounds. Instructor: Bercaw.

Bi/Ch 113. Biochemistry of the Cell. 12 units (4-0-8). For course description, see Biology.

Ch 117. Introduction to Electrochemistry. 6 units (2-0-4); second term. Discussion of the structure of electrode-electrolyte interface, the mechanism by which charge is transferred across it, and experimental techniques used to study electrode reactions. Topics change from year to year but usually include diffusion currents, polarography, coulometry, irreversible electrode reactions, the electrical double layer, and kinetics of electrode processes. Instructors: Lewis, staff.

Ch 120 abc. Nature of the Chemical Bond. 9 units (3-0-6) first term; 6 units (2-0-4) second term; 6 units (1-1-4) third term. Prerequisite: general exposure to quantum mechanics (e.g., Pb 2 ab, Pb 12 abc, or equivalent). Modern ideas of chemical bonding, with an emphasis on qualitative concepts and how they are used to make predictions of structures, energetics, excited states, and properties. Part a: The quantum mechanical basis for understanding bonding, structures, energetics, and properties of materials (polymers, ceramics, metals alloys, semiconductors, and surfaces). The emphasis is on explaining chemical, mechanical, electrical, and thermal properties of materials in terms of atomistic concepts. Part b: The quantum mechanical basis for understanding transition metal systems with a focus on chemical reactivity. There will be an emphasis on organometallic complexes, on homogeneous catalysis, and on heterogeneous catalysis. Part c: The student does an individual research project using modern quantum chemistry computer programs to calculate wavefunctions, structures, and properties of real molecules. Part b not offered 2005–06. Instructor: Goddard.

Ch 121 ab. Atomic Level Simulations of Materials and Molecules. 9 units (3-1-5) second, third terms. Prerequisites: Ma 2 ab, Pb 2 ab, Ch 1 ab, or equivalent. Recommended: Ch 41 ab, Ch 21 a. Methods for predicting the structures and properties of molecules and solids. The course will highlight theoretical foundations and applications to current problems in the following areas: biological systems (proteins, DNA, carbohydrates, lipids); polymers (crystals, amorphous systems, copolymers); semiconductors (group IV, III-V, surfaces, defects); inorganic systems (ceramics, zeolites, superconductors, and metals); and organometallics and catalysis (heterogeneous and homogeneous). Both terms will involve the use of computers for building and calculating systems of interest. Part a covers the basic methods. Part b will focus on simulations applied to problems in petroleum chemistry. Ch 120 a is recommended but not required for Ch 121 a. Part b not offered 2005–06. Instructor: Goddard.

Ch 122 abc. Methods for the Determination of the Structure of Molecules. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 122 a or instructor's permission. Modern methods used in the determination of the structure of molecules, including X-ray, electron, and neutron diffraction; mass spectrometry; optical, infrared, Raman, microwave, Mössbauer, nuclear magnetic, and electron spin resonance spectroscopy. The emphasis will be on nuclear magnetic resonance (first term), and diffraction methods and mass spectrometry (third term). All three terms can be taken independently. Ch 122 a will be offered first term. Instructor: Day.

Ch 125 abc. The Elements of Quantum Chemistry. 9 units (3–0–6); first, second, third terms. Prerequisite: Ch 21 abc or an equivalent brief introduction to quantum mechanics. A first course in molecular quantum mechanics consisting of a quantitative treatment of quantum mechanics with applications to systems of interest to chemists. The basic elements of quantum mechanics, the electronic structure of atoms and molecules, the interactions of radiation fields and matter, scattering theory, and reaction rate theory. Instructors: Kuppermann, McCoy.

Ch 126. Molecular Spectra and Molecular Structure. 9 units (3-0-6); third term. Prerequisite: Ch 21 and Ch 125 a concurrently, or instructor's permission. Quantum mechanical foundations of the spectroscopy of molecules. Topics include quantum theory of angular momentum, rovibrational Hamiltonian for polyatomic molecules,

Ge/Ch 127. Nuclear Chemistry. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

Ge/Ch 128. Cosmochemistry. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

Ch 130. Spectroscopy. 9 units (3-0-6); third term. Discussion of various topics in lasers and their applications. Group theory with applications to molecular structure and spectroscopy will also be discussed. Not offered 2005–06.

Bi/Ch 132. Biophysics of Macromolecules. 9 units (3-0-6). For course description, see Biology.

Ch 135 ab. Chemical Dynamics. 9 units (3-0-6); part a, third term; part b, second term. Prerequisites: Ch 21 abc and Ch 41 abc, or equivalent, or instructor’s permission. Part a: introduction to the dynamics of chemical reactions. Topics include scattering cross sections, rate constants, intermolecular potentials, reactive scattering, nonadiabatic processes, statistical theories of unimolecular reactions, and the application of laser and molecular beam techniques to the study of reaction mechanisms. Part b: the quantum description of chemical reactions. The scattering matrix. The calculation of reaction cross sections, probabilities, and rate constants. Collision lifetimes and resonances. Classical trajectories. The two terms can be taken independently. Not offered 2005–06.

Ch/ChE 140 ab. Principles and Applications of Semiconductor Photoelectrochemistry. 6 units (4-0-2); second, third terms. Prerequisite: AP/EE 9 or instructor’s permission. The properties and photoelectrochemistry of semiconductors and semiconductor/liquid junction solar cells will be discussed. Topics include optical and electronic properties of semiconductors; electronic properties of semiconductor junctions with metals, liquids, and other semiconductors, in the dark and under illumination, with emphasis on semiconductor/liquid junctions in aqueous and nonaqueous media. Problems currently facing semiconductor/liquid junctions and practical applications of these systems will be highlighted. The course will meet for four one-hour lectures per week and will be in a tutorial format with instruction predominantly from graduate students and postdoctoral fellows with expertise in the field. Instructor: Lewis. Given in alternate years; offered 2005–06.

Ch 142. Frontiers in Chemical Biology. 4 units (2-0-2); second term. Prerequisite: Bi/Ch 110 or instructor’s permission. A discussion of enzyme structure and function, and ligand-protein-nucleic acid interactions. Not offered 2005–06.

Ch 143. Basic FT NMR Spectroscopy. 9 units (3-2-4); second term. Prerequisite: Ch 41 abc. The course will cover NMR basics and applications, with emphasis on FT NMR and the principles of multipulse NMR techniques used in structural analysis, including determination of relaxation times, INEPT, DEPT, NOSEY, and COSY. A number of NMR techniques will be illustrated with the Chapman-Russell FT NMR Problems videodisc-based computer program, which features on-screen spectra at a variety of magnetic fields with, and without, decoupling, 2-D spectra, and so on. The practical use of NMR will be further demonstrated by laboratory exercises using modern pulse FT NMR techniques with high-field spectrometers for structural analysis. Instructor: J. D. Roberts.

Ch 144 ab. Advanced Organic Chemistry. 9 units (3-0-6); first term. Prerequisite: Ch 41 abc; Ch 21 abc recommended. An advanced survey of selected topics in modern physical organic chemistry. Topics vary from year to year and may include structural and theoretical organic chemistry; molecular recognition/supramolecular chemistry; reaction mechanisms and the tools to study them; reactive intermediates; materials chemistry; pericyclic reactions; and photochemistry. In 2005–06, only part a will be offered (first term). Instructor: Dougherty.

Ch 145. Bioorganic Chemistry of Proteins. 9 units (3-0-6); first term. Prerequisites: Ch 41 abc and Bi/Ch 110. This course aims to define the information that can be derived on the structure and function of enzymes through the use of affinity labeling reagents, mechanism-based inactivators, and transition-state analog inhibitors. While the focus will be on selected classes of enzymes, the material covered is intended to give insight into general rules for the investigation of enzyme mechanisms and inhibitor design. Not offered 2005–06.

Ch 146. Bioorganic Chemistry of Nucleic Acids. 9 units (3-0-6); third term. Prerequisite: Ch 41 ab. The course will examine the bioorganic chemistry of nucleic acids, including DNA and RNA structures, molecular recognition, and mechanistic analyses of covalent modification of nucleic acids. Topics include synthetic methods for the construction of DNA and RNA; separation techniques; recognition of duplex DNA by peptide analogs, proteins, and oligonucleotide-directed triple helical formation; RNA structure and RNA as catalysts (ribozymes). Given in alternate years; not offered 2005–06.

Ch/ChE 147. Polymer Chemistry. 9 units (3-0-6); second term. Prerequisite: Ch 41 abc. An introduction to the chemistry of polymers, including synthetic methods, mechanisms and kinetics of macromolecule formation, and characterization techniques. Instructor: Grubbs.

ChE/Ch 148. Polymer Physics. 9 units (3-0-6). For course description, see Chemical Engineering.
Ch 153. Advanced Inorganic Chemistry. 9 units (2-0-7); second term.
Prerequisites: Ch 112 and Ch 21 abc or concurrent registration. Topics in
modern inorganic chemistry. Electronic structure, spectroscopy, and
photochemistry with emphasis on examples from the modern research
literature. Instructor: Gray.

Ch 154 ab. Organometallic Chemistry. 9 units (3-0-6); second, third
terms. Prerequisite: Ch 112 or equivalent. A general discussion of the
reaction mechanisms and the synthetic and catalytic uses of transition
metal organometallic compounds. Second term: a survey of the
elementary reactions and methods for investigating reaction mecha-
nisms. Third term: contemporary topics in inorganic and organometal-
lic synthesis, structure and bonding, and applications in catalysis.

ChE/Ch 155. Chemistry of Catalysis. 9 units (3-0-6). For course
description, see Chemical Engineering.

Ch 163. Lectures-Seminars in Physical Chemistry. 6 units (2-0-4);

ChE/Ch 164. Introduction to Statistical Thermodynamics. 9 units
(3-0-6). For course description, see Chemical Engineering.

Ch 165. Nonequilibrium Statistical Mechanics. 9 units (3-0-6); third
term. Prerequisite: Ch 21 abc or equivalent. Transport processes in dilute
gases; Boltzmann equation; Brownian motion; Langevin and Fokker-
Planck equations; linear response theory; time-correlation functions
and applications; nonequilibrium thermodynamics. Instructor: Marcus.

BMB/Bi/Ch 170. Principles of Three-Dimensional Protein
Structure. 9 units (3-3-3). For course description, see Biochemistry
and Molecular Biophysics.

ESE/Ge/Ch 171. Atmospheric Chemistry I. 9 units (3-0-6). For course
description, see Environmental Science and Engineering.

ESE/Ge/Ch 172. Atmospheric Chemistry II. 9 units (3-0-6). For course
description, see Environmental Science and Engineering.

ESE/Ch/Ge 175 ab. Environmental Organic Chemistry. 9 units
(3-0-6). For course description, see Environmental Science and
Engineering.

Ch 180. Chemical Research. Units by arrangement. Offered to M.S.
candidates in chemistry. Graded pass/fail.

Ch 212. Bioinorganic Chemistry. 9 units (3-0-6); third term.
Prerequisites: Ch 112 and Bi/Ch 110 or equivalent. Current topics in
bioinorganic chemistry will be discussed, including metal storage and
regulation, metalloenzyme structure and reactions, biological electron
transfer, metalloprotein design, and metal-nucleic acid interactions and
reactions. Instructor: Barton. Given in alternate years; offered
2005–06.

Ch 213 abc. Advanced Ligand Field Theory. 12 units (1-0-11);
first, second, third terms. Prerequisite: Ch 21 abc or concurrent registration.
A tutorial course of problem solving in the more advanced aspects
of ligand field theory. Recommended only for students interested in
detailed theoretical work in the inorganic field. Instructors: Gray, staff.

Ch 221. Electron Transfer Reactions in Chemistry and Biology.
6 units; second term. Prerequisite: Ch 21 abc. Fundamentals of electron
transfer reactions. Molecular (statistical) theory, dielectric continua,
electronic matrix elements, Franck-Condon principle, relevant thermo-
dynamics, reorganization energy, quantum effects, charge transfer
spectra, solvent dynamics. Reactions in solution at metal electrode-
liquid, modified electrode-liquid, semiconductor electrode-liquid, and
liquid-liquid interfaces. STM theory. Reactions in photosynthetic
reaction centers and in other proteins. Not offered 2005–06.

Ch 227 ab. Advanced Topics in Chemical Physics. 9 units (3-0-6);
part a second term; part b third term. Prerequisite: Ch 125 abc or Pb 125
abc or equivalent. The general quantum mechanical theory of molecular
collisions will be presented in detail. Quasi-classical, semi-classical, and
other approximations. Applications to inelastic and reactive molecule-
molecule and inelastic electron-molecule collisions. Part a not offered

Ch 228. Dynamics and Complexity in Physical and Life Sciences.
9 units (3-0-6); third term. This course is concerned with the dynamics
of molecular systems, with particular focus on complexity, the elemen-
tary motions that lead to functions in chemical and biological assem-
blies. It will address principles of dynamics as they relate to the nature
of the chemical bond. An overview of modern techniques, such as
those involving lasers, NMR, and diffraction, for unraveling dynamics
in complex systems. Applications from areas of physics, chemistry, and
biology—from coherence and chaos to molecular recognition and self-
assembly. Instructor: Zewail.

Ch/Bi 231. Advanced Topics in Biochemistry. 6 units (2-0-4); third
term. Transcriptional Regulation in Eukaryotes. Topics: the subunit
structure of eukaryotic RNA polymerases and their role in transcrip-
tional reactions; the composition of eukaryotic promoters, including
regulatory units; general and specific transcription factors; develop-
mental regulatory circuits and factors; structural motifs involved in
DNA binding and transcriptional initiation and control. Not offered
2005–06.

Ch 242 ab. Chemical Synthesis. 9 units (3-0-6); first, second terms.
Prerequisite: Ch 41 abc. An integrated approach to synthetic problem
solving featuring an extensive review of modern synthetic reactions
with concurrent development of strategies for synthesis design. Part a
will focus on the application of modern methods of stereocontrol in the construction of stereochemically complex acyclic systems. Part b will focus on strategies and reactions for the synthesis of cyclic systems. Instructors: Stoltz, MacMillan.

Ch 244 a. Topics in Chemical Biology. 9 units; second term. Current topics at the interface of chemistry and biology. Not offered 2005–06.

Ch 250. Advanced Topics in Chemistry. Units and term to be arranged. Content will vary from year to year; topics are chosen according to interests of students and staff. Visiting faculty may present portions of this course. Instructors: MacMillan, Stoltz.

Ch 280. Chemical Research. Hours and units by arrangement. By arrangement with members of the faculty, properly qualified graduate students are directed in research in chemistry.

CIVIL ENGINEERING

....................

CE 90 abc. Structural Analysis and Design. 9 units (3-0-6); first, second, third terms. Prerequisite: ME 35 ab. Structural loads; influence lines for statically determinate beams and trusses; deflection of beams; moment area and conjugate beam theorems; approximate methods of analysis of indeterminate structures; slope deflection and moment distribution techniques. Generalized stiffness and flexibility analyses of indeterminate structures. Design of selected structures in timber, steel, and reinforced concrete providing an introduction to working stress, load and resistance factor, and ultimate strength approaches. In each of the second and third terms a design project will be undertaken involving consideration of initial conception, cost-benefit, and optimization aspects of a constructed facility. Instructor: Hall.

CE 95. Introduction to Soil Mechanics. 9 units (2-3-4); second term. Prerequisite: ME 35 ab. A general introduction to the physical and engineering properties of soil, including origin, classification and identification methods, permeability, seepage, consolidation, settlement, slope stability, and lateral pressures and bearing capacity of footings. Standard laboratory soil tests will be performed. Not offered 2005–06.

ME/CE 96. Mechanical Engineering Laboratory. 6 or 9 units as arranged with instructor. For course description, see Mechanical Engineering.

CE 100. Special Topics in Civil Engineering. Units to be based upon work done, any term. Special problems or courses arranged to meet the needs of first-year graduate students or qualified undergraduate students. Graded pass/fail.

Ac/Ap/CE/ME 101 abc. Fluid Mechanics. 9 units (3-0-6). For course description, see Aeronautics.

Ac/Ae/AM/CE/ME 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6). For course description, see Aeronautics.

CE/Ac/Ae/Am 108 abc. Computational Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: instructor's permission. Numerical analysis by the finite element method covering fundamental concepts and computer implementation. Solution of systems of linear equations and eigenvalue problems. Solution of the partial differential equations of heat transfer, solid and structural mechanics, and fluid mechanics. Transient and nonlinear problems. Not offered 2005–06.

CE 113 ab. Coastal Engineering. 9 units (3-0-6); first term. 9 units (2-3-4); second terms. 9 units (3-0-6); third term. Prerequisite: ME 19 ab or equivalent; ACM 95/100 abc. Engineering applications of the theory of small and finite amplitude water waves; diffraction, reflection, refraction; wind-generated waves and wave prediction procedures; tides and their interaction with the coastline; effect of waves on coastal structures such as breakwaters and pile-supported structures; coastal processes. Not offered 2005–06.

CE 115 ab. Soil Mechanics. 9 units (3-0-6); first term. 9 units (2-3-4); second term. Prerequisite: instructor's permission. Study of the engineering behavior of soil through examination of its chemical, physical, and mechanical properties. Classification and identification of soils, surface chemistry of clays, interparticle reactions, soil structure. Linear constitutive relations for soils, including steady-state and transient water flow. Second term: nonlinear soil behavior, theories of yielding, plasticity, constitutive models, and problems of plastic stability. Failure modes of footings, walls, and slopes. Not offered 2005–06.

CE 130 abc. Civil Engineering Seminar. 1 unit (1-0-0); each term. All candidates for the M.S. degree in civil engineering are required to attend a graduate seminar, in any division, each week of each term. Students not registered for the M.S. degree in civil engineering must receive the instructor’s permission. Graded pass/fail. Instructor: Staff.

CE 150. Foundation Engineering. 9 units (3-0-6); third term. Prerequisite: CE 115 ab. Methods of subsoil exploration. Study of types and methods of design and construction of foundations for structures, including single and combined footings, mats, piles, caissons, retaining walls, cofferdams, and methods of underpinning. Text: Foundation Analysis, Scott. Not offered 2005–06.
CE 160 abc. Structural and Earthquake Engineering. 9 units (3-0-6); first, second, third terms. Prerequisite: CE 90 or equivalent. Topics forming the foundation for structural analysis and design are covered. Techniques for linear and nonlinear, static and dynamic analysis, including analysis of structure-fluid systems and structure-fluid systems, the nature of loadings due to wind and earthquake, concepts in design. Special consideration is given to behavior and design of specific structural systems such as buildings, bridges, concrete dams, liquid-storage tanks, tunnels and pipelines, cable structures, and offshore structures. Special emphasis on engineering for earthquakes. Not offered 2005–06.

CE 180. Experimental Methods in Earthquake Engineering. 9 units (1-3-5); third term. Prerequisite: AM 151 abc or equivalent. Laboratory work involving calibration and performance of basic transducers suitable for the measurement of strong earthquake ground motion, and of structural response to such motion. Study of principal methods of dynamic tests of structures, including generation of forces and measurement of structural response. Not offered 2005–06.

CE/Ge 181. Engineering Seismology. 9 units (3-0-6); first term. Characteristics of potentially destructive earthquakes from the engineering point of view. Determination of location and size of earthquakes; magnitude, intensity, frequency of occurrence; engineering implications of geological phenomena, including earthquake mechanisms, faulting, fault slip, and effects of local geology on earthquake ground motion. Instructor: Heaton.

CE 200. Advanced Work in Civil Engineering. 6 or more units as arranged; any term. Members of the staff will arrange special courses on advanced topics in civil engineering for properly qualified graduate students. The following numbers may be used to indicate a particular area of study.

Ae/AM/CE/ME 214 abc. Computational Solid Mechanics. 9 units (3-0-6). For course description, see Aeronautics.

CE 300. Research in Civil Engineering. Hours and units by arrangement. Research in the field of civil engineering. By arrangements with members of the staff, properly qualified graduate students are directed in research.

For courses in Environmental Science and Engineering, see that section.

COMPUTATION AND NEURAL SYSTEMS

CNS 100. Introduction to Computation and Neural Systems. 1 unit (1-0-0); first term. This course is designed to introduce undergraduate and first-year CNS graduate students to the wide variety of research being undertaken by CNS faculty. Topics from all the CNS research labs are discussed and span the range from biology to engineering. Graded pass/fail. Instructor: Koch.

CNS/Bi/Psy 120. The Neuronal Basis of Consciousness. 9 units (4-0-5); third term. What are the correlates of consciousness in the brain? The course provides a framework for beginning to address this question using a reductionist point of view. It focuses on the neurophysiology of the primate visual system, but also discusses alternative approaches more suitable for work with rodents. Topics to be covered include the anatomy and physiology of the primate's visual system (striate and extrastriate cortical areas, dorsal/ventral distinction, visual-frontal connections), iconic and working memory, selective visual attention, visual illusions, clinical studies (neglect, blind sight, split-brain, agnosia), direct stimulation of the brain, delay and trace associative conditioning, conscious and unconscious olfactory processing, and philosophical approaches to consciousness. Instructor: Koch. For more information, see http://klab.caltech.edu/cns120.

Psy/CNS 130. Introduction to Human Memory. 9 units (3-0-6). For course description, see Psychology.

Psy/Bi/CNS 131. The Psychology of Learning and Motivation. 9 units (3-0-6). For course description, see Psychology.

SS/Psy/Bi/CNS 140. Social Neuroscience. 9 units (3-0-6). For course description, see Social Science.

EE/CNS/CS 148 ab. Selected Topics in Computational Vision. 9 units (3-0-6). For course description, see Computer Science.

Bi/CNS 150. Neurobiology. 10 units (4-0-6). For course description, see Biology.

CS/CNS/EE 156 ab. Learning Systems. 9 units (3-0-6). For course description, see Computer Science.

Bi/CNS 157. Comparative Nervous Systems. 9 units (2-3-4). For course description, see Biology.

Bi/CNS 158. Vertebrate Evolution. 9 units (3-0-6). For course description, see Biology.

Bi/CNS 161. Cellular and Molecular Neurobiology Laboratory. 9 units (0-9-0). For course description, see Biology.
Bi/CNS 162. Cellular and Systems Neuroscience Laboratory. 12 units (2-7-3). For course description, see Biology.

CS/CNS 171. Introduction to Computer Graphics Laboratory. 12 units (3-6-3). For course description, see Computer Science.

CNS/Bi 172. Clinical Neuropsychology. 6 units (3-0-3); second term. Prerequisite: Bi 150 or instructor's permission. Lecture course discussing the relationship between cerebral structures and behavior, in particular with respect to the clinical literature. Cerebral functions are considered in light of acquired behavioral deficits such as aphasia, apraxia, agnosia, callosal syndrome (split-brain), hemineglect, dementia, amnesia, and anosognosia. Instructor: Spezio.

CNS/CNS 174. Computer Graphics Projects. 12 units (3-6-3). For course description, see Computer Science.

CNS/Bi 176. Cognition. 12 units (6-0-6); third term. The cornerstone of current progress in understanding the mind, the brain, and the relationship between the two is the study of human and animal cognition. This course will provide an in-depth survey and analysis of behavioral observations, theoretical accounts, computational models, patient data, electrophysiological studies, and brain-imaging results on mental capacities such as attention, memory, emotion, object representation, language, and cognitive development. Not offered 2005–06.

CNS/Bi/BE/Ph 178. Evolution and Biocomplexity. 9 units (3-0-6); first term. Prerequisites: Bi 2, preferably Bi 8, or instructor's permission; programming skills. An introduction to Darwin's theory of evolution from a theoretical, experimental, and computational point of view, with special emphasis on the mechanisms responsible for the evolution of complexity from simplicity. Experiments conducted with digital organisms. Topics covered include the principal ideas of Darwinism, measures of complexity, information content of genomes, the "natural" Maxwell Demon, Eigen's theory of molecular evolution, evolution on neutral networks, "epistasis" and the evolution of recombination, and the evolution of mutation rate. Not offered 2005–06.

CNS 180. Research in Computation and Neural Systems. Units by arrangement with faculty. Offered to precandidacy students.

CNS/Bi/EE 186. Vision: From Computational Theory to Neuronal Mechanisms. 12 units (4-4-4); second term. Lecture, laboratory, and discussion course aimed at understanding visual information processing, in both machines and the mammalian visual system. The course will emphasize an interdisciplinary approach aimed at understanding vision at several levels: computational theory, algorithms, psychophysics, and hardware (i.e., neuroanatomy and neurophysiology of the mammalian visual system). The course will focus on early vision processes, in particular motion analysis, binocular stereo, brightness, color and texture analysis, visual attention and boundary detection. Students will be required to hand in approximately three homework assignments as well as complete one project (mathematical analysis, computer modeling, or psychophysics). Instructors: Perona, Shimojo, Koch. Given in alternate years; offered 2005–06. For more information, see http://www.klab.caltech.edu/cns186.

CNS/Bi/Ph/CS 187. Neural Computation. 9 units (3-0-6); first term. Prerequisite: familiarity with digital circuits, probability theory, linear algebra, and differential equations. Programming will be required. This course investigates computation by neurons. Of primary concern are models of neural computation and their neurological substrate, as well as the physics of collective computation. Thus, neurobiology is used as a motivating factor to introduce the relevant algorithms. Topics include rate-code neural networks, their differential equations, and equivalent circuits; stochastic models and their energy functions; associative memory; supervised and unsupervised learning; development; spike-based computing; single-cell computation; error and noise tolerance. Instructor: Winfree.

CNS/CS/EE 188 a. Computation Theory and Neural Systems. 9 units (3-0-6); second term. Prerequisite: Ma 2. Introduction to computational models and methods that are inspired by, and related to, neural systems. Specific topics include computing elementary and symmetric Boolean functions with neural linear threshold (LT) circuits and AND, OR, NOT (AON) circuits. Computing arithmetic functions with LT circuits and AON circuits, including COMPARISON, ADDITION, PRODUCT, SORTING, and COUNTING. Algebraic techniques and their applications in the construction of minimal weight linear threshold functions. The class includes a project that focuses on creating an interactive Web-based linear threshold calculator. Instructor: Bruck. Additional information concerning this course can be found at http://paradise.caltech.edu/cns188.

CNS/CS/EE 188 b. Topics in Computation and Biological Systems. 9 units (3-0-6); third term. Prerequisite: CNS/CS/EE 188 a. Advanced topics related to computational methods in biology. Topics might change from year to year. Examples include spectral analysis techniques and their applications in threshold circuits complexity and in computational learning theory. The role of feedback in computation. The logic of computation in gene regulation networks. The class includes a project that has the goal of learning how to understand, criticize, and present the ideas and results in research papers. Instructor: Bruck. Additional information concerning this course can be found at http://paradise.caltech.edu/cns188. Not offered 2005–06.

CS/CNS/Bi 191 ab. Biomolecular Computation. 9 units (3-0-6) second term; (2-4-3) third term. For course description, see Computer Science.

Bi/CNS 216. Behavior of Mammals. 6 units (2-0-4). For course description, see Biology.
Bi/CNS 217. Central Mechanisms in Perception. 6 units (2-0-4).
For course description, see Biology.

CNS/Bi 221. Computational Neuroscience. 9 units (4-0-5); third term. Prerequisite: Bi/CNS 150 or instructor’s permission. Lecture and discussion aimed at understanding computational aspects of information processing within the nervous system. The course will emphasize single neurons and how their biophysical properties relate to neuronal coding, i.e., how information is actually represented in the brain at the level of action potentials. Topics include biophysics of single neurons, signal detection and signal reconstruction, information theory, population coding and temporal coding in sensory systems of invertebrates and in the primate cortex. Students are required to hand in three homework assignments, discuss one set of papers in class, and participate in the debates. Instructors: Koch, Einhaeuser-Treyer.

CNS/Bi 247. Cerebral Cortex. 6 units (2-0-4); second term. Prerequisite: Bi/CNS 150 or equivalent. A general survey of the structure and function of the cerebral cortex. Topics include cortical anatomy, functional localization, and newer computational approaches to understanding cortical processing operations. Motor cortex, sensory cortex (visual, auditory, and somatosensory cortex), association cortex, and limbic cortex. Emphasis is on using animal models to understand human cortical function and includes correlations between animal studies and human neuropsychological and functional imaging literature. Instructor: Andersen.

Bi/CNS 250 b. Topics in Systems Neuroscience. 9 units (3-0-6).
For course description, see Biology.

SS/CNS 251. Human Brain Mapping: Theory and Practice. 9 units (3-1-3). For course description, see Social Science.

SS/Psy/Bi/CNS 255. Topics in Emotion and Social Cognition. 9 units (3-0-6). For course description, see Social Science.

CS/CNS 257 abc. Simulation. 9 units (3-3-3) first; (3-5-1) second, third terms. For course description, see Computer Science.

CNS 280. Research in Computation and Neural Systems. Hours and units by arrangement. For graduate students admitted to candidacy in computation and neural systems.

CNS/Bi 286 abc. Special Topics in Computation and Neural Systems. Units to be arranged. First, second, third terms. Students may register with permission of the responsible faculty member.

COMPUTER SCIENCE

CS 1. Introduction to Computation. 9 units (3-4-2); first term. CS 1 is an introduction to the automated processing of information, including computer programming. This course gives students the conceptual background necessary to understand and construct programs (i.e., specify computations, understand evaluation models, use and understand major constructs, including functions and procedures, scoping and environments, data storage, side-effects, conditionals, recursion and looping, and higher-order functions). CS 1 introduces key issues that arise in computation (e.g., universality, computability, complexity, representation, abstraction management). This course puts the components of computer science in context, serving as an overview for students specializing in computational disciplines and alerting all students to important subtleties that may arise when applying computation in their studies, research, and work. At the end of this course, students should be able to read and write (synthesize, analyze, understand) small programs (100 lines) and have the intellectual framework necessary to rapidly assimilate new computer languages as the need arises. All Caltech undergraduates are encouraged to take this course. Instructors: Low, Vanier.

CS 2. Introduction to Programming Methods. 9 units (2-4-3); second term. Prerequisite: CS 1 or equivalent. CS 2 is a challenging course in programming languages and computer science, emphasizing modes of algorithmic expression. The course will include such topics as performance analysis of algorithms; proofs of program correctness; recursive and higher-order procedures; data structures, including lists, trees, graphs, and arrays; objects and abstract data types. The course includes weekly laboratory exercises and written homework covering the lecture material and program design. Instructor: Barr.

CS 3. Introduction to Software Engineering. 9 units (2-4-3); third term. Prerequisite: CS 2 or equivalent. CS 3 is an advanced introduction to the fundamentals of computer science and software engineering methodology. Topics will be chosen from the following: abstract data types; object-oriented models and methods; logic, specification, and program composition; abstract models of computation; probabilistic algorithms; nondeterminism; distributed algorithms and data structures. The weekly laboratory exercises allow the students to investigate the lecture material by writing nontrivial applications. Instructor: Kapur.

Ma/CS 6 abc. Introduction to Discrete Mathematics. 9 units (3-0-6). For course description, see Mathematics.

CS 11. Computer Language Shop. 3 units (0-3-0); first, second, third terms. Prerequisite: CS 1 strongly recommended. CS 11 is a self-paced lab that provides students with extra practice and supervision in transferring their programming skills to a particular programming language;
the course can be used for any language of the student’s choosing, subject to approval by the instructor. A series of exercises guide the student through the pragmatic use of the chosen language, building his or her familiarity, experience, and style. More advanced students may propose their own programming project as the target demonstration of their new language skills. Lab staff will critique the student’s technique and craftsmanship, offering expert feedback on areas for attention and helping the student with any conceptual difficulties that may arise while mastering the particular language. CS 11 may be repeated for credit of up to a total of 9 units. Instructors: Vanier, Pinkston.

CS 21. Decidability and Tractability. 9 units (3-0-6); second term. Prerequisites: CS 2 (may be taken concurrently). This course introduces the formal foundations of computer science, the fundamental limits of computation, and the limits of efficient computation. Topics will include automata and Turing machines, decidability and undecidability, reductions between computational problems, and the theory of NP-completeness. Instructor: Umans.

CS 24. Introduction to Computing Systems. 9 units (3-3-3); third term. Prerequisites: CS 2; and CS 21 or CS/EE/Ma 129 a. Basic introduction to computer systems, including hardware-software interface, computer architecture, and operating systems. Course emphasizes computer system abstractions and the hardware and software techniques necessary to support them, including virtualization (e.g., memory, processing, communication), dynamic resource management, and common-case optimization, isolation, and naming. Instructor: DeHon.

CS 38. Introduction to Algorithms. 9 units (3-0-6); third term. Prerequisites: CS 2; Ma/CS 6 a or Ma 121 a; and CS 21 or CS/EE/Ma 129 a. This course introduces techniques for the design and analysis of efficient algorithms. Major design techniques (the greedy approach, divide and conquer, dynamic programming, linear programming) will be introduced through a variety of algebraic, graph, and optimization problems. Methods for identifying intractability (via NP-completeness) will be discussed. Instructor: Schröder.

CS 40/140 ab. Programming Laboratory. 9 units (1-8-0); second, third terms. Prerequisite: CS 21 and CS 38, or instructor’s permission. Undergraduates must enroll for CS 40; graduates must enroll for CS 140. This laboratory course is meant to expose students to programming in the large. The lectures cover both object-oriented program design techniques and other methodologies with the goal of demonstrating proper design techniques for large programming projects. These methodologies are then applied to the design and implementation of a significant programming project. This project is of a large enough scale that the students must work in large teams in order to design and implement the system in the two-term course. Throughout the course, students will be expected to present their designs and implementations at scheduled design reviews. The emphasis in the course is not only on achieving the task, but also on properly analyzing the problem space, presenting a clear problem specification, and implementing a modular and a maintainable design. Not offered 2005–06.

CS 47/147. Advanced Object-Oriented Programming. 9 units (3-3-3); first term. Prerequisites: CS 2, and CS 21 and CS 38, or instructor’s permission. Undergraduates must enroll for CS 47; graduates must enroll for CS 147. This course covers the advanced object-oriented programming techniques typically used in large programming projects. Fundamental programming techniques such as object design, inheritance of implementation and/or interface, and polymorphism are also discussed. Other, more advanced, programming concepts covered include smart pointers, garbage collection, object permanence, patterns, and Internet programming. Not offered 2005–06.

EE/CS 51. Principles of Microprocessor Systems. 9 units (3–0–6). For course description, see Electrical Engineering.

EE/CS 52. Microprocessor Systems Laboratory. 12 units (1-11-0). For course description, see Electrical Engineering.

EE/CS 53. Microprocessor Project Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor. For course description, see Electrical Engineering.

EE/CS 54. Advanced Microprocessor Projects Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor. For course description, see Electrical Engineering.

CS/EE/ME 75 abc. Introduction to Multidisciplinary Systems Engineering. 3 units (2-0-1) first term; 3–6 units second term; 12 units (2-9-1) or up to 18 units (2-15-1), with instructor’s permission, third term. This course presents the fundamentals of modern multidisciplinary systems engineering in the context of a substantial design project. Students from a variety of disciplines will conceive, design, implement, and operate a system involving electrical, information, and mechanical engineering components. Specific tools will be provided for setting project goals and objectives, managing interfaces between component subsystems, working in design teams, and tracking progress against tasks. Students will be expected to apply knowledge from other courses at Caltech in designing and implementing specific subsystems. During the first two terms of the course, students will attend project meetings and learn some basic tools for project design, while taking courses in CS, EE, and ME that are related to the course project. During the third term, the entire team will build, document, and demonstrate the course design project, which will differ from year to year. Freshmen must receive permission from the lead instructor to enroll. Instructors: Burdick, Murray, Perona.

EE/CS 80 abc. Senior Thesis. 9 units. For course description, see Electrical Engineering.

CS 81 abc. Undergraduate Laboratory in Computer Science. Units in accordance with work accomplished. Consent of both research adviser and course supervisor required before registering. Supervised experimental
CS 90. Undergraduate Research in Computer Science. Units in accordance with work accomplished. Consent of both research advisor and course supervisor required before registering. Supervised research in computer science by undergraduates. Topic must be approved by the supervisor, and a formal final report must be presented on completion of research. Graded pass/fail. Instructor: Staff.

CS 101 abc. Special Topics in Computer Science. Units in accordance with work accomplished. Offered by announcement. Prerequisites: CS 21 and CS 38, or instructor's permission. The topics covered vary from year to year, depending on the students and staff. Primarily for undergraduates.

CS 102 abc. Seminar in Computer Science. 3, 6, or 9 units as arranged with the instructor. Instructor's permission required.

CS 103 abc. Reading in Computer Science. 3, 6, or 9 units as arranged with the instructor. Instructor's permission required.

ACM/CS 114 ab. Parallel Algorithms for Scientific Applications. 9 units. For course description, see Applied and Computational Mathematics.

Ma/CS 117 abc. Computability Theory. 9 units (3-0-6). For course description, see Mathematics.

CS 118. Logic Model Checking for Formal Software Verification. 9 units (3-3-3); second term. An introduction to the theory and practice of logic model checking as an aid in the formal proofs of correctness of concurrent programs and system designs. The specific focus is on automata-theoretic verification. The course includes a study of the theory underlying formal verification, the correctness of programs, and the use of software tools in designs. Instructor: Holzmann.

CS/EE/Ma 129 abc. Information and Complexity. 9 units (3-0-6), first and second terms; (1-4-4) third term. Prerequisite: basic knowledge of probability and discrete mathematics. A basic course in information theory and computational complexity with emphasis on fundamental concepts and tools that equip the student for research and provide a foundation for pattern recognition and learning theory. First term: what information is and what computation is; entropy, source coding, Turing machines, uncomputability. Second term: topics in information and complexity; Kolmogorov complexity, channel coding, circuit complexity, NP-completeness. Third term: theoretical and experimental projects on current research topics. Instructor: Abu-Mostafa. Not offered 2005–06.

CS/EE 137 ab. Electronic Design Automation. 9 units (3-3-3); first, second terms. Prerequisites: basic algorithms and computational theory (CS 138 a, may take CS 138 b concurrently), some exposure to VLSI and/or architecture (CS 181 or CS 184), or instructor's permission. Formulation, automation, and analysis of design mapping problems, with emphasis on VLSI and computational realizations. Major themes include formulating and abstracting problems, figures of merit (e.g., energy, delay, throughput, area, mapping time), representation, traditional decomposition of flow (logic optimization, covering, scheduling, retiming, retiming,
assignment, partitioning, placement, routing), and techniques for solving problems (e.g., greedy, dynamic programming, search, [integer] linear programming, graph algorithms, randomization). This is a two-term sequence. The first term will cover the major intellectual ground and present students with a series of contained projects as a chance to exercise their understanding of the material. In the second term, students will work through all the phases of formulation, design, automation, and analysis of some particular automation problem, preferably one that arises in the student's own research. Instructor: DeHon. Given in alternate years; offered 2005–06.

CS 139 abc. Concurrency in Computation. 9 units (3-0-6); first, second, third terms. Prerequisites: CS 21 and CS 38, or instructor's permission. Design and verification of concurrent algorithms. Topics: different models of concurrent computations; process synchronization by shared variables and synchronization primitives; distributed processes communicating by message exchange; the concepts of synchronization, indivisible actions, deadlock, and fairness; semantics and correctness proofs; implementation issues; and application to VLSI algorithm design. Parallel machine architecture issues include mapping a parallel algorithm on a network of processors, and classical parallel algorithms and their complexity. Not offered 2005–06.

CS 141 abc. Distributed Computation Laboratory. 9 units (3-3-3); first, second, third terms. Prerequisites: CS 21 and CS 38, or instructor's permission. This laboratory course deals with the systematic design and implementation of high-confidence scalable networks of communicating objects that discover other objects, configure themselves into collaborating groups of objects, and adapt to their environment. Teams of students explore theories and methods of implementation to obtain predictability and adaptability in distributed systems. Each team of students is expected to submit a research paper at the end of the third term, schedule demonstrations periodically, and maintain documents describing their project status. Instructor: Chandy. Given in alternate years; offered 2005–06.

CS/EE 145 abc. Networking. 9 units (3-3-3) first, second terms; (0-0-9) third term. Prerequisite: Ma 2 ab; instructor's permission required for part c. This course introduces the basic mechanisms and protocols in communication networks, and mathematical models for their analysis. Part a covers topics such as digitization, switching, switch design, routing, error control (ARQ), flow control, layering, queueing models, optimization models, basics of protocols in the Internet, wireless networks, and optical networks. Part b covers current research topics in the design, analysis, control, and optimization of networks, protocols, and applications. In part c, students are expected to execute a substantial project in networking, write up a report describing their work, and make a presentation. CS 145 b may be repeated for credit with the instructor's permission. CS 145 a will not be offered in 2005–06. Instructor: Low.

EE/CNS/CS 148 ab. Selected Topics in Computational Vision. 9 units (3-0-6). For course description, see Electrical Engineering.

CS 150. Probability and Algorithms. 9 units (3-0-6); second term. Prerequisites: CS 138 a and Ma 5 abc. Elementary randomized algorithms and algebraic bounds in communication, hashing, and identity testing. Game tree evaluation. Topics may include randomized parallel computation; independence, k-wise independence and derandomization; rapidly mixing Markov chains; expander graphs and their applications; clustering algorithms. Instructor: Schulman.

CS 151. Complexity Theory. 9 units (3-0-6); third term. Prerequisite: CS 138 ab. This course describes a diverse array of complexity classes that are used to classify problems according to the computational resources (such as time, space, randomness, or parallelism) required for their solution. The course examines problems whose fundamental nature is exposed by this framework, the known relationships between complexity classes, and the numerous open problems in the area. Not offered 2005–06.

CS/CNS/EE 156 ab. Learning Systems. 9 units (3-0-6); first, second terms. Prerequisites: Ma 2 and CS 2, or equivalent. Introduction to the theory, algorithms, and applications of automated learning. How much information is needed to learn a task, how much computation is involved, and how it can be accomplished. Special emphasis will be given to unifying the different approaches to the subject coming from statistics, function approximation, optimization, pattern recognition, and neural networks. Instructor: Abu-Mostafa.

CS/CNS 171. Introduction to Computer Graphics Laboratory. 12 units (3-6-3); first term. Prerequisite: Ma 2 and extensive programming experience. This course introduces the basic ideas behind computer graphics and its fundamental algorithms. Topics include graphics input and output, the graphics pipeline, sampling and image manipulation, three-dimensional transformations and interactive modeling, basics of physically based modeling and animation, simple shading models and their hardware implementation, and fundamental algorithms of scientific visualization. Students will be required to perform significant implementations. Instructor: Barr.

CS/CNS 174. Computer Graphics Projects. 12 units (3-6-3); third term. Prerequisites: Ma 2 and CS/CNS 171 or CS 175 or instructor's permission. This laboratory class offers students an opportunity for
independent work covering recent computer graphics research. In coordination with the instructor, students select a computer graphics modeling, rendering, interaction, or related algorithm and implement it. Students are required to present their work in class and discuss the results of their implementation and any possible improvements to the basic methods. May be repeated for credit with instructor’s permission. Instructor: Barr.

CS 175. Geometric Modeling. 9 units (3-3-3); third term. Prerequisite: instructor’s permission. This course will cover both classical and state-of-the-art approaches to geometric modeling as needed in computer-aided geometric design and graphics. Subjects treated include classical splines and their theory and practice (Bernstein Bezier form, de Casteljau algorithm, knot insertion, polar forms and blossoming, degree elevation) as well as more recent approaches based on subdivision (Chai-Kin’s algorithm, subdivision schemes of Loop, Catmull-Clark, and Butterfly). Both the underlying mathematical theory and its implementation in the form of highly efficient algorithms will be taught. Instructor: Schröder.

CS 176. Introduction to Computer Graphics Research. 9 units (3-3-3); second term. Prerequisite: CS/CNS 171, or 173, or 174, or CS 175. The course will go over recent research results in computer graphics, covering subjects from mesh processing (acquisition, compression, smoothing, parameterization, adaptive meshing), simulation for purposes of animation, rendering (both photo- and nonphotorealis- tic), geometric modeling primitives (image based, point based), and motion capture and editing. Other subjects may be treated as they appear in the recent literature. The goal of the course is to bring students up to the frontiers of computer graphics research and prepare them for their own research. Instructor: Desbrun.

CS 177. Discrete Differential Geometry: Theory and Applications. 9 units (3-3-3); first term. Topics include, but are not limited to, discrete exterior calculus; Whitney forms; DeRham and Whitney complexes; Morse theory; computational and algebraic topology; discrete simulation of thin shells, fluids, electromagnetism, elasticity; surface parameterization; Hodge decomposition. Instructor: Desbrun.

CS 178. Master’s Thesis Research. Units (total of 45) are determined in accordance with work accomplished.

CS/EE 181 abc. VLSI Design Laboratory. 12 units (3-6-3); first, second, third terms. Digital integrated system design, with projects involving the design, verification, and testing of high-complexity CMOS microcircuits. First-term lecture and homework topics emphasize disciplined design, and include CMOS logic, layout, and timing; computer-aided design and analysis tools; and electrical and performance considerations. Each student is required in the first term to complete individually the design, layout, and verification of a moder-ately complex integrated circuit. Advanced topics second and third terms include self-timed design, computer architecture, and other topics that vary year by year. Projects are large-scale designs done by teams. Not offered 2005–06.

CS/EE 184 ab. Computer Architecture. 9 units (3-3-3); second, third terms. Prerequisites: CS 21 and CS 24, or instructor’s permission. Organization and design of physical computational systems, basic building blocks for computations, understanding and exploiting structure in computational problems, design space, costs, and tradeoffs in computer organization, common machine abstractions, and implementation/optimization techniques. The course will develop the fundamental issues and tradeoffs that define computer organizational and architectural styles, including RISC, VLIW, Super Scalar, EPIC, SIMD, Vector, MIMD, reconfigurable, FPGA, PIM, and SoC. Basic topics in the design of computational units, instruction organization, memory systems, control and data flow, interconnect, and the hardware-software abstraction will also be covered. Instructor: DeHon. Given in alternate years; not offered 2005–06.

CS 185 abc. Asynchronous VLSI Design Laboratory. 9 units (3-3-3); first, second, third terms. Prerequisite: CS 139. The design of digital integrated circuits whose correct operation is independent of delays in wires and gates. (Such circuits do not use clocks.) Emphasis is placed on high-level synthesis, design by program transformations, and correctness by construction. The first term introduces delay-insensitive design techniques, description of circuits as concurrent programs, circuit compilation, standard-cell layout and other computer-aided design tools, and electrical optimizations. The second term is reserved for advanced topics, and for the presentation and review of mid-size projects, which will be fabricated in CMOS or GaAs technologies, and tested. Instructor: Martin. Only parts a, b offered 2005–06.

CNS/Bi/Ph/CS 187. Neural Computation. 9 units (3-0-6). For course description, see Computation and Neural Systems.

CNS/CS/EE 188 a. Computation Theory and Neural Systems. 9 units (3–0–6). For course description, see Computation and Neural Systems.

CNS/CS/EE 188 b. Topics in Computation and Biological Systems. 9 units (3–0–6). For course description, see Computation and Neural Systems.

CS/CNS/Bi 191 ab. Biomolecular Computation. 9 units (3-0-6) second term; (2-4-3) third term. This course investigates computation by molecular systems, emphasizing models of computation based on the underlying physics, chemistry, and organization of biological cells. Topics will be selected from computation by self-assembly, molecular folding, signal transduction, genetic regulatory networks, and transcription, simulation and design of biochemical systems; physical limits
of computation, reliability, and the role of noise; reversible computation; DNA-based computers; in vitro evolution; molecular ecosystems. Part a develops fundamental results. Part b is a reading and research course; classic and current papers will be discussed, and students will do projects on current research topics. Instructor: Winfree. Given in alternate years; not offered 2005–06.

Ph/CS 219 abc. Quantum Computation. 9 units (3-0-6); first, second, third terms. For course description, see Physics.

SS/CS 241 ab. Introduction to Social and Information Sciences. 9 units (3-0-6). For course description, see Social Science.

CS 274 abc. Topics in Computer Graphics. 9 units (3-3-3); first, second, third terms. Prerequisite: instructor's permission. Mathematical and computational modeling methods. First term: the mathematical foundations of simulation, such as Eulerian equations of motion, tensor analysis, applied 3-D geometry, and the mathematics of continuum dynamics. Second term: the numerical methods of simulation, such as the numerical solution of differential equations, the finite element method, and Monte Carlo techniques. Third term: case studies applying these techniques to selected three-dimensional problems in the physical sciences. Term projects for the third term will involve implementing a case study or other computational application of the methods. Some experience with vector and raster graphics would be helpful. Instructor: Barr. Not offered 2005–06.

CS 270. Research in Computer Science. Units in accordance with work accomplished. Approval of student's research adviser and option adviser must be obtained before registering.

CS 282 abc. Reading in Computer Science. 6 units or more by arrangement; first, second, third terms. Instructor's permission required.

CS 285 abc. Seminar in Computer Science. 3, 6, or 9 units, at the instructor's discretion. Instructor's permission required.

CONTROL AND DYNAMICAL SYSTEMS

CDS 101. Design and Analysis of Feedback Systems. 6 units (2-0-4); first term. Prerequisites: Ma 1 and Ma 2 or equivalents. An introduction to feedback and control in physical, biological, engineering, and information sciences. Basic principles of feedback and its use as a tool for altering the dynamics of systems and managing uncertainty. Key themes throughout the course will include input/output response, modeling and model reduction, linear vs. nonlinear models, and local vs. global behavior. This course is taught concurrently with CDS 110, but is intended for students who are interested primarily in the concepts and tools of control theory and not the analytical techniques for design and synthesis of control systems. Instructor: Murray.

CDS 104. Introductory Concepts for Dynamical Systems. 6 units (2-0-4); third term. Prerequisites: Ma 1, Ma 2 (or equivalent); it is recommended that this course be taken concurrently with CDS 273. This course teaches basic concepts in mathematics and dynamics that are required for CDS 110 and CDS 140. It is intended as a tutorial for nonmajors who plan to do further course work in CDS but may not have adequate preparation in linear algebra and ordinary differential equations. Topics to be covered include linear ODEs in one variable, linear algebra, eigenvalues and eigenvectors, coupled linear ODEs, stability of ODEs. Extensive use of examples based on modeling of physical, biological, and information systems using differential equations and linear algebra. Instructor: Koon.

CDS 110 ab. Introductory Control Theory. 9 units (3-0-6); first, second terms. Prerequisites: Ma 1 and Ma 2 or equivalents; ACM 95/100 may be taken concurrently. An introduction to analysis and design of feedback control systems, including classical control theory in the time and frequency domain. Modeling of physical, biological, and information systems using linear and nonlinear differential equations. Stability and performance of interconnected systems, including use of block diagrams, Bode plots, the Nyquist criterion, and Lyapunov functions. Robustness and uncertainty management in feedback systems through stochastic and deterministic methods. Introductory random processes, Kalman filtering, and norms of signals and systems. The first term of this course is taught concurrently with CDS 101, but includes additional lectures, reading, and homework that is focused on analytical techniques for design and synthesis of control systems. Instructor: Murray.
CDS 111. Applications of Control Technology. 9 units (3-3-3); third term. Prerequisite: CDS 110 or equivalent. Application of modern control design techniques to physical systems. The goal of this course is to teach students how to design and implement feedback controllers on physical systems, and to allow students to evaluate different control design methodologies on experimental hardware. Not offered 2005–06.

Ae/CDS 125 abc. Space Missions and Systems Engineering. 9 units (3-0-6). For course description, see Aeronautics.

CDS 140 ab. Introduction to Dynamics. 9 units (3-0-6); first, second terms. Prerequisite: ACM 95 or equivalent. Basics in topics in dynamics in Euclidean space, including equilibria, stability, Lyapunov functions, periodic solutions, Poincaré-Bendixson theory, Poincaré maps. Attractors and structural stability. The Euler-Lagrange equations, mechanical systems, small oscillations, dissipation, energy as a Lyapunov function, conservation laws. Introduction to simple bifurcations and eigenvalue crossing conditions. Discussion of bifurcations in applications, invariant manifolds, the method of averaging, Melnikov's method, and the Smale horseshoe. Instructors: Marsden, Koon.

CDS 190. Independent Work in Control and Dynamical Systems. 9 units (0-0-6); first, second, third terms; maximum two terms. Prerequisite: CDS 110 ab or CDS 140 ab. Research project in control and dynamical systems, supervised by a CDS faculty member.

CDS 201. Applied Operator Theory. 9 units (3-0-6); first term. Prerequisite: ACM 95/100 or equivalent. Invariant subspaces, Jordan form, Cayley-Hamilton theorem, matrix exponential, singular value decomposition, some Banach and Hilbert spaces, operators, duals, adjoints, induced norms, and spectral theory. Calculus in linear spaces, the inverse and implicit function theorems. Taught concurrently with AM 125 a. Instructor: Beck.

CDS 202. Geometry of Nonlinear Systems. 9 units (3-0-6); second term. Prerequisite: CDS 201 or AM 125 a. Basic differential geometry, oriented toward applications in control and dynamical systems. Topics include smooth manifolds and mappings, tangent and normal bundles. Vector fields and flows. Distributions and Frobenius' theorem. Matrix Lie groups and Lie algebras. Exterior differential forms, Stokes' theorem. Instructor: Marsden.

CDS 205. Geometric Mechanics. 9 units (3-0-6); third term. Prerequisites: CDS 202, CDS 140. The geometry and dynamics of Lagrangian and Hamiltonian systems, including symplectic and Poisson manifolds, variational principles, Lie groups, momentum maps, rigid-body dynamics, Euler-Poincaré equations, stability, and an introduction to reduction theory. More advanced topics (taught in a course the following year) will include reduction theory, fluid dynamics, the energy momentum method, geometric phases, bifurcation theory for mechanical systems, and nonholonomic systems. Given in alternate years; not offered 2005–06.

CDS 212. Introduction to Modern Control. 9 units (3-0-6); first term. Prerequisites: ACM 95/100 abc or equivalent; CDS 110 ab or equivalent. Introduction to modern control systems with emphasis on the role of control in overall system analysis and design. Examples drawn from throughout engineering and science. Open versus closed loop control. State-space methods, time and frequency domain, stability and stabilization, realization theory. Time-varying and nonlinear models. Uncertainty and robustness. Instructor: Doyle.

CDS 213. Robust Control. 9 units (3-0-6); second term. Prerequisites: CDS 212, CDS 201. Linear systems, realization theory, time and frequency response, norms and performance, stochastic noise models, robust stability and performance, linear fractional transformations, structured uncertainty, optimal control, model reduction, \(\mu \) analysis and synthesis, real parametric uncertainty, Kharitonov's theorem, uncertainty modeling. Instructor: Doyle.

CDS 270. Advanced Topics in Systems and Control. Hours and units by arrangement. Topics dependent on class interests and instructor. May be repeated for credit.

CDS 273. Frontiers in Control and Dynamical Systems. 6 units (1-0-5); third term. Prerequisite: Students with limited background in CDS techniques are encouraged to take CDS 104 concurrently. The course will explore applications of tools from CDS to new problem domains. The course is organized around small teams consisting of CDS and non-CDS students who work on projects of mutual interest in some faculty member's research area. A final project report and short presentation are required. May be repeated for credit. Instructors: Mabuchi, Murray.

CDS 280. Advanced Topics in Geometric Mechanics or Dynamical Systems Theory. Hours and units by arrangement. Prerequisite: instructor's permission. Topics will vary according to student and instructor interest. Examples include chaotic transport theory, invariant manifold techniques, multidimensional geometric perturbation theory, the dynamics of coupled oscillators, rigid-body dynamics, numerical methods in dynamical systems theory. May be repeated for credit. Instructor: Marsden.

CDS 300 abc. Research in Control and Dynamical Systems. Hours and units by arrangement. Research in the field of control and dynamical systems. By arrangement with members of the staff, properly qualified graduate students are directed in research. Instructor: Staff.
ECONOMICS

Ec 11. Introduction to Economics. 9 units (3-2-4); first, third terms. An introduction to economic methodology, models, and institutions. Includes both basic microeconomics and an introduction to modern approaches to macroeconomic issues. Students are required to participate in economics experiments. Instructors: Plott, McAfee.

Ec 13. Readings in Economics. Units to be determined for the individual by the department. Not available for credit toward humanities/social science requirement. Graded pass/fail.

BEM/Ec/SS 20. Scientific Writing and Oral Presentation in the Social Sciences. 6 units (2-0-4). For course description, see Business Economics and Management.

Ec 98 abc. Senior Research and Thesis. Prerequisite: instructor's permission. Senior economics majors wishing to undertake research may elect a variable number of units, not to exceed 12 in any one term, for such work under the direction of a member of the economics faculty.

Ec 101. Selected Topics in Economics. 9 units (3-0-6). Offered by announcement. Instructors: Staff, visiting lecturers.

Ec 105. Industrial Organization. 9 units (3-0-6). Prerequisite: Ec 11 or equivalent. A study of how technology affects issues of market structure and how market structure affects observable economic outcomes, such as prices, profits, advertising, and research and development expenditures. Emphasis will be on how the analytic tools developed in the course can be used to examine particular industries in detail. Instructor: Iaryczower.

Ec 106. Topics in Applied Industrial Organization. 9 units (3-0-6); third term. Prerequisite: Ec 11; Ec 116 recommended. Topics include simulation of mergers in oligopolistic industries, valuation of intellectual property, price setting and concentration in the pharmaceutical market, and statistical analysis of combined tobacco and asbestos exposure. A term paper will be required. Not offered 2005–06.

Ec 116. Contemporary Socioeconomic Problems. 9 units (3-0-6); first term. Prerequisites: Ec 11 and PS 12 or equivalent. An analytical investigation of the economic aspects of certain current social issues. Topics: the economics of education, medical-care systems, urban affairs, and the welfare system. Not offered 2005–06.

Ec 121 ab. Theory of Value. 9 units (3-0-6); first, second terms. Prerequisites: Ec 11 and Ma 2 (may be taken concurrently). A study of consumer preference, the structure and conduct of markets, factor pricing, measures of economic efficiency, and the interdependence of markets in reaching a general equilibrium. Instructor: Border.

Ec 122. Econometrics. 9 units (3-0-6); second term. Prerequisite: Ec 11. The application of statistical techniques to the analysis of economic data. Instructor: Bossaerts.

Ec 123. Macroeconomics. 9 units (3-0-6); third term. Prerequisite: Ec 11. The role of time and uncertainty in understanding the behavior of economic aggregates such as investment, employment, and price levels. Emphasis is on representative-agent recursive equilibrium models. Topics include practical dynamic programming; job search, matching, and unemployment; asset pricing; monetary and fiscal policy; and taxation and insurance. Instructor: Border.

Ec/SS 129. Economic History of the United States. 9 units (3-0-6); second term. Prerequisite: Ec 11 or SS 13. An examination of certain analytical and quantitative tools and their application to American economic development. Not offered 2005–06.

Ec/SS 130. Economic History of Europe from the Middle Ages to the Industrial Revolution. 9 units (3-0-6). Prerequisite: Ec 11 or SS 13. Employs the theoretical and quantitative techniques of economics to help explore and explain the development of the European cultural area between 1000 and 1850. Topics include the rise of commerce, the demographic transition, the industrial revolution, and changes in property rights and capital markets. Instructor: Hoffman.

Ec 132. Auctions. 9 units (3-0-6); second term. Prerequisite: Ec 11. The course covers basic topics in auction theory (private and common value auctions, revenue equivalence, reserve prices, budget constraints, risk aversion, etc.) and discusses more advanced theory such as mechanism design, multi-unit auctions, and interdependent valuations. Experimental studies of auctions will be reviewed where appropriate. The course will also discuss practical considerations that arise when designing auctions to sell licenses in a particular industry. Instructor: Goeree.

Ec 140. Economic Progress. 9 units (3-0-6); third term. Prerequisites: Ec 11 and Ma 2; Ec 122 recommended. This course examines the contemporary literature on economic growth and development from both
a theoretical and historical/empirical perspective. Topics include a historical overview of economic progress and the lack thereof; simple capital accumulation models; equilibrium/planning models of accumulation; endogenous growth models; empirical tests of convergence; the measurement and role of technological advancement; and the role of trade, institutions, property rights, human capital, and culture.

Instructors: Border, Hoffman. Given in alternate years; offered 2005–06.

Ec 145. Public Finance. 9 units (3-0-6). Prerequisite: Ec 11 or equiva lent. An intermediate-level course on the economics of the public sector. Material is chosen from welfare economics, public expenditure theory and practice, taxation theory and practice, federalism, and public choice theory. Instructor: Mattozzi.

BEM/Ec 146. Organization Design. 9 units (3-0-6). For course description, see Business Economics and Management.

Ec 155. Decision Theory. 9 units (3-0-6); third term. Prerequisite: Ma 2. Course will discuss the formal analysis of individual decision making from normative and descriptive standpoints. Topics to be covered include choice under risk (von Neumann and Morgenstern) and under certainty (Anscome-Aumann and Savage), conditional preferences and probabilities, independence and de Finetti’s theorem on exchangeability, dynamic decision making, nonexpected utility models, nonadditive probabilities, and multiple priors. Not offered 2005–06.

Ec/PS 160 abc. Laboratory Experiments in the Social Sciences. 9 units (3-3-3). An examination of recent work in laboratory testing in the social sciences with particular reference to work done in social psychology, economics, and political science. Students are required to design and conduct experiments. Instructor: Plott.

PS/Ec 172. Noncooperative Games in the Social Sciences. 9 units (3-0-6). For course description, see Political Science.

PS/Ec 173. Cooperation and Social Behavior. 9 units (3-0-6). For course description, see Political Science.

Ec/PS 190. Undergraduate Research. Units to be arranged; any term. Prerequisite: advanced economics course and instructor’s permission. This course offers advanced undergraduates the opportunity to pursue research in political science or economics. Graded pass/fail.

ELECTRICAL ENGINEERING

APh/EE 9 ab. Solid-State Electronics for Integrated Circuits. 6 units (2-2-2). For course description, see Applied Physics.

EE 20 ab. Electronics Laboratory. 9 units (3-6-0); first, second terms. Prerequisites: Ma 1 abc, Ph 1 abc, EE 20 a for EE 20 b. Fundamentals of electronics through the progressive construction of a radio transceiver—electronic components, phasors, transmission lines, filters, speakers, audio amplifiers, transistors, radio amplifiers, oscillators, mixers, noise, intermodulation, antennas, and propagation. Instructor: Rutledge.

EE 40. Introduction to Solid-State Sensors and Actuators. 9 units (3-0-6); third term. Prerequisites: APh/EE 9 ab and EE 20 ab. This course provides an introduction to various sensors and actuators. The fundamental principles of the devices will be emphasized, together with their electrical implementation, such as biasing and signal processing circuits. Devices that will be discussed include optical sensors, solar cells, CCDs, CMOS imagers, temperature sensors, magnetic sensors, mechanical sensors, acoustic sensors (microphones), speakers, electrical generators, motors, etc. Instructor: Tai.

EE/CS 51. Principles of Microprocessor Systems. 9 units (3-0-6); second term. The principles and design of microprocessor-based computer systems. Lectures cover both hardware and software aspects of microprocessor system design such as interfacing to input and output devices, user interface design, real-time systems, and table-driven software. The homework emphasis is on software development, especially interfacing with hardware, in assembly language. Instructor: George.

EE/CS 52. Microprocessor Systems Laboratory. 12 units (1-11-0); third term. Prerequisite: EE/CS 51 or equivalent. The student will design, build, and program a specified microprocessor-based system. This structured laboratory is organized to familiarize the student with electronic circuit construction techniques, modern development facilities, and standard design techniques. The lectures cover topics in microprocessor system design such as display technologies, interfacing with analog systems, and programming microprocessors in high-level languages. Instructor: George.

EE/CS 53. Microprocessor Project Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor; first, second, third terms. Prerequisite: EE/CS 52 or equivalent. If this course is used to satisfy part of the senior design project requirement, it must be taken as a 12-unit course. A project laboratory to permit the student to select, design, and build a microprocessor-based system. The student is expected to take a project from proposal through design and implementation (possibly including PCB fabrication) to final review and documentation. Instructor: George.
EE/CS 54. Advanced Microprocessor Projects Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor; first, second, third term. Prerequisite: instructor’s permission. A project laboratory to permit the student to design and build a microprocessor-based system of significant complexity. The student must propose, design, implement, and document a project that uses microprocessors and includes a significant hardware and/or software component. The laboratory is for the experienced student who can work independently and who has taken or has had experience equivalent to EE/CS 53. Instructor: George.

CS/EE/ME 75 abc. Introduction to Multidisciplinary Systems Engineering. 3 units (2-0-1) first term; 3–6 units second term; 12 units (2-9-1) or up to 18 units (2-15-1) third term. For course description, see Computer Science.

EE/CS 80 abc. Senior Thesis. 9 units; first, second, third terms. Prerequisite: instructor’s permission, which should be obtained during the junior year to allow sufficient time for planning the research. Individual research project, carried out under the supervision of a member of the electrical engineering or computer science faculty. Project must include significant design effort. Written report required. Open only to senior electrical engineering, computer science, or electrical and computer engineering majors. Not offered on a pass/fail basis. Instructor: Potter.

EE 90. Analog Electronics Project Laboratory. 9 units (1-8-0); third term. Prerequisites: EE 20 ab and EE 40. A structured laboratory course that gives the student the opportunity to design and build a sequence of simple analog electronics projects. The goal is to gain familiarity with circuit design and construction, component selection, CAD support, and debugging techniques. Instructor: Megdal.

EE 91 ab. Experimental Projects in Electronic Circuits. Units by arrangement; first, second terms. 12 units minimum each term. Prerequisites: EE 20 ab. Recommended: EE/CS 51 and 52, and EE 114 ab (may be taken concurrently). Open to seniors; others only with instructor’s permission. An opportunity to do advanced original projects in analog or digital electronics and electronic circuits. Selection of significant projects, the engineering approach, modern electronic techniques, demonstration and review of a finished product. DSP/microprocessor development support and analog/digital CAD facilities available. Text: literature references. Instructor: Megdal.

EE 99. Advanced Work in Electrical Engineering. Units to be arranged. Special problems relating to electrical engineering will be arranged. For undergraduates; students should consult with their advisers. Graded pass/fail.

EE 111. Signals, Systems, and Transforms. 9 units (3-0-6); first term. Prerequisites: Ma 1, Ma 2. EE 20 ab recommended. An introduction to continuous and discrete time signals and systems. Study of the Fourier transform, Fourier series, the Laplace transform, Z-transforms, and the fast Fourier transform as applied in electrical engineering. Various types of systems, with emphasis on linear and time invariant systems. Transfer functions, difference and differential equations, state space representations, system realizations with block diagrams, and analysis of transient and steady state responses. Sampling theorems for analog to digital conversion. Instructor: McEliece.

EE 112 ab. Introduction to Digital Signal Processing. 9 units (3-0-6); second, third terms. Prerequisite: EE 111 or equivalent. Fundamentals of digital signal processing, sampling theory and digital to analog conversion, digital filter design, structures for filtering, quantization effects, roundoff noise and limit cycles, linear prediction, optimal transforms for quantization, and related applications. The course also covers applications of signal processing ideas in diverse fields such as speech, music, communication systems, image processing, optics, and molecular biology. Instructor: Vaidyanathan. Given in alternate years; not offered 2005–06.

EE 113. Feedback and Control Circuits. 9 units (3-3-3); first term. Prerequisite: EE 20 ab or equivalent. This class studies the design and implementation of feedback and control circuits. The course begins with an introduction to basic feedback circuits, using both op amps and transistors. These circuits are used to study feedback principles, including circuit topologies, stability, and compensation. Following this, basic control techniques and circuits are studied, including PID (Proportional-Integral-Derivative) control, digital control, and fuzzy control. There is a significant laboratory component to this course, in which the student will be expected to build, analyze, test, and measure the circuits and systems discussed in the lectures. Instructor: George.

a. Analog Circuit Design. 9 units (3-0-6); first term. Prerequisite: EE 20 ab or equivalent. Deals with continuous time and amplitude signals. Covers the physics of bipolar and MOS transistors, low-frequency behavior of single-stage and multistage amplifiers, current sources, active loads, differential amplifiers, operational amplifiers, and supply and temperature independent biasing.

b. Analog Circuit Design. 9 units (3-0-6); second term. Prerequisite: EE 114 a or equivalent. Covers high-frequency response of amplifiers, feedback in electronic circuits, stability of feedback amplifiers, and noise in electronic circuits. A number of the following topics will be covered each year: translinear circuits, switched capacitor circuits, data conversion circuits (A/D and D/A), continuous-time Gm-C filters and phase locked loops.
ACM/EE 116. Introduction to Stochastic Processes and Modeling. 9 units (3-0-6). For course description, see Applied and Computational Mathematics.

Ph/EE 118 ab. Low-Noise Electronic Measurement. 9 units (3-0-6). For course description, see Physics.

EE 119 abc. Advanced Digital Systems Design. 9 units (3-3-3). Prerequisite: EE/CS 52 or CS/EE 181 a. Advanced digital design as it applies to the design of systems using PLDS and ASICs (in particular, gate arrays and standard cells). The course covers both design and implementation details of various systems and logic device technologies. The emphasis is on the practical aspects of ASIC design, such as timing, testing, and fault grading. Topics include synchronous design, state machine design, ALU and CPU design, application-specific parallel computer design, design for testability, PALs, FPGAs, VHDL, standard cells, timing analysis, fault vectors, and fault grading. Students are expected to design and implement both systems discussed in the class as well as self-proposed systems using a variety of technologies and tools. Given in alternate years; offered 2005–06. Instructor: George.

EE/Ma 126 ab. Information Theory. 9 units (3-0-6); first, second terms. Prerequisite: Ma 2. Shannon's mathematical theory of communication, 1948–present. Entropy, relative entropy, and mutual information for discrete and continuous random variables. Shannon's source and channel coding theorems. Mathematical models for information sources and communication channels, including memoryless, first-order Markov, ergodic, and Gaussian. Calculation of capacity-cost and rate-distortion functions. Kolmogorov complexity and universal source codes. Side information in source coding and communications. Network information theory, including multiuser data compression, multiple access channels, broadcast channels, and multiterminal networks. Discussion of philosophical and practical implications of the theory. This course, when combined with EE 112 ab, EE/Ma 127 ab, and EE 161, and/or EE 167 should prepare the student for research in information theory, coding theory, wireless communications, and/or data compression. Instructors: Effros, staff.

EE/Ma 127 ab. Error-Correcting Codes. 9 units (3-0-6); second, third terms. Prerequisite: Ma 2. This course, which is a sequel to EE/Ma 126 a, but which may be taken independently, will develop from first principles the theory and practical implementation of the most important techniques for combating errors in digital transmission or storage systems. Topics include algebraic block codes, e.g., Hamming, Golay, Fire, BCH, Reed-Solomon (including a self-contained introduction to the theory of finite fields); convolutional codes; and concatenated coding systems. Emphasis will be placed on the associated encoding and decoding algorithms, and students will be asked to demonstrate their understanding of these algorithms with software projects. In the third term, the modern theory of “turbo” and related codes (e.g., regular and irregular LDPC codes), with suboptimal iterative decoding based on belief propagation, will be presented. Instructor: McEliece.

EE 128 ab. Signal Processing with Multirate Systems, Filter Banks, and Wavelets. 9 units (3-0-6); second, third terms. Prerequisite: EE 112 a or equivalent. Sampling rate alterations, decimation and interpolation, filter bank theory and design, wavelet transforms and relation to filter banks, orthonormal filter banks and wavelets, time-frequency representations and orthonormal bases for time-frequency representations. Applications in compression and digital communications. Second term aimed towards graduate students with a research focus in signals, systems, communications and information sciences. Instructor: Vaidyanathan. Given in alternate years; offered 2005–06.

CS/EE/Ma 129 abc. Information and Complexity. 9 units (3-0-6) first, second terms; (1-4-4) third term. For course description, see Computer Science.

APh/EE 130. Optical System Design. 9 units (3-0-6). For course description, see Applied Physics.

APh/EE 131. Optical Wave Propagation. 9 units (3-0-6). For course description, see Applied Physics.

APh/EE 132. Optoelectronic Materials and Devices. 9 units (3-0-6). For course description, see Applied Physics.

CS/EE 137 ab. Electronic Design Automation. 9 units (3-3-3). For course description, see Computer Science.

CS/EE 145 abc. Networking. 9 units. For course description, see Computer Science.

EE/CNS/CS 148 ab. Selected Topics in Computational Vision. 9 units (3-0-6); first, third terms. Prerequisites: undergraduate calculus, linear algebra, geometry, statistics, computer programming. The class will focus on an advanced topic in computational vision: recognition, vision-based navigation, 3-D reconstruction. Instructor: Perona. Additional information concerning this course can be found at http://www.vision.caltech.edu/html-files/courses.html.

EE 150. Topics in Electrical Engineering. Units and terms to be arranged. Content will vary from year to year, at a level suitable for advanced undergraduate or beginning graduate students. Topics will be chosen according to the interests of students and staff. Visiting faculty may present all or portions of this course from time to time. Instructor: Staff.

EE 151. Electromagnetic Engineering. 12 units (3-2-7); first term. Prerequisites: EE 20 ab or equivalent and ACM 95/100 abc. Electric fields, magnetic fields, and Maxwell’s equations, and their engineering applications. Foundations of circuit theory, plane wave propagation, guided wave propagation, resonators, and antennas. Instructor: Psaltis.

CS/CNS/EE 156 ab. Learning Systems. 9 units (3-0-6). For course description, see Computer Science.

EE/Ge 157 abc. Introduction to the Physics of Remote Sensing. 9 units (3-0-6); first, second, third terms. Prerequisite: Pb 2 or equivalent. Introduction to the interaction of electromagnetic waves with natural surfaces and atmospheres. Scattering of microwaves by surfaces and volume scatterers. Microwave and thermal emission from atmospheres and surfaces. Spectral reflection of natural surfaces and atmospheres in the near-infrared and visible regions of the spectrum. Review of modern spaceborne sensors and associated technology and data analysis. Emphasis on sensor design, new techniques, ongoing developments, and data interpretation. Examples of applications in geology, planetology, oceanography, astronomy, and atmospheric research. Part c will emphasize retrieval of atmospheric profiles, with applications to data sets obtained from missions such as MLS, AIRS, TES, and MISR. Instructor: Van Zyl.

EE/Ge 158 ab. Application of Digital Images and Remote Sensing in the Field. 3 units (0-2-1); second term. 6 units (0-5-1); third term. Prerequisite: EE/Ge 157 abc or instructor's permission. Processing of digital images and their application during a five-day field trip in the second term. During spring break students will visit areas in eastern California that have been used as test areas for visible and near-infrared, thermal infrared, and microwave scattering methods. Satellite, aircraft, and ground spectrometer data will be processed by the students in the lab and compared with surface observations in the field. Individual projects may be chosen to emphasize instrumental or geological interests of each student. Not offered 2005–06.

EE 160. Communication-System Fundamentals. 9 units (3-0-6); second term. Prerequisite: EE 111. Laws of radio and guided transmission, noise as a limiting factor, AM and FM signals and signal-to-noise ratio, sampling and digital transmission, errors, information theory, error correction. Emphasis will be on fundamental laws and equations and their use in communication-system designs, including voice, video, and data. Instructor: Hassibi.

EE 161. Wireless Communications. 9 units (3-0-6); third term. Prerequisite: EE 160. This course will cover the fundamentals of wireless channels and channel models, wireless communication techniques, and channel networks. Topics include statistical models for time-varying narrowband and wideband channels, fading models for indoor and outdoor systems, macro- and microcellular system design, channel access and spectrum sharing using TDMA, FDMA, and CDMA, time-varying channel capacity and spectral efficiency, modulation and coding for wireless channels, antenna arrays, diversity combining and multiuser detection, dynamic channel allocation, and wireless network architectures and protocols. Instructor: Hassibi.

EE 163 ab. Communication Theory. 9 units (3-0-6); second, third terms. Prerequisite: EE 111; ACM/EE 116 or equivalent. Least mean square error linear filtering and prediction. Mathematical models of communication processes; signals and noise as random processes; sampling and quantization; modulation and spectral occupancy; intersymbol interference and synchronization considerations; signal-to-noise ratio and error probability; optimum demodulation and detection in digital baseband and carrier communication systems. Instructor: Arabshahi.

EE 164. Stochastic and Adaptive Signal Processing. 9 units (3-0-6); third term. Prerequisite: ACM/EE 116 or equivalent. Fundamentals of linear estimation theory are studied, with applications to stochastic and adaptive signal processing. Topics include deterministic and stochastic least-squares estimation, the innovations process, Wiener filtering and spectral factorization, state-space structure and Kalman filters, array and fast array algorithms, displacement structure and fast algorithms, robust estimation theory and LMS and RLS adaptive fields. Not offered 2005–06.

EE/BE 166. Optical Methods for Biomedical Imaging and Diagnosis. 9 units (3-1-5); third term. Prerequisite: EE 151 or equivalent. Topics include Fourier optics, scattering theories, shot noise limit, energy transitions associated with fluorescence, phosphorescence, and Raman emissions. Study of coherent anti-Stokes Raman spectroscopy (CARS), second harmonic generation and near-field excitation. Scattering, absorption, fluorescence, and other optical properties of biological tissues and the changes in these properties during cancer progression, burn injury, etc. Specific optical technologies employed for biomedical research and clinical applications: optical coherence tomography, Raman spectroscopy, photon migration, acousto-optics (and opto-acoustics) imaging, two photon fluorescence microscopy, and second- and third-harmonic microscopy. Instructor: Yang.

EE/APh 180. Solid-State Devices. 9 units (3-0-6); second term.
Prerequisite: EE 20 ab. Starting with the phenomenological statement of physical processes, the operation of a device is derived from fundamental principles and the device’s materials and design. Subjects include the motion of charge carriers in solids, equilibrium statistics, the electronic structure of solids, doping, nonequilibrium states, the pn junction, the junction transistor, the Schottky diode, the field-effect transistor, the light-emitting diode, and the photodiode. Offered in alternate years; offered 2005–06. Instructor: Scherer.

CS/EE 188 a. Computation Theory and Neural Systems. 9 units (3-0-6). For course description, see Computer Science.

EE 185. MEMS Technology and Devices. 9 units (3-0-6); first term.
Prerequisites: APh/EE 9 ab, EE 187, or instructor’s permission. Micro-electro-mechanical systems (MEMS) have been broadly used for biochemical, medical, RF, and lab-on-a-chip applications. This course will cover both MEMS technologies (e.g., micro- and nanofabrication) and devices. For example, MEMS technologies include anisotropic wet etching, RIE, deep RIE, micro/nano molding and advanced packaging. This course will also cover various MEMS devices used in microsensors and actuators. Examples will include pressure sensors, accelerometers, gyro, FR filters, digital mirrors, microfluidics, micro total-analysis system, biomedical implants, etc. Not offered 2005–06.

CNS/Bi/EE 186. Vision: From Computational Theory to Neuronal Mechanisms. 12 units (4-4-4). For course description, see Computation and Neural Systems.

EE 187. VLSI and ULSI Technology. 9 units (3-0-6); first term.
Prerequisites: APh/EE 9 ab, EE/APh 180 or instructor’s permission. This course is designed to cover the state-of-the-art micro/nanotechnologies for the fabrication of ULSI including BJT, CMOS, and BiCMOS. Technologies include lithography, diffusion, ion implantation, oxidation, plasma deposition and etching, etc. Topics also include the use of chemistry, thermal dynamics, mechanics, and physics. Instructor: Tai.

CNS/CS/EE 188 a. Computation Theory and Neural Systems. 9 units (3-0-6). For course description, see Computation and Neural Systems.

CNS/CS/EE 188 b. Topics in Computation and Biological Systems. 9 units (3-0-6). For course description, see Computation and Neural Systems.

EE 226. Advanced Information and Coding Theory. 9 units (3-0-6); third term. A selection of topics in information theory and coding theory not normally covered in EE/Ma 126 ab or EE/Ma 127 ab. These topics include constrained noiseless codes, constructive coding theorems for erasure channels, density evolution, repeat-accumulate and related codes, and network coding. Not offered 2005–06.

EE 243 abc. Quantum Electronics Seminar. 6 units (3-0-3); first, second, third terms. Advanced treatment of topics in the field of quantum electronics. Each weekly seminar consists of a review and discussion of results in the areas of quantum electronics and optoelectronics. Instructor: Variv.

EE 291. Advanced Work in Electrical Engineering. Units to be arranged. Special problems relating to electrical engineering. Primarily for graduate students; students should consult with their advisers.

ENGINEERING (GENERAL)

E 11. Written Technical Communication in Engineering and Applied Science. 3 units (1-0-2); first, second, third terms. (Seniors required to take E 10 are given priority in registration. NOTE: Those who neither preregister nor attend the organizational meeting may not be permitted to enroll.) Guidance and practice in organizing and preparing topics for presentation and in speaking with the help of visual aids, including whiteboards, overhead projectors, and video projectors. Instructor: Fender.

E 10. Technical Seminar Presentations. 3 units (1-0-2); first, second, third terms. Open for credit to freshmen and sophomores. Weekly seminar by a member of the E&S faculty to discuss his or her area of engineering and group’s research at an introductory level. The course can be used to learn more about different areas of study within engineering and applied science. Graded pass/fail. Instructor: Murray.

E 2. Frontiers in Engineering and Applied Science. 1 unit; first term. Open for credit to freshmen and sophomores. Weekly seminar by a member of the E&S faculty to discuss his or her area of engineering and group’s research at an introductory level. Guidance and practice in organizing and preparing topics for presentation and in speaking with the help of visual aids, including whiteboards, overhead projectors, and video projectors. Instructor: Fender.
E 102. Entrepreneurial Development. 9 units (3-0-6); second term. A course intended for students interested in learning how rapidly evolving technologies are harnessed to produce useful products. Students will work through Harvard Business School case studies, supplemented by lectures to elucidate the key issues. There will be a term project. The course is team-based and designed for students considering working in companies (any size, including start-ups) or eventually going into business school. Topics include technology as a growth agent, financial fundamentals, integration into other business processes, product development pipeline and portfolio management, learning curves, risk assessment, technology trend methodologies (scenarios, projections), motivation, rewards, and recognition. Industries considered will include electronics (hardware and software), aerospace, medical, biotech, etc. E 102 and E/ME 105 are useful but not required precursors. Instructor: Pickar.

E/ME 103. Management of Technology. 9 units (3-0-6); third term. A course intended for students interested in learning how rapidly evolving technologies are harnessed to produce useful products. Lectures include presentations by invited experts in various specialties and keynote guest lecturers of national stature in technology business development. A case study project is included. Instructor: Pickar.

E/ME 105. Product Design. 9 units (3-0-6); first term. Prerequisite: advanced coursework in engineering. The course will emphasize products appropriate for the developing world—for those people subsisting on less than one dollar a day. It will provide the student with a working knowledge of contemporary methods of product design to meet the constraints of cost, performance, quality, and time to market as applied to the developing world. Areas covered include design for X (X = manufacturability/assembly, environmental issues, including sustainability, failure modes and effects analysis, test, etc.). The integration of customer needs and financial return will be discussed with specific examples. Instructor: Pickar.

E 150 abc. Engineering Seminar. 1 unit (1-0-0); each term. All candidates for the M.S. degree in applied mechanics, electrical engineering, materials science, and mechanical engineering are required to attend any graduate seminar in any division each week of each term. Graded pass/fail. Instructor: Staff.

ENGLISH

Courses numbered 30 or greater are open only to students who have fulfilled the freshman humanities requirement.

En 1 ab. English As a Second Language. 9 units (3-0-6 or 4-0-5); first, second terms. A program in the fundamentals of English composition for nonnative speakers of English, required for foreign students in need of supplementary instruction before entering freshman humanities courses. Students will be assigned to either En 1 b or the two-term sequence of En 1 ab on the basis of a diagnostic examination. Not available for credit toward the humanities–social science requirement. Instructors: Fonseca, Geasland.

En 2. Basic English Composition. 9 units (2-2-5); first term. A course in the fundamentals of English composition for native speakers of English, required for students in need of supplementary instruction before entering freshman humanities courses. Students will be assigned to En 2 on the basis of a diagnostic examination. Not available for credit toward the humanities–social science requirement. Student: Fonseca.

Hum/En 5. Major British Authors. 9 units (3-0-6). For course description, see Humanities.

Hum/En 6. Major American Authors. 9 units (3-0-6). For course description, see Humanities.

En 84. Writing Science. 9 units (3-0-6). Instruction and practice in writing about science and technology for general audiences. The course considers how to convey complex technical information in clear, engaging prose that nonspecialists can understand and appreciate. Readings in different genres (e.g., magazine and newspaper journalism, reflective essays, case studies, popularizations) raise issues for discussion and serve as models for preliminary writing assignments and for a more substantial final project on a topic of each student’s choice. Includes oral presentation. Satisfies the Institute scientific writing requirement and the option oral communication requirement for humanities majors. Instructors: Marsen, Youra.

En 85. Writing Poetry. 9 units (3-0-6); third term. Students will develop their poetic craft by creating poems in a variety of forms. The lecturer will provide guidance and direction, supervise class discussions of students’ works, and assign outside reading as needed. Students may apply one term of En 85, 86, 87, and 88 to the final 36-unit requirement of the division, and all other courses in this series will receive Institute credit. Instructor: Hall.

En 86. Fiction Writing. 9 units (3-0-6); second term. The class is conducted as a writing workshop in the short-story form. Modern literary stories are discussed, as well as the art and craft of writing well, aspects
of the “writing life,” and the nature of the publishing world today. Students are urged to write fiction that reflects on the nature of life. Humor is welcome, although not genre fiction such as formula romance, horror, thrillers, fantasy, or sci-fi. Students may apply one term of En 85, 86, 87, and 88 to the final 36-unit requirement of the division, and all other courses in this series will receive Institute credit. Instructor: Magun.

En 87. Writing Fiction: The Imaginary. 9 units (3-0-6); first term. Students will develop their talents for writing imaginary short stories other than science fiction. A number of models will be proposed to them for inspiration, e.g., folk tales, tales of the supernatural, fables, stories of “magic realism,” examples of surrealism and the “absurd,” and so on. The lecturer will provide guidance and direction, supervise class discussions of students’ works, and assign outside reading as needed. Students may apply one term of En 85, 86, 87, and 88 to the final 36-unit requirement of the division, and all other courses in this series will receive Institute credit. Instructors: Hall, Magun.

En 88. Writing Nonfiction. 9 units (3-0-6). Students will develop their skills in handling various forms of nonfiction, such as the memoir, the critical review, the polemic, etc. The lecturer will provide guidance and direction, supervise class discussions of students’ works, and assign outside reading as needed. Students may apply one term of En 85, 86, 87, and 88 to the final 36-unit requirement of the division, and all other courses in this series will receive Institute credit. Not offered 2005–06.

En 92. Literature of the Holocaust. 9 units (3-0-6); third term. Elie Wiesel has written: “At Auschwitz, not only man died, but also the idea of man ... It was its own heart the world incinerated at Auschwitz.” This class will explore the reverberation of this premise in the literature that grew out of the holocaust experience, as well as the shifting aesthetics of “holocaust literature” over the last half century. Put simply, can there be “an aesthetics of atrocity”? What are the responsibilities of art and literature to history? Should a perpetrator of genocide ever engage our moral imagination? In an attempt to grapple with these questions, students will read works, both fiction and nonfiction, by a range of authors, including Primo Levi, Elie Wiesel, Ida Fink, Cynthia Ozick, Tadeusz Borowski, Bernard Schlink, and W. G. Sebald. Not offered 2005–06.

En 93. Women on the Edge. 9 units (3-0-6); third term. This class will consider how women’s writing in the 20th century often flouts the conventional portrayal of woman as ministering angel preoccupied with the needs of family without much regard to her own. Writers to be read include Kate Chopin, Colette, Marguerite Duras, Sylvia Plath, Angela Carter, Jeanette Winterson, Toni Morrison, Elfriede Jelinek. Instructor: Magun.

En 98. Tutorial for English Majors. 9 units (2-0-7). Prerequisites: instructor’s permission. An individual program of directed reading and research for English majors in an area not covered by regular courses. Instructor: Staff.

En 99 ab. Senior Tutorial for English Majors. 9 units (1-0-8); second, third terms. Students will study research methods and write a research paper. Required of students in the English option. Instructor: Staff.

En 114 ab. Shakespeare. 9 units (3-0-6). Offered by announcement. Not open to freshmen. A close study of Shakespeare’s plays with an emphasis on his language, dramatic structures, characters, and themes. Each term will concentrate on a detailed consideration of three or four of Shakespeare’s major plays. The first term is not a prerequisite for the second. Instructors: La Belle, Marneus.

En 122. The 18th-Century English Novel. 9 units (3-0-6); third term. The realistic novel as a surprising, even experimental moment in the history of fiction. How and why did daily life become a legitimate topic for narrative in the 18th century? The realistic turn clearly attracted new classes of readers, but did it also make the novel a better vehicle for commenting on society at large? Why were the formal conventions of realistic writing so tightly circumscribed? Authors may include Cervantes, Defoe, Richardson, Fielding, Sterne, Walpole, Boswell, and Austen. Instructor: Haugen.

En 123. The 19th-Century English Novel. 9 units (3-0-6); first term. A survey of the 19th-century novel from Austen through Conrad, with special emphasis upon the Victorians. Major authors may include Austen, Shelley, Dickens, Eliot, Thackeray, Gaskell, Brontë, Collins, Trollope, Stoker, Hardy. Not offered 2005–06.

En 124. 20th-Century British Fiction. 9 units (3-0-6); third term. A survey of the 20th-century British and Irish novel, from the modernist novel to the postcolonial novel. Major authors may include Conrad, Joyce, Woolf, Forster, Lawrence, Orwell, Amis, Lessing, Rushdie. Not offered 2005–06.

En 125 ab. British Romantic Literature. 9 units (3-0-6); second term. A selective survey of English writing in the late 18th and early 19th centuries. Major authors may include Blake, Wordsworth, Coleridge, Byron, Keats, Percy Shelley, Mary Shelley, and Austen. Particular attention will be paid to intellectual and historical contexts and to new understandings of the role of literature in society. Instructor: Gilmartin.
En 126. Gothic Fiction. 9 units (3-0-6); third term. The literature of horror, fantasy, and the supernatural, from the late 18th century to the present day. Particular attention will be paid to gothic's shifting cultural imperative, from its origins as a qualified reaction to Enlightenment rationalism, to the contemporary ghost story as an instrument of social and psychological exploration. Issues will include atmosphere and the gothic sense of space; gothic as a popular pathology; and the gendering of gothic narrative. Fiction by Walpole, Shelley, Brontë, Stoker, Poe, Wilde, Angela Carter, and Toni Morrison. Film versions of the gothic may be included. Instructor: Gilmartin.

En 128. Modern and Contemporary Irish Literature. 9 units (3-0-6). Offered by announcement. The development of Irish fiction, poetry, and drama from the early 20th-century Irish literary renaissance, through the impact of modernism, to the Field Day movement and other contemporary developments. Topics may include the impact of political violence and national division upon the literary imagination; the use of folk and fairy-tale traditions; patterns of emigration and literary exile; the challenge of the English language and the relations of Irish writing to British literary tradition; and recent treatments of Irish literature in regional, postcolonial, and global terms. Works by Joyce, Yeats, Synge, Friel, O'Brien, Heaney, Boland, and others. Not offered 2005–06.

En 129. Enlightenment Fiction. 9 units (3-0-6); third term. What was the fate of fiction in an age of reason? Historians have in fact questioned whether "Enlightenment" adequately describes European culture in the 18th century, and imaginative fiction seems particularly unsuited to generalizations about order, reason, and polite society. This course will focus on experimental narratives from the “antinovel” tradition, and on philosophical satires that undermine Enlightenment assumptions about social reform. It will look ahead to related developments in romantic and modernist fiction. Readings may include Voltaire, Diderot, Defoe, Hoffman, and fairy tales from the brothers Grimm. Not offered 2005–06.

En 132. American Literature Until the Civil War. 9 units (3-0-6); second term. The course will analyze the literature of this period, from the Puritans through Melville, to determine how various writers understood their relationship to a new world of seemingly unlimited possibility. Authors covered may include Mary Rowlandson, Benjamin Franklin, Hannah Foster, Harriet Jacobs, Emerson, Thoreau, Harriet Beecher Stowe, Hawthorne, and Melville. Not offered 2005–06.

En 133. 19th-Century American Women Writers. 9 units (3-0-6). This course will analyze many of the most popular novels written in the 19th century. How might we account for their success in the 19th century and their marginalization (until recently) in the 20th century? Why were so many of these texts “sentimental”? How may we understand the appeal of “sentimental” literature? What are the ideological implications of sentimentalism? Authors may include Stowe, Warner, Cummins, Alcott, Phelps, Fern, etc. Not offered 2005–06.

En 134. The Career of Herman Melville. 9 units (3-0-6). The course will focus on Melville's works from Typee through Billy Budd. Special emphasis will be placed on Melville's relations to 19th-century American culture. Instructor: Weinstein. Not offered 2005–06.

En 135. The Literature of American Reform. 9 units (3-0-6); third term. This course will consider how American literature—from its inception to the present day—has been used as a vehicle for reform. To what extent is literature capable of bringing about social change? What changes, if any, did these texts effect? Do texts that seek to effect social change require a different analytical vocabulary than the one we conventionally use when discussing literary texts? A range of reform movements, including abolitionism, feminism, Native American rights, in view of these and other questions, will be considered. Texts may include Uncle Tom's Cabin, White-Jacker, Ramona, Looking Backward, The Jungle, The Grapes of Wrath, Uncle Tom's Children, and Silent Spring. Instructor: Weinstein.

En 138. Twain and His Contemporaries. 9 units (3-0-6); third term. This course will study the divergent theories of realism that arose in the period after the Civil War and before World War I. Authors covered may include Howells, James, Charlotte Perkins Gilman, Twain, Sarah Orne Jewett, Jacob Riis, Stephen Crane, and W. E. B. DuBois. Instructor: Weinstein.

En 141. James and Wharton. 9 units (3-0-6); third term. The course covers selected novels, short fiction, and nonfiction writings of friends and expatriates Henry James and Edith Wharton. It will consider formal questions of style and genre as well as the literature's preoccupation with describing and defining American modernity, despite the authors' shared ambivalence toward their native country. Students will read as many as, but no more than, five novels. Texts covered may include The Portrait of a Lady, Daisy Miller, The Ambassadors, selections from The Decoration of Houses, The House of Mirth, The Custom of the Country, and The Age of Innocence. Not offered 2005–06.

En 150. Fundamentals of the Art of Poetry. 9 units (3-0-6); second term. What is poetry? Why and how should one read it? What "weapons" does the good poem deploy in order to give pleasure? How does an inexperienced reader develop into an expert and a sensitive one? To illustrate the nature, functions, and resources of poetry, a wide-ranging selection of poems will be read and discussed. Not offered 2005–06.

En 170. Drama from the Middle Ages to Molière. 9 units (3-0-6); third term. A study of major dramatic works from the 15th to the mid-17th century. Students will read medieval plays like Abraham and Isaac and Everyman; British Renaissance works including Marlowe's Doctor Faustus and two Shakespearean plays; several Spanish comedias of the Golden Age, among them the original Don Juan play; and Molière's masterpieces: Tartuffe and The Misanthrope. Not offered 2005–06.
En 171. Drama from Molière to Wilde. 9 units (3-0-6). A study of French plays of the age of Louis XIV, featuring Molière and Racine; English comedies of the 17th and 18th centuries, including Sheridan's The Rivals; masterpieces of German drama of the Romantic age, among them Schiller's Maria Stuart and Goethe's Faust; The Inspector General by the Russian Nikolay Gogol; Edmond Rostand's Cyrano de Bergerac; Oscar Wilde's The Importance of Being Earnest, and other works as time permits. Instructor: Sutherland.

En 172. Drama from Ibsen to Beckett. 9 units (3-0-6). A wide international range of plays will be studied, beginning with major texts by Ibsen and Chekhov, and concluding with Ionesco and Beckett. In between, students will read important plays by G. B. Shaw, Sean O'Casey, Pirandello, Bertolt Brecht, T. S. Eliot, Arthur Miller, and others. Instructor: Mandel.

En 180. Special Topics in English. 9 units (3-0-6). See registrar's announcement for details. Instructor: Staff.

En 181 a. Classics of Science Fiction: 1940–70. 9 units (3-0-6); first term. This course will aim to examine, critically, the achievements of one of the many "golden ages" of science fiction. Among the authors examined will be Pohl and Kornbluth, Bradbury, Bester, Vonnegut, Wyndham, Heinlein, Dick, Herbert, Ballard, Le Guin, Asimov, Clarke, Silverberg, Aldiss. The course will aim to give formal and generic definition to the texts examined and to reinsert them into the period of their original publication. Instructor: Sutherland.

En 181 b. Hardy: The Wessex Novels. 9 units (3-0-6); third term. This course will examine the body of work that the late Victorian novelist Thomas Hardy published under the general title The Wessex Novels, that is, the sequence of works from Far from the Madding Crowd to Jude the Obscure. The six main novels will be read critically to give a sense of the totality of this greatest British regional novelist's achievement. Instructor: Sutherland.

ENGLISH AS A SECOND LANGUAGE

ESL 101 ab. Oral Communication and Pronunciation. 3 units (3-0-0); first and second terms. Communication and pronunciation in spoken English. Development of pronunciation, vocabulary, listening comprehension, and accuracy and fluency in speaking. Aspects of American culture will be discussed. The first term is required for all first-year international students designated by the ESL screening process. Passing the class is based on attendance and effort. Graded pass/fail. Instructors: Geasland and Laib.

ESL 105. Oral Presentation and Public Speaking. Noncredit; second, third terms. Oral presentation in a variety of settings, including oral exams, seminars, conferences, and the classroom. Focus on the organization of ideas, delivery techniques, pronunciation, grammar, and vocabulary. Frequent in-class presentations by students based on their current research interests, followed by critiques. Improvement of confidence and delivery skills. Instructors: Geasland and Laib.

ENVIRONMENTAL SCIENCE AND ENGINEERING

ESE 1. Introduction to Environmental Science and Engineering. 9 units (3-0-6); third term. Prerequisites: Ph 1 ab, Ch 1 ab, and Ma 1 ab. An introduction to the array of major scientific and engineering issues related to environmental quality on a local, regional, and global scale. Fundamental aspects of major environmental problems will be addressed with an overall focus on the dynamic interplay among the atmosphere, biosphere, geosphere, and hydrosphere. Underlying scientific principles based on biology, chemistry, and physics will be presented. Engineering solutions to major environmental problems will be explored. Not offered on a pass/fail basis. Instructor: Hering. Satisfies the menu requirement of the Caltech core curriculum.
ESE 90. Undergraduate Laboratory Research in Environmental Science and Engineering. Units by arrangement; any term. Approval of research supervisor required prior to registration. Independent research on current environmental problems; laboratory or field work is required. A written report is required for each term of registration. Graded pass/fail. Instructor: Staff.

ESE 100. Special Topics in Environmental Science and Engineering. 6 or more units as arranged. Prerequisite: instructor’s permission. Special courses of reading, problems, or research for first-year graduate students or qualified undergraduates. Graded pass/fail. Instructor: Staff.

ESE 101. Current Problems in Environmental Science and Engineering. 3 units; first term. A discussion course that focuses on current research by ESE faculty, and open research questions in the field. Required for first-year ESE graduate students. Instructor: Staff.

ACM/ESE 118. Methods in Applied Statistics and Data Analysis. 9 units (3-0-6). For course description, see Applied and Computational Mathematics.

ESE 142. Aquatic Chemistry. 9 units (3-0-6); first term. Prerequisite: Ch 1 or instructor’s permission. Principles of inorganic and physical chemistry applied to natural and engineered aquatic systems. Biogeochemical processes controlling the major ion composition of aquatic systems and the behavior of the trace inorganic constituents of such systems are examined. Fundamental aspects of thermodynamics and quantitative description of the composition of natural waters are stressed. Instructor: Hering.

Ge/ESE 143. Organic Geochemistry. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

ESE 144. Applications of Aquatic Chemistry. 9 units (3-0-6); second term. Prerequisite: ESE 142. Case studies are used to illustrate the effects of biogeochemical processes on the composition of ground and surface waters. Systems to be examined include natural waters subject to varying levels of perturbations as a result of human activities, and engineered systems, such as constructed wetlands or water treatment systems. Quantitative equilibrium and kinetic modeling are emphasized. Given in alternate years; not offered 2005-06. Instructor: Hering.

ESE/Ge 148 abc. Global Environmental Science. 9 units each term. Prerequisites: Ch 1, Ma 2, Ph 2, or equivalents. Global change on timescales of years to centuries.

 c. Biogeochemical Cycles. (3-0-6); third term. Prerequisite: ESE/Ge 148 a or instructor’s permission. Global biogeochemical cycles, fluxes, and chemical reservoirs in the solid earth, atmosphere, and oceans. Regulation of atmospheric composition by photosynthesis and microbial processes. Variability in biogeochemical cycles during the Pleistocene and recent modification by human activity. Constraints on fluxes from remote-sensing data, isotope sampling, and models. Instructor: Sessions.

Ge/ESE 149. Marine Geochemistry. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.

ESE 150 abc. Seminar in Environmental Science and Engineering. 1 unit (1-0-0); each term. Seminar on current developments and research within the field of environmental engineering science, with special consideration given to work at the Institute. Graded pass/fail. Instructor: Leadbetter.

ESE/Ge 152. Atmospheric Radiation. 9 units (3-0-6); second term. Prerequisite: ESE/Ge 148 a or instructor’s permission. The basic physics of absorption and scattering by molecules, aerosols, and clouds. Theory of radiative transfer. Band models and correlated-k distributions and scattering by nonspherical particles. Solar insolation, thermal emission, heating rates and applications to climate. Instructors: Yung, Sander.

ESE/Ge 153. Atmosphere and Ocean Dynamics. 9 units (3-0-6); third term. Prerequisite: ESE 148 b or an introductory fluid dynamics course. Fluid dynamics of the atmosphere and oceans, beginning with linear wave dynamics and wave–mean flow interaction theory and leading to theories of the maintenance of large-scale circulations. Topics include barotropic Rossby waves, flow-over topography; shallow-water dynamics and potential vorticity; quasi-geostrophic theory; barotropic and baroclinic instability; wave–mean flow interaction; maintenance of the global-scale circulation of the atmosphere; structure of wind-driven ocean circulation. Instructor: Ingersoll.

Ge/ESE 155. Paleoclimatology. 9 units (3-0-6). For course description, see Geological and Planetary Sciences.
ChE/ESE 158. Aerosol Physics and Chemistry. 9 units (3-0-6).
For course description, see Chemical Engineering.

ESE 159. Environmental Analysis Laboratory. 9 units (1–6–2); third term. Prerequisite: any 100-level ESE course or instructor's permission.
Introduction to modern laboratory techniques and basic sampling principles in environmental water, air, and biological analysis. Modular experiments will address sampling, measurement, and data analysis based around a region of local environmental interest. Regions may include the Arroyo Seco watershed, San Gabriel Mountains, or Caltech campus. Principles of basic experimental design, laboratory technique, elementary statistics, and scientific writing will be emphasized. Instructors: Adkins, staff.

ESE/Bi 166. Microbial Physiology. 9 units (3–0–6); first term. Recommended prerequisite: one year of general biology. A lecture and discussion course on growth and functions in the prokaryotic cell. Topics covered: growth, transport of small molecules, protein excretion, membrane bioenergetics, energy metabolism, motility, chemotaxis, global regulators, and metabolic integration. Instructor: Leadbetter.

ESE/Bi 168. Microbial Metabolic Diversity. 9 units (3–0–6); second term. Prerequisites: ESE 142, ESE/Bi 166. A course on the metabolic diversity of microorganisms. Basic thermodynamic principles governing energy conservation will be discussed, with emphasis placed on photosynthesis and respiration. Students will be exposed to genetic, genomic, and biochemical techniques that can be used to elucidate the mechanisms of cellular electron transfer underlying these metabolisms. Instructor: Newman.

ESE/Ge/Ch 171. Atmospheric Chemistry I. 9 units (3–0–6); third term. Prerequisite: Ch 1 or equivalent. A detailed course about chemical transformation in Earth's atmosphere. Kinetics, spectroscopy, and thermodynamics of gas- and aerosol-phase chemistry of the stratosphere and troposphere; sources, sinks, and lifetimes of trace atmospheric species; stratospheric ozone chemistry; oxidation mechanisms in the troposphere. Instructors: Seinfeld, Salawitch.

ESE/Ge/Ch 172. Atmospheric Chemistry II. 9 units (3–0–6); first term. Prerequisite: ESE/Ge/Ch 171 or equivalent. A lecture and discussion course about active research in atmospheric chemistry. Potential topics include halogen chemistry of the stratosphere and troposphere; aerosol formation in remote environments; coupling of dynamics and photochemistry; development and use of modern remote-sensing and in situ instrumentation. Instructors: Seinfeld, Wennberg. Given in alternate years; offered 2005–06.

ESE/Ge 173. Topics in Atmospheric and Ocean Dynamics. 9 units (3–0–6); first term. Prerequisite: ESE/Ge 153 or equivalent. A lecture and discussion course on current research in atmosphere and ocean dynamics. Topics covered vary from year to year and may include geostrophic turbulence, atmospheric convection and cloud dynamics, wave dynamics and large-scale circulations in the tropics, middle-atmosphere dynamics, dynamics of El Niño and the southern oscillation, maintenance of the ocean thermocline, and dynamics of the southern ocean. Instructor: Schneider.

ESE/Ch/Ge 175 ab. Environmental Organic Chemistry. 9 units (3–0–6); second, third terms. A detailed analysis of the important chemical reactions and physico-chemical processes governing the behavior and fate of organic compounds in the surface and subsurface aquatic environments. The course is focused on physical organic chemistry relevant to natural waters. Fundamental aspects of thermodynamics, kinetics, mechanisms, and transport are stressed. Instructor: Dalleska.

ESE 200. Advanced Topics in Environmental Science and Engineering. Units by arrangement, any term. Course to explore new approaches to environmental problems. The topics covered vary from year to year, depending on the interests of the students and staff.

ESE 250. Advanced Environmental Seminar. Units by arrangement, not to exceed 4 units (2–0–2); each term. Prerequisite: instructor's permission. A seminar course for advanced graduate students and staff to discuss current research and technical literature on environmental problems. As the subject matter changes from term to term, it may be taken any number of times. Not offered 2005–06.

ESE 300. Thesis Research.
For other closely related courses see listings under Chemistry, Chemical Engineering, Civil Engineering, Mechanical Engineering, Biology, Geology, Economics, and Social Science.
Graduate students may also enroll in graduate courses offered by the Scripps Institution of Oceanography under an exchange program. Graduate students majoring in environmental science and engineering, who may take a subject minor in oceanography for the Ph.D. degree, should consult the executive officer for more information.

GEOLOGICAL AND PLANETARY SCIENCES
Geology, Geobiology, Geochemistry, Geophysics, Planetary Science

Ge 1. Earth and Environment. 9 units (3–3–3); third term. An introduction to the ideas and approaches of earth and environmental sciences, including both the special challenges and viewpoints of this kind of science as well as the ways in which basic physics, chemistry, and biology relate to these sciences. In addition to a wide-ranging lecture-oriented component, there will be a required field trip component (two weekend days), and a special research topic (often lab-oriented) chosen from many alternatives and to be carried out in small groups each led by a professor. The lectures and topics cover such issues as solid earth
structure and evolution, plate tectonics, oceans and atmospheres, climate change, and the relationship between geological and biological evolution. Not offered on a pass/fail basis. Instructor: M. Brown. Satisfies the menu requirement of the Caltech core curriculum.

Ge 10. Frontiers in Geological and Planetary Sciences. 3 units (2-0-1); second term. Open for credit to sophomores, juniors, and seniors; the course may be taken multiple times. Prerequisite: Ge 1 or Ge 11 a, or instructor's permission. Weekly seminar by a member of the Division of Geological and Planetary Sciences or a visitor to discuss a topic of his or her current research at an introductory level. The course is designed to introduce students to research and research opportunities in the division and to help students find faculty sponsors for individual research projects. Graded pass/fail. Instructors: Farley, Rossman.

Ge 11 abc. Introduction to Earth and Planetary Sciences. 9 units each term. Prerequisites: Ch 1, Ma 1, and Pb 1; or instructor's permission. Comprehensive, integrated overview of Earth and planets. Although designed as a sequence, any one term can be taken as a stand-alone course. Biologists are particularly welcome in Ge 11 b, as are physicists and astronomers in Ge/Ay 11 c.

a. Earth as a Planet. (3-3-3); first term. Systematic introduction to the physical and chemical processes that have shaped Earth as a planet over geological time, and the observable products of these processes—rock materials, minerals, land forms. Geophysics of Earth. Plate tectonics; earthquakes; igneous activity. Weathering, erosion, and sedimentary rocks. Metamorphism and metamorphic rocks. Rock deformation and mountain building. Role of aqueous, atmospheric, glacial, and tectonic processes in shaping Earth's surface and our environment. Earth resources. Field trips, interpretation of geological maps, and laboratory study of Earth materials (minerals and rocks). Instructor: Eiler.

b. Earth and the Biosphere. (3-3-3); second term. Systematic analysis of the origin and evolution of life in the solar system, and its impact on the atmosphere, hydrosphere, and climate of Earth. Archean surface environments and production of oxygen. Bacterial evolution, photosynthesis, genes as fossils. Banded iron stones, algal mats, stromatolites, global glaciation, and molecular evolution. Biological fractionation of stable isotopes. Numerical calibration of the geological time scale, the Cambrian evolutionary explosion, mass extinction events, and human evolution. The course usually includes one major field trip, and laboratory studies of fossils, Precambrian rocks, and geological processes. Instructor: Kirschvink.

Ge/Ay 11 c. Planetary Sciences. (3-0-6); third term. A broad introduction to what is known about the origin, evolution, and present state of the solar system. Observations of young solar-mass stars, disks, and extrasolar planets, as well as meteorite properties and planet formation models, are the constraints on solar-system origin. Based on data from Earth-based observations, planetary spacecraft, and extraterrestrial materials, the evolution and present states of planetary objects are addressed systematically by considering small bodies (comets and asteroids), the terrestrial planets, the giant planets, and finally, the icy bodies of the outer solar system. Instructor: Sari.

Ge 11 d. Geophysics. 9 units (3-0-6); second term. Prerequisite: Ma 2, Pb 2. An introduction to the geophysics of the solid earth; formation of planets; structure and composition of Earth; interactions between crust, mantle, and core; surface and internal dynamics; mantle convection; imaging of the interior; seismic tomography. Instructors: Gurnis, Clayton.

Ge 13. Scientific Writing Tutorial in the Geological and Planetary Sciences. 3 units (1-0-2); third term. This class provides the opportunity for students to gain experience in writing a substantial paper in the style typical of peer-reviewed journals, such as Annual Reviews of Earth and Planetary Sciences, Geology, Science, or Nature. Grading will be evaluated jointly by each student's adviser and the course instructor. Fulfills the Institute scientific writing requirement. Instructor: Kirschvink.

Ge 40. Special Problems for Undergraduates. Units to be arranged; any term. This course provides a mechanism for undergraduates to undertake honors-type work in the geologic sciences. By arrangement with individual members of the staff. Graded pass/fail.

Ge 41 abc. Undergraduate Research and Bachelor's Thesis. Units to be arranged; first, second, third terms. Guidance in seeking research opportunities and in formulating a research plan leading to preparation of a bachelor's thesis is available from the division undergraduate research counselors, Professors Rossman and Kirschvink. Graded pass/fail.

Ge 100 abc. Geology Club. 1 unit (1-0-0); first, second, third terms. Presentation of papers on research in geological and planetary sciences by guest speakers. Graded pass/fail. Instructor: Kirschvink.

Ge 101. Introduction to Geology and Geochemistry. 12 units (4-0-8); first term. Prerequisite: instructor's permission. Historical deduction in the geological and planetary sciences. Nucleosynthesis and chemical differentiation of the solar system; distribution of the elements in the earth; isotopic systems as tracers and clocks; igneous, surficial, metamorphic, and structural processes; tectonics of the lithosphere; evolution of the biosphere; global geochemical and biogeochemical cycles. Instructor: Asimow.

Ge 102. Introduction to Geophysics. 9 units (3-0-6); second term. Prerequisites: Ma 2, Pb 2, or Ge 108, or equivalents. An introduction to the physics of the earth. The present internal structure and dynamics of the earth are considered in light of constraints from the gravitational and magnetic fields, seismology, and mineral physics. The fundamentals of wave propagation in earth materials are developed and applied to inferring Earth structure. The earthquake source is described in terms of seismic and geodetic signals. The following are also considered: the contributions that heat-flow, gravity, paleomagnetic, and earthquake mechanism data have made to our understanding of plate tectonics, the driving mechanism of plate tectonics, and the energy sources of mantle convection and the geodynamo. Instructor: Stevenson.
Geological and Planetary Sciences

426

Field/data analysis component is covered in Ge 111 b. May be repeated with implementation of the various measurement techniques. The 6–10 day area using a variety of methods (e.g., gravity, magnetic, electrical, GPS, techniques consisting of a comprehensive survey of a particular field introduction to the theory and application of basic geophysical field Ge 111 ab. Applied Geophysics Seminar and Field Course. The 6-unit option introduces methods of geologic mapping and is required for all students planning to take Ge 120. Geology majors must enroll in the 12-unit option, which additionally introduces continuum mechanics, interpretation of deformed rocks, and the tectonics of mountain belts. Instructor: Wernicke.

Ge 108. Applications of Physics to the Earth Sciences. 9 units (3–0–6); first term. Prerequisites: Ph 2 and Ma 2 or equivalent. An intermediate course in the application of the basic principles of classical physics to the earth sciences. Topics will be selected from: mechanics of rotating bodies, the two-body problem, tidal theory, oscillations and normal modes, diffusion and heat transfer, wave propagation, electro- and magneto-statics, Maxwell's equations, and elements of statistical and fluid mechanics. Instructor: Wernicke.

Ge 109. Oral Presentation. 3 units (1–0–2); third term. Practice in the effective organization and delivery of reports before groups. Successful completion of this course is required of all candidates for degrees in the division. Graded pass/fail. Instructors: Bikle, staff.

Ge 111 ab. Applied Geophysics Seminar and Field Course. An introduction to the theory and application of basic geophysical field techniques consisting of a comprehensive survey of a particular field area using a variety of methods (e.g., gravity, magnetic, electrical, GPS, seismic studies, and satellite remote sensing). The course will consist of a seminar held in the third term, which will discuss the scientific background for the chosen field area, along with the theoretical basis and implementation of the various measurement techniques. The 6–10 day field/data analysis component is covered in Ge 111 b. May be repeated for credit with an instructor's permission. Instructors: Simons, Clayton, Stock.

Ge 112. Geomorphology and Stratigraphy. 12 units (3–5–4); first term. Prerequisite: Ge 11 ab. This course is an introduction to Earth's landscapes and strata. We explore the nature of fluvial, lacustrine, glacial, volcanic, tectonic, and various marine landforms and sediments, whose character and sequencing enable us to understand geologic history and processes. The focus will be on modern, active systems and the interpretation of paleoenvironments and paleoclimates of the past million years. But the nature and genesis of sequence architecture of sedimentary basins will also be introduced. Field trips and laboratory exercises. Instructor: Sari.

Ge 114 ab. Mineralogy. a. 9 units (3–4–2); first term. Atomic structure, composition, physical properties, occurrence, and identifying characteristics of the major mineral groups. The laboratory work involves the characterization and identification of important minerals by their physical and optical properties. Instructor: Rossman. b. 3 units (0–2–1); first term. Prerequisite: concurrent enrollment in Ge 114 a or instructor's permission. Additional laboratory studies of optical crystallography and the use of the petrographic microscope. Instructor: Rossman.

Ge 115 ab. Petrology and Petrography. Systematic study of rocks and rock-forming minerals with emphasis on use of the petrographic microscope and megascopic identification; interpretation of mineral assemblages, textures, and structures; problems of genesis. a. Igneous Petrology and Petrography. 12 units (3–6–3) or 6 units (3–0–3) with instructor's permission; third term. Prerequisite: Ge 115 b. The mineralogical and chemical composition, origin, occurrence, and classification of igneous rocks, considered mainly in the light of chemical equilibrium and of experimental studies. Detailed consideration of the structures, phase relations, and identification of the major igneous minerals. Instructor: Stolper. b. Metamorphic Petrology and Petrography. 12 units (3–6–3) or 6 units (3–0–3) with instructor's permission; second term. Prerequisite: Ge 115 a. The mineralogic and chemical composition, occurrence, and classification of metamorphic rocks; interpretation of mineral assemblages in the light of chemical equilibrium and experimental studies. Detailed consideration of structure, phase relations, composition, and determination of the major metamorphic minerals. Instructor: Eiler.

Ge 120. Summer Field Geology. 12 units (0–12–0); summer. Prerequisites: Ge 11 ab, Ge 106, or instructor's permission. Intensive course in techniques of field observation and documentation. The course includes two and one-half weeks of mapping in a well-exposed area of the southwestern United States, and the preparation of a report in September prior to registration week. Instructor: Saleeb.
Ge 121 ab. Advanced Field and Structural Geology. 12 units (0-9-3); first, third terms. Prerequisites: Ge 120 or equivalent, or instructor's permission. Field mapping and supporting laboratory studies in topical problems related to Southern California tectonics and petrogenesis. Each year the sequence offers a breadth of experience in igneous, metamorphic, and sedimentary rocks. Instructors: Stock (first term), Saleeb (third term).

Ge 122. Geologic Hazard Assessment. 12 units (1-8-3); summer term. Prerequisites: Ge 120 or equivalent, or instructor's permission. Two and one-half weeks of intensive field-based description and evaluation of the deposits and landforms related to a geologic hazard. Field location will vary from year to year, but will focus on a particular locale, either within the United States or abroad, where a seismic, volcanic, slope-stability, or other hazard can be documented and evaluated. Instructor: Sieh.

 a. 6 units (0-0-6); second term. A field trip to the southwest United States or Mexico to study the physical stratigraphy and magnetic zonation, followed by lab analysis.
 b. 9 units (3-3-3); third term. Prerequisite: Ge 11 ab. The principles of rock magnetism and physical stratigraphy; emphasis on the detailed application of paleomagnetic techniques to the determination of the history of the geomagnetic field.

Ge/Ch 127. Nuclear Chemistry. 9 units (3-0-6); second term. Prerequisite: instructor's permission. A survey course in the properties of nuclei, and in atomic phenomena associated with nuclear-particle detection. Topics include rates of production and decay of radioactive nuclei; interaction of radiation with matter; nuclear masses, shapes, spins, and moments; modes of radioactive decay; nuclear fission and energy generation. Instructor: Burnett. Given in alternate years; offered 2005–06.

Ge/Ch 128. Cosmochemistry. 9 units (3-0-6); third term. Prerequisite: instructor's permission. Examination of the chemistry of the interstellar medium, of protostellar nebulae, and of primitive solar-system objects with a view toward establishing the relationship of the chemical evolution of atoms in the interstellar radiation field to complex molecules and aggregates in the early solar system. Emphasis will be placed on identifying the physical conditions in various objects, timescales for physical and chemical change, chemical processes leading to change, observational constraints, and various models that attempt to describe the chemical state and history of cosmological objects in general and the early solar system in particular. Instructor: Blake. Given in alternate years; offered 2005–06.

Ge 131. Planetary Structure and Evolution. 9 units (3-0-6); third term. Prerequisite: instructor's permission. A critical assessment of the physical and chemical processes that influence the initial condition, evolution, and current state of planets, including our planet and planetary satellites. Topics to be covered include a short survey of condensed-matter physics as it applies to planetary interiors, remote sensing of planetary interiors, planetary modeling, core formation, physics of ongoing differentiation, the role of mantle convection in thermal evolution, and generation of planetary magnetic fields. Instructor: Stevenson.

Ge/Ay 132. Atomic and Molecular Processes in Astronomy and Planetary Sciences. 9 units (3-0-6); second term. Prerequisite: instructor's permission. Fundamental aspects of atomic and molecular spectra that enable one to infer physical conditions in astronomical, planetary, and terrestrial environments. Topics will include the structure and spectra of atoms, molecules, and solids; transition probabilities; photoionization and recombination; collisional processes; gas-phase chemical reactions; and isotopic fractionation. Each topic will be illustrated with applications in astronomy and planetary sciences, ranging from planetary atmospheres and dense interstellar clouds to the early universe. Instructor: Blake. Not offered 2005–06.

Ge/Ay 133. The Formation and Evolution of Planetary Systems. 9 units (3-0-6); first term. Review current theoretical ideas and observations pertaining to the formation and evolution of planetary systems. Topics to be covered include low-mass star formation, the protoplanetary disk, accretion and condensation in the solar nebula, the formation of gas giants, meteorites, the outer solar system, giant impacts, extrasolar planetary systems. Instructor: Blake.

Ge 135. Tectonics and Crustal Structure of Southern California. 9 units (3-3-3); first term. Prerequisite: Ge 11 ab or Ge 101, or equivalents. Development of the Southern California region basement and its disruption by Neogene to recent tectonics, the Neogene stratigraphic record of these tectonics, the structure and kinematics of the modern plate juncture system, and the geophysical expression of these features. Three one-day weekend local field trips spaced throughout the term. Alternates with Ge 147. Instructor: Saleeb. Given in alternate years; offered 2005–06.

Ge 136 abc. Regional Field Geology of the Southwestern United States. 3 units (1-0-2); first, second, third terms. Prerequisite: Ge 11 ab or Ge 101, or instructor's permission. Includes approximately three days of weekend field trips into areas displaying highly varied geology. Each student is assigned the major responsibility of being the resident expert on a pertinent subject for each trip. Graded pass/fail. Instructor: Kirschvink.
Ge 140. Introduction to Isotope Geochemistry. 9 units (3-0-6); second term. Prerequisite: instructor's permission. An introduction to the physics and chemistry of isotopes and a broad overview of the principles and conceptual techniques used in the stable isotope geochemistry of the lighter elements (H, C, O, N, Si, S) and the origin and evolution of radiogenic parent-daughter systems in nature. Instructors: Eiler, Farley.

Ge/ESE 143. Organic Geochemistry. 9 units (3-0-6); first term. Prerequisite: Ch 41 a or equivalent. Introduction to the properties and cycling of natural organic materials. The course follows the global cycle of organic matter, from production in living organisms to burial in sediments and preservation in the rock record. Specific topics include lipid biochemistry and stereochemistry, factors controlling preservation in sediments, methanogenesis, diagenetic alterations of carbon skeletons, fossil fuel production and degradation, life in the deep biosphere, and biomarkers for ancient life. Not offered 2005–06.

Ge 147. Tectonics of Western North America. 9 units (4-0-5); first term. Prerequisite: Ge 11 ab. Major tectonic features of western North America, including adjacent craton and Pacific Ocean basin. Active plate boundaries, igneous provinces, crustal uplift, and basin subsidence. Tectonic evolution from late Precambrian to recent time, and modern analogues for paleotectonic phenomena. Instructor: Saleeby. Given in alternate years; not offered 2005–06.

ESE/Ge 148 abc. Global Environmental Science. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

Ge/ESE 149. Marine Geochemistry. 9 units (3-0-6); second term. Introduction to chemical oceanography and sediment geochemistry. We will address the question “Why is the ocean salty?” by examining the processes that determine the major, minor, and trace element distributions of seawater and ocean sediments. Topics include river and estuarine chemistry, air/sea exchange, nutrient uptake by the biota, radioactive tracers, redox processes in the water column and sediments, carbonate chemistry, and ventilation. Instructor: Adkins.

Ge 150. Planetary Atmospheres. 9 units (3-0-6); second term. Prerequisites: Ch 1, Ma 2, Ph 2, or equivalents. Origin of planetary atmospheres, escape, and chemical evolution. Tenuous atmospheres: the moon, Mercury, and outer solar system satellites. Comets. Vapor-pressure atmospheres: Triton, Io, and Mars. Spectrum of dynamical regimes on Mars, Earth, Venus, Titan, and the gas giant planets. Instructor: Richardson.

Ge 151. Fundamentals of Planetary Surfaces. 9 units (3-3-3); third term. Review of surface histories and processes responsible for the formation and modification of the surfaces of the terrestrial planets and the Jovian satellites. Topics: exogenic surface processes, including impact, gravitational degradation, atmospheric modification of surfaces by wind and water, and the direct interaction of surfaces with plasmas; endogenic modification of surfaces by tectonics and volcanism; surface histories of Mercury, Venus, the moon, and Mars; the surfaces of icy bodies. Instructor: Aharonson.

ESE/Ge 152. Atmospheric Radiation. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

ESE/Ge 153. Atmosphere and Ocean Dynamics. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

Ge/ESE 154. Readings in Paleoclimate. 3 units (1-0-2); second term. Prerequisite: instructor's permission. Lectures and readings in areas of current interest in paleoceanography and paleoclimate. Instructor: Adkins.

Ge/ESE 155. Paleceanography. 9 units (3-0-6); second term. Evaluation of the data and models that make up our current understanding of past climates. Emphasis will be placed on a historical introduction to the study of the past ten thousand to a few hundred thousand years, with some consideration of longer timescales. Evidence from marine and terrestrial sediments, ice cores, corals, and speleothems will be used to address the mechanisms behind natural climate variability. Models of this variability will be evaluated in light of the data. Topics will include sea level and ice volume, surface temperature evolution, atmospheric composition, deep ocean circulation, tropical climate, ENSO variability, and terrestrial/ocean linkages. Instructor: Adkins. Not offered 2005–06.

Ge 156. Topics in Planetary Surfaces. 9 units (3-0-6); second term. Reading about and discussion of current understanding of the surface of a selected terrestrial planet, major satellite, or asteroid. Important “classic” papers will be reviewed, relative to the data that are being returned from recent and current missions. May be repeated for credit. Instructor: Aharonson.

EE/Ge 157 abc. Introduction to the Physics of Remote Sensing. 9 units (3-0-6). For course description, see Electrical Engineering.

EE/Ge 158 ab. Application of Digital Images and Remote Sensing in the Field. 3 units (0-2-1); second term. 6 units (0-5-1); third term. For course description, see Electrical Engineering.

Ac/Ge/ME 160 ab. Continuum Mechanics of Fluids and Solids. 9 units (3-0-6). For course description, see Aeronautics.
Ge 161. Plate Tectonics. 9 units (3-0-6); first term. Prerequisite: Ge 11 ab or equivalent. Geophysical and geological observations related to plate tectonic theory. Instantaneous and finite motion of rigid plates on a sphere; marine magnetic and paleomagnetic measurements; seismicity and tectonics of plate boundaries; reference frames and absolute plate motions. Interpretations of geologic data in the context of plate tectonics; plate tectonic evolution of the ocean basins. Instructor: Stock.

Ge 162. Seismology. 9 units (3-0-6); second term. Prerequisite: ACM 95/100 abc or equivalent. Review of concepts in classical seismology. Topics to be covered: basic theories of wave propagation in the earth, instrumentation, Earth's structure and tomography, theory of the seismic source, physics of earthquakes, and seismic risk. Emphasis will be placed on how quantitative mathematical and physical methods are used to understand complex natural processes, such as earthquakes. Instructor: Kanamori.

Ge 163. Geodynamics. 9 units (3-0-6); third term. Prerequisite: Ae/Ge/ME 160 ab. Quantitative introduction to the dynamics of the earth, including core, mantle, lithosphere, and crust. Mechanical models are developed for each of these regions and compared to a variety of data sets. Potential theory applied to the gravitational and geomagnetic fields. Special attention is given to the dynamics of plate tectonics and the earthquake cycle. Instructors: Gurnis, Simons.

Ge 165. Geophysical Data Analysis. 9 units (3-0-6); first term. Prerequisites: basic linear algebra and Fourier transforms. Introduction to modern digital analysis: discrete Fourier transforms, Z-transforms, filters, deconvolution, auto-regressive models, spectral estimation, basic statistics, 1-D wavelets, model fitting via singular valued decomposition. Instructor: Clayton.

Ge 166. Radar Imaging of the Earth for Geoscience Applications. 9 units (3-0-6); second term. Prerequisite: Ge 165 or instructor's permission. Basics of wave propagation and backscattering from surfaces, synthetic aperture radar imaging theory, radar signal processing, image interpretation, methods of interferometry and polarimetry. Practical experience in forming radar images from signal data, interfering them for measuring topography and surface change. Computer laboratory based on interferometric radar processing package applied to data from modern spaceborne radar sensors. Emphasis on understanding the characteristics of the images, including geophysical signals, random error sources, and signal processing artifacts. Given in alternate years; not offered 2005-06.

Ge 168. Crustal Geophysics. 9 units (3-0-6); third term. Prerequisite: ACM 95/100 or equivalent, or instructor's permission. The analysis of geophysical data related to crust processes. Topics include reflection and refraction seismology, tomography, gravity, magnetics, and geodesy. Instructor: Clayton.

Ge 169 ab. Readings in Geophysics. 6 units (3-0-3); second, third terms. Reading courses are offered to teach students to read critically the work of others and to broaden their knowledge about specific topics. Each student will be required to write a short summary of each paper that summarizes the main goals of the paper, to give an assessment of how well the author achieved those goals, and to point out related issues not discussed in the paper. Each student will be expected to lead the discussion on one or more papers. The leader will summarize the discussion on the paper(s) in writing. A list of topics offered each year will be posted on the Web. Individual terms may be taken for credit multiple times without regard to sequence. Instructor: Staff.

Ge 170. Microbial Ecology. 9 units (3-2-4); third term. Prerequisite: ESE/Bi 166. Structural, phylogenetic, and metabolic diversity of microorganisms in nature. The course explores microbial interactions, relationships between diversity and physiology in modern and ancient environments, and influence of microbial community structure on biogeochemical cycles. Introduction to ecological principles and molecular approaches used in microbial ecology and geobiological investigations. Instructor: Orphan.

ESE/Ge/Ch 171. Atmospheric Chemistry I. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

ESE/Ge/Ch 172. Atmospheric Chemistry II. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

ESE/Ge/Ch 173. Topics in Atmosphere and Ocean Dynamics. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

ESE/Ch/Ge 175 ab. Environmental Organic Chemistry. 9 units (3-0-6). For course description, see Environmental Science and Engineering.

Ge 177 ab. Geology of Earthquakes. 12 units (3-3-6); second, third terms. Prerequisites: Ge 112 and Ge 106 or equivalent. Geologic manifestations of recent crustal deformation. Geomorphology, stratigraphy, structural geology, and mechanics applied to the study of active faults and folds in a variety of tectonic settings. Relation of seismicity and geodetic measurements to geologic structure and active tectonics processes, including case studies of selected earthquakes. Instructors: Sieh (second term), Avouac (third term). Given in alternate years; offered 2005–06.

Ge 179 abc. Seismological Laboratory Seminar. 1 unit (1-0-0); first, second, third terms. Presentation of current research in geophysics by students, staff, and visitors. Graded pass/fail. Instructor: Helmberger.

CE/Ge 181. Engineering Seismology. 9 units (3-0-6). For course description, see Civil Engineering.
Ge 190. The Nature and Evolution of the Earth. Units to be arranged. Offered by announcement only. Advanced-level discussions of problems of current interest in the earth sciences. Students may enroll for any or all terms of this course without regard to sequence. Instructor: Staff.

Ge 191. Special Topics in Geochemistry. Units to be arranged. Offered by announcement only. Advanced-level discussions of problems of current interest in geochemistry. Students may enroll for any or all terms of this course without regard to sequence. Instructor: Staff.

Ge 192. Special Topics in the Geological Sciences. Units to be arranged. Offered by announcement only. Advanced-level discussions of problems of current interest in the geological sciences. Students may enroll for any or all terms of this course without regard to sequence. Instructor: Staff.

Ge 193. Special Topics in Geophysics. Units to be arranged. Offered by announcement only. Advanced-level discussions of problems of current interest in geophysics. Students may enroll for any or all terms of this course without regard to sequence. Instructor: Staff.

Ge 194. Special Topics in the Planetary Sciences. Units to be arranged. Offered by announcement only. Advanced-level discussions of problems of current interest in the planetary sciences. Students may enroll for any or all terms of this course without regard to sequence. Instructor: Staff.

Ge 195. Special Opportunities in Field Geology. Units to be arranged. Offered by announcement only. Field experiences in different geological settings. Supporting lectures will usually occur before and during the field experience. This course will be scheduled only when special opportunities arise. Class may be taken more than once. Instructor: Staff.

Ge 203. Special Topics in Atmospheres and Oceans. 9 units (3-0-6); third term. Recommended: ESE/Ge 148, ACM 95/100, Pb 106, or equivalent. Photochemistry of planetary atmospheres, atmospheric evolution, comparative planetology, climate change. Instructor: Yung. Given in alternate years; not offered 2005–06.

Ge 211. Applied Geophysics II. Units to be arranged. Prerequisite: instructor’s permission. Intensive geophysical field experience in either marine or continental settings. Marine option will include participation in a student training cruise, with several weeks aboard a geophysical research vessel, conducting geophysical measurements (multibeam bathymetry, gravity, magnetics, and seismics), and processing and interpreting the data. Supporting lectures and problem sets on the theoretical basis of the relevant geophysical techniques and the tectonic background of the survey area will occur before and during the training cruise. The course might be offered in a similar format in other isolated situations. The course will be scheduled only when opportunities arise and this usually means that only six months’ notice can be given. Auditing not permitted. Class may be taken more than once. Instructors: Stock, Clayton, Gurnis. The latest information on the course is available at http://www.gps.caltech.edu/~jstock/Ge211.html.

Ge 212. Thermodynamics of Geological Systems. 9 units (3-0-6); second term. Prerequisites: Ch 21 abc, Ge 115 a, or equivalents. Chemical thermodynamics as applied to geological and geochemical problems. Classical thermodynamics, including stability criteria, homogeneous and heterogeneous equilibria, equilibria subject to generalized constraints, equations of state, ideal and nonideal solutions, redox systems, and electrolyte conventions. Brief discussion of statistical foundations and an introduction to the thermodynamics of irreversible processes. Instructor: Rossman. Given in alternate years; not offered 2005–06.

Ge 213. Advanced Thermodynamics. 12 units (4-0-8); second term. Prerequisites: Ge 114 a, Ch 21, or instructor’s permission. Lectures, readings, seminars, and/or laboratory studies in igneous or metamorphic petrology, paragenesis, and petrogenesis. The course may cover experimental, computational, or analytical methods. Format and content are flexible according to the needs of the students. Instructor: Rossman. Given in alternate years; not offered 2005–06.

Ge 214. Spectroscopy of Minerals. 9 units (3-0-6); third term. Prerequisites: Ge 114 a, Ch 21, or instructor’s permission. An overview of the interaction of minerals with electromagnetic radiation from gamma rays to microwaves. Particular emphasis is placed on visible, infrared, Raman, and Mössbauer spectroscopies as applied to mineralogical problems such as phase identification, chemical analysis, site populations, and origin of color and pleochroism. Instructor: Rossman. Given in alternate years; not offered 2005–06.

Ge 215. Topics in Advanced Petrology. 1 unit (1-0-0); first, second, third terms. Required of all planetary-science graduate students; others welcome. First term: current research by staff and students. Second and third terms: planetary research with spacecraft and current developments in planetary science. Instructor: Staff.

Ge 225 abc. Planetary Sciences Seminar. 1 unit (1-0-0); first, second, third terms. Required of all planetary-science graduate students; others welcome. First term: current research by staff and students. Second and third terms: planetary research with spacecraft and current developments in planetary science. Instructor: Staff.

Ge 232. Chemistry of the Solar System. 9 units (3-0-6); second term. Prerequisite: Ge 140 or instructor’s permission. Advanced course using both chemical and isotopic data to evaluate the current state of knowledge concerning the composition of major segments of the solar system, viz., solar and meteoritic abundance data to infer the average solar-system composition; chemistry of meteorites as a clue to initial conditions in the solar nebula; bulk composition of the earth and moon; constraints on the bulk composition of the other planets, emphasizing data on atmospheric constituents. Instructor: Burnett. Given in alternate years; not offered 2005–06.
Ge 236. Applications of Rare Gases to Earth Science Problems. 9 units (3-0-6); offered by announcement; third term. Prerequisite: instructor's permission. Discussion of the principles, applications, and limitations of rare gases as records of terrestrial processes. Origin and behavior of rare gases in natural systems. Specific areas to be considered include K/Ar and 40Ar/39Ar dating; Ar thermochronology; surface-exposure dating; rare-gas constraints on mantle evolution and models of atmosphere formation; additional applications in geology, hydrology, paleoclimatology, and oceanography. Instructor: Farley.

Ge/Bi 244. Paleobiology Seminar. 5 units; third term. Critical reviews and discussion of classic investigations and current research in paleoecology, evolution, and biogeochemistry. Instructor: Kirschvink.

Ge/Bi 246. Molecular Geobiology Seminar. 6 units (2-0-4); second term. Recommended prerequisite: ESE/Bi 166. Critical reviews and discussion of classic papers and current research in microbiology and geo-microbiology. As the topics will vary from year to year, it may be taken multiple times. Instructor: Newman.

Ge 260. Physics of Earth Materials. 9 units (3-2-4); second term. Prerequisite: familiarity with basic concepts of thermodynamics and mineralogy; instructor's permission. Application of high-pressure physics to geologic problems. Topics: concepts of elastic and shock propagation in single and polycrystalline solids and in fluids, and their relation to various thermodynamic processes; phase changes, dynamic yielding, shock metamorphism, high-pressure electrical properties of minerals, and application of shock and ultrasonic equation-of-state data to Earth and planetary interiors. Instructors: Ahrens and Stock. Given in alternate years; not offered 2005–06.

Ge 261. Advanced Seismology. 9 units (3-0-6); third term. Continuation of Ge 162 with special emphasis on particular complex problems; includes generalizations of analytical methods to handle nonplanar structures and methods of interfacing numerical-analytical codes in two and three dimensions; construction of Earth models using tomographic methods and synthetics. Requires a class project. Instructor: Helmberger.

Ge 263. Computational Geophysics. 9 units (3-0-6); second term. Prerequisite: introductory class in geophysics, class in partial differential equations, some programming experience. Finite-difference, pseudospectral, finite-element, and spectral-element methods will be presented and applied to a number of geophysical problems including heat flow, deformation, and wave propagation. Students will program simple versions of methods. Instructors: Tromp, Gurnis, Clayton. Given in alternate years; not offered 2005–06.

Ge 265. Exploration Geophysics. 9 units (3-0-6); third term. Prerequisites: Ge 162, Ge 165, or equivalents; or instructor's permission. The analysis of geophysical data related to crustal imaging and processes. Topics include reflection and refraction seismology, tomography, gravity, magnetics, and electrical methods. Instructor: Clayton. Not offered 2005–06.

Ae/Ge/ME 266 ab. Dynamic Fracture and Frictional Faulting. 9 units (3-0-6). For course description, see Aeronautics.

Ge 268. Mantle Dynamics. 9 units (3-0-6); first term. Prerequisites: Ge 163 and Ge 263. Analysis of mantle dynamics and connection with surface processes, especially plate tectonics. Selected problems will be examined, including the mechanics of subduction, mantle plumes, mantle convection, convective mixing, thermal evolution, and interpretation of seismic tomography. Term project using numerical models required. Instructor: Gurnis. Given in alternate years; offered 2005–06.

Ge 270. Continental Tectonics. 9 units (3-0-6); first term. Prerequisites: ACM 95/100 or ACM 113; Ge 11 ab, Ge 106, Ge 162, Ge 166, or Ge 161. The nature of nonplate, finite deformation processes in the evolution of the continental lithosphere, using the Alpine orogen as an example. Rheological stratification; isostatic and flexural response to near-vertical loads; rifting and associated basin development; collision and strike-slip tectonics; deep crustal processes. Instructor: Wernicke. Given in alternate years; offered 2005–06.

Ge 277. Active Tectonics Seminar. 6 units (1-3-2); second term. Discussion of key issues in active tectonics based on a review of the literature. The topic of the seminar is adjusted every year based on students' interest and recent literature. Instructor: Avouac. For more information, see http://www.gps.caltech.edu/~avouac.

Ge 282 abc. Division Seminar. 1 unit; first, second, third terms. Presentation of papers by invited investigators. Graded pass/fail.

Ge 297. Advanced Study. Units to be arranged.

Ge 299. Thesis Research. Original investigation, designed to give training in methods of research, to serve as theses for higher degrees, and to yield contributions to scientific knowledge.
Courses numbered 40 or greater are open only to students who have fulfilled the freshman humanities requirement.

Hum/H 1 ab. East Asian History. 9 units (3-0-6). For course description, see Humanities.

Hum/H 2. American History. 9 units (3-0-6). For course description, see Humanities.

Hum/H 3 abc. European Civilization. 9 units (3-0-6). For course description, see Humanities.

Hum/H 4 abc. Civilization, Science, and Archaeology. 9 units (3-0-6). For course description, see Humanities.

Hum/H/HPS 10. Introduction to the History of Science. 9 units (3-0-6). For course description, see Humanities.

H 40. Reading in History. Units to be determined for the individual by the division. Elective, in any term. Reading in history and related subjects, done either in connection with the regular courses or independently, but under the direction of members of the department. A brief written report will usually be required. Graded pass/fail. Not available for credit toward humanities–social science requirement.

H 41. Prehistoric Peoples of the Southwest. 9 units (3-0-6); second term. This course offers a comprehensive overview of the rich and varied archaeological record of the American Southwest, beginning with the colonization of the New World at the end of the last ice age and ending with the arrival of Spanish explorers in the 16th century. The course will review the major prehistoric culture that inhabited this region, stretching from coastal Southern California to the edge of the Great Plains in New Mexico and Colorado. Archaeological method and theory, the history of research in the region, and contemporary issues and debates in the field will also be discussed. Instructor: Van Keuren.

H 97 ab. Junior Tutorial. 9 units (2-0-7); second, third terms. Prerequisite: instructor's permission. Designed for students majoring in history, with frequent meetings between instructor and student. Course subject matter varies according to individual needs. Normally taken junior year. Instructor: Staff.

H 98 ab. Senior Tutorial. 9 units (2-0-7); first, second terms. Prerequisite: instructor's permission. Designed for students majoring in history, with frequent meetings between instructor and student. Normally taken senior year. Instructor: Staff.

H 99 abc. Research Tutorial. 9 units (1-0-8). Prerequisite: instructor's permission. Students will work with the instructor in the preparation of a research paper, which will form the basis of an oral examination. Instructor: Staff.

H 108 a. The Early Middle Ages. 9 units (3-0-6); first term. This course is designed to introduce students to the formative period of Western medieval history, roughly from the fourth through the tenth centuries. It will emphasize the development of a new civilization from the fusion of Roman, Germanic, and Christian traditions, with a focus on the Frankish world. The course focuses on the reading, analysis, and discussion of primary sources. Instructor: Brown.

H 108 b. The High Middle Ages. 9 units (3-0-6); second term. This course is designed to introduce students to European history between 1000 and 1400. It will provide a topical as well as chronological examination of the economic, social, political, and religious evolution of western Europe during this period, with a focus on France, Italy, England, and Germany. The course emphasizes the reading, analysis, and discussion of primary sources. Instructor: Brown.

H 109. Medieval Knighthood. 9 units (3-0-6); second term. This course tells the story of the knight from his beginnings in the early Middle Ages, through his zenith in the 11th, 12th, and 13th centuries, to his decline and transformation in the late medieval and early modern periods. The course treats the knight not simply as a military phenomenon but also as a social, political, religious, and cultural figure who personified many of the elements that set the Middle Ages apart. Not offered 2005–06.

H 110. The World of Charlemagne. 9 units (3-0-6); offered by announcement. The emperor Charlemagne looms large in the European consciousness as the warrior-king who created Europe. This course looks at Charlemagne’s career in order to see how this late 8th- and early 9th-century Frankish ruler might have earned his reputation as the maker of a Christian Europe. At the same time, it explores the period dominated by his family, the Carolingians, as one in which the world of late antiquity was transformed into the civilization we call the Middle Ages. Not offered 2005–06.

H 111. The Medieval Church. 9 units (3-0-6); offered by announcement. This course takes students through the history of the medieval Christian Church in Europe, from its roots in Roman Palestine, through the zenith of its power in the high Middle Ages, to its decline on the eve of the Reformation. The course focuses on the church less as a religion (although it will by necessity deal with some basic theology) than as an institution that came to have an enormous political, social, cultural, and economic impact on medieval life, and for a brief time made Rome once more the mistress of Europe. Not offered 2005–06.
H 112. The Vikings. 9 units (3-0-6); third term. This course will take on the Scandinavian seafaring warriors of the 8th–11th centuries as a historical problem. What were the Vikings, where did they come from, and how did they differ from the Scandinavian and north German pirates and raiders who preceded them? Were they really the horned-helmeted, bloodthirsty barbarians depicted by modern popular media and by many medieval chronicles? What effect did they have in their roughly two centuries of raiding and colonization on the civilizations of medieval and ultimately modern Europe? Not offered 2005–06.

H 113. Hispanic Frontiers in North America. 9 units (3-0-6); second term. This course explores the legacy of Spain in what later became the United States, focusing on what is today the American Southwest (from California to Texas) and American South (from Louisiana to Florida). The course will start with the Spanish exploration and settlement of North America, move through 300 years of cultural exchange and conflict on the northern frontiers of New Spain, and end with early Mexican rule (1821–1848). It will focus on Spanish expansion, native communities, the rise of new European-American cultures, and the transformation of imperial frontiers into national borderlands after 1821. Instructor: Truett.

H 115 abc. British History. 9 units (3-0-6); first, second, third terms. The political and cultural development of Great Britain from the early modern period to the 20th century. H115 a covers the Reformation and the making of a Protestant state (1500–1700). H115 b examines the Enlightenment and British responses to revolutions in France and America (1700–1830). H115 c is devoted to the Victorian and Edwardian eras (1830–1918). H115 a is not a prerequisite for H115 b; neither it nor H115 b is a prerequisite for H115 c. Not offered 2005–06.

H 116. Studies in Narrative: History, Fiction, and Storytelling. 9 units (3-0-6); second term. This course examines the fraught relationship between historical and literary narratives, two interdependent but often opposed forms of storytelling. It will look at works that raise the issue of veracity and storytelling, including fictions like Graham Swift’s Waterland, films such as Kurosawa’s Rashomon, and the “historical novellas” in Simon Schama’s book Dead Certainties. It will also investigate in some detail the works of American, French, and Italian historians who have tried to solve this problem by turning to so-called micro-history. Instructor: Brewer.

H 117. Consumer Society: The Debate 1950–2000. 9 units (3-0-6); third term. This course examines the debates about the nature, virtues, and vices of “consumer society” from its inception in the 1950s to the end of the 20th century. It will examine works of history, economics, sociology, and criticism, including such works as Galbraith’s The Affluent Society, Rostow’s The Stages of Economic Growth, Dehord’s The Society of the Spectacle, and Frank’s Luxury Fever. Not offered 2005–06.

H 118. Histories of Collecting. 9 units (3-0-6); third term. This course examines the history and theory of collecting, concentrating on collectors, collections, and collecting in the West since the Renaissance. It will include field trips to collections around Los Angeles, including the Huntington Art Gallery and the Museum of Jurassic Technology, and the examination of issues such as forgery and the workings of art markets. Instructor: Brewer.

H 120. The History of Christianity. 9 units (3-0-6); third term. The course will introduce students to some of the most important ideas, individuals, institutions, and controversies that proved crucial to the development of Christianity in the past two millennia. Central to the course will be a comparative framework for the evaluation of such themes as the evolution of doctrine, the interplay between religious and political institutions, patterns of crisis and reform, the Protestant and Catholic Reformations, heresy and persecution, secularization, and the place of religion in the modern world. The course will emphasize the reading and analysis of primary sources. Instructor: Crosignani.

H/Hum 130 ab. Cinema and Society. 9 units (2-2-5); offered by announcement. A two-term course that covers the history of world cinema from the 1890s to today. Focus will be on technological innovation, film language, stylistic change, and historical importance of film as it has developed in Europe, Hollywood, and the Third World. First term will cover from the origins of film through the 1940s, with emphasis on works from Hollywood, Germany, the Soviet Union, France, and Italy. Second term will cover from World War II to the present, and will include sections on Asia, Eastern Europe, the Third World, and American independents. Students will view at least one feature film a week. Though the course is designed as a sequence, students may take a single term.

H/Hum 131. History on Film. 9 units (2-2-5). Offered by announcement. An investigation into the variety of ways history has been and can be represented on the screen. Some terms the focus will be a specific historical period or nation; other terms the focus will be the nature of film as a medium for history and biography. The class will include weekly screenings of films as well as weekly discussion sections. Instructor: Rosenstone.

H 135. War, Conquest, and Empires. 9 units (3-0-6); offered by announcement. This course will use historical examples of war and conquest and ask why some periods of history were times of warfare and why certain countries developed a comparative advantage in violence. The examples will come from the history of Europe and Asia, from ancient times up until World War I, and the emphasis throughout will be on the interplay between politics, military technology, and social conditions. Instructor: Hoffman.
HPS/H 156. The History of Modern Science. 9 units (3-0-6).
For course description, see History and Philosophy of Science.

HPS/H 158. The Scientific Revolution. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 160 ab. Einstein and His Generation: The History of Modern Physical Sciences. 9 units (3-0-6). For course description, see History and Philosophy of Science.

H 161. Selected Topics in History. 9 units (3-0-6). Offered by announcement. Instructors: Staff, visiting lecturers.

HPS/H 162. Social Studies of Science. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 166. Historical Perspectives on the Relations between Science and Religion. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 167. Experimenting with History/Historic Experiment. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 168. History of Electromagnetism and Heat Science. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 169. Selected Topics in the History of Science and Technology. 9 units (3-0-6). For course description, see History and Philosophy of Science.

H 170 a. Contemporary Asian American Communities. 9 units (3-0-6); third term. This course is designed to introduce students to major aspects of contemporary Asian American communities such as family, work, education, religion, political participation, and identity issues, and to help students understand how historical events, culture of origin, and patterns of social interaction affect the process of adaptation and life chances of Asian Americans. Instructor: X. Wang.

H 170 b. Topics in Contemporary Chinese Society. 9 units (3-0-6); first term. This course is designed to provide an introduction to major aspects of contemporary Chinese society such as economy, education, family, religion, and women’s status since 1978. It explores economic, social, and cultural changes in contemporary Chinese society, and how these changes influence people’s daily life. Instructor: X. Wang.

H 170 c. The Rise of Critical Historiography—Renaissance to the Present. 9 units (3-0-6); second term. This course will explore the way in which a critical historiography developed from its beginning in the Italian Renaissance to its culmination in our own time. It will pay particular attention to showing how a succession of great historians invented and employed the methods that we now practice to determine what happened in the past. Instructor: Levine.

HPS/H 170. History of Light from Antiquity to the 20th Century. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 171 a. History of Mechanics from Galileo through Euler. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 172. History of Mathematics: A Global View with Close-ups. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 173. History of Chemistry. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 174. Celestial and Terrestrial Mechanisms: Landmarks in the Development of Greek Astronomy. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/H 175. Matter, Motion, and Force: Physical Astronomy from Ptolemy to Newton. 9 units (3-0-6). For course description, see History and Philosophy of Science.
HPS/Pl 121. Causation and Explanation. 9 units (3-0-6). Offered by announcement. Philosophical and conceptual issues arising from theories of confirmation and induction. Topics include Hume's "old" problem of induction; Goodman's "new" riddle of induction and various notions of "projectability"; inductive logic; Bayesian confirmation theory; and other theories of confirmation. Instructor: Hitchcock.

HPS/Pl 122. Confirmation and Induction. 9 units (3-0-6). Offered by announcement. For course description, see HPS/Pl 121.

HPS/Pl 130. Philosophy and Biology. 9 units (3-0-6). Offered by announcement. This course will examine the impact of recent advances in biological sciences for studies of the mind, behavior, and society. Topics may include evolutionary psychology, the relation between evolution and development, the impact of molecular genetics on the theory of evolution, mathematical modeling of evolution and artificial evolution, philosophical and social issues raised by modern molecular biology. Instructor: Cowie.

HPS/Pl 132. Introduction to Philosophy of Mind and Psychology. 9 units (3-0-6). Offered by announcement. An introduction to the mind-body problem. The course attempts, from the time of Descartes to the
present, to understand the nature of the mind and its relation to the body and brain. Topics to be addressed may include dualism, behaviorism, functionalism, computationalism, neurophilosophy, consciousness and qualia, scientific psychology vs. “folk” psychology, the nature of emotion, knowledge of other minds. Instructors: Cowie, Murphy.

HPS/Pl 133. Philosophy and Neuroscience. 9 units (3-0-6). Offered by announcement. This course will examine the impact of recent advances in neuroscience on traditional philosophical problems. Topics may include the nature of free will in light of work on the neural basis of decision making; the nature of consciousness, knowledge, or learning; the mind/brain from the perspective of neural computation; and the neural foundations of cognitive science. Instructor: Quartz.

HPS/Pl 134. Current Issues in Philosophical Psychology. 9 units (3-0-6). Offered by announcement. An in-depth examination of one or more issues at the intersection of contemporary philosophy and the brain and behavioral sciences. Topics may include the development of a theory of mind and self-representation, theories of representation and neural coding, the nature of rationality, the nature and causes of psychopathology, learning and innateness, the modularity of mind.

HPS/Pl 136. Ethics in Research. 4 units (2-0-2) or 9 units (2-0-7); third term. Course will address a number of ethical and philosophical issues arising in scientific research. Among the topics discussed will be the following: fraud and misconduct in science; various theories of the scientific method; the realities of science as practiced in laboratories and the pressures facing scientists in the real world; ethical issues raised by collaborative research; reward and credit in science; responsibilities of mentors, referees, and editors in the conduct of research; the role of government regulation and supervision in dealing with scientific misconduct; the role of the university; and changes in ethical standards due to advancing technology. Undergraduates wishing to take the course for advanced humanities credit should register for 9 units (a term paper will be required). Students who register for 4 units may do so on a pass/fail basis only. Instructors: Woodward, D. Goodstein.

HPS/H 156. The History of Modern Science. 9 units (3-0-6); third term. Selected topics in the development of the physical and biological sciences since the 17th century. Not offered 2005–06.

HPS/H 158. The Scientific Revolution. 9 units (3-0-6); second term. The birth of modern Western science from 1400 to 1700. The course examines the intellectual revolution brought about by the contributions of Copernicus, Galileo, Descartes, Kepler, Newton, and Harvey, and their relation to major political, social, and economic developments. Instructor: Yavetz.

HPS/H 160 ab. Einstein and His Generation: The History of Modern Physical Sciences. 9 units (3-0-6); first, third terms. An exploration of the most significant scientific developments in the physical sciences, structured around the life and work of Albert Einstein (1879–1955), with particular emphasis on the new theories of relativity, the structure of matter, relativity, and quantum mechanics. While using original Einstein manuscripts, notebooks, scientific papers, and personal correspondence, we shall also study how experimental and theoretical work in the sciences was carried out; scientific education and career patterns; personal, political, cultural, and sociological dimensions of science. Instructors: Kornos-Buchwald, Sauer.

HPS/H 162. Social Studies of Science. 9 units (3-0-6). A comparative, multidisciplinary course that examines the practice of science in a variety of locales, using methods from the history, sociology, and anthropology of scientific knowledge. Topics covered include the high-energy particle laboratory as compared with a biological one; Western as compared to non-Western scientific reasoning; the use of visualization techniques in science from their inception to virtual reality; gender in science; and other topics. Instructor: Feingold.

HPS/H 166. Historical Perspectives on the Relations between Science and Religion. 9 units (3-0-6). Offered by announcement. The course develops a framework for understanding the changing relations between science and religion in Western culture since antiquity. Focus will be on the ways in which the conceptual, personal, and social boundaries between the two domains have been reshaped over the centuries. Questions to be addressed include the extent to which a particular religious doctrine was more or less amenable to scientific work in a given period, how scientific activity carved an autonomous domain, and the roles played by scientific activity in the overall process of secularization. Instructor: Feingold.

HPS/H 167. Experimenting with History/Historic Experiment. 9 units (3-0-6). Offered by announcement. This course uses a combination of lectures with hands-on laboratory work to bring out the methods, techniques, and knowledge that were involved in building and conducting historical experiments. We will connect our laboratory work with the debates and claims made by the original discoverers, asking such questions as how experimental facts have been connected to theories, how anomalies arise and are handled, and what sorts of conditions make historically for good data. Typical experiments might include investigations of refraction, laws of electric force, interference of polarized light, electromagnetic induction, or resonating circuits and electric waves. We will reconstruct instrumentation and experimental apparatus based on a close reading of original sources. Instructor: Buchwald.

HPS/H 168. History of Electromagnetism and Heat Science. 9 units (3-0-6). Offered by announcement. This course covers the development of electromagnetism and thermal science from its beginnings in the early 18th century through the early 20th century. Topics covered include electrostatics, magnetostatics, electrodynamics, Maxwell’s field theory, the first and second laws of thermodynamics, and statistical mechanics as well as related experimental discoveries. Instructor: Buchwald.
HPS/H 169. Selected Topics in the History of Science and Technology. 9 units (3-0-6). Offered by announcement. Instructors: Staff, visiting lecturers.

HPS/P1 169. Selected Topics in Philosophy of Science. 9 units (3-0-6). Offered by announcement. Instructors: Staff, visiting lecturers.

HPS/H 171 a. History of Mechanics from Galileo through Euler. 9 units (3-0-6); second term. Prerequisite: basic Caltech physics course. This course covers developments in mechanics, as well as related aspects of mathematics and models of nature, from just before the time of Galileo through the middle of the 18th century, which saw the creation of fluid and rotational dynamics in the hands of Euler and others. Instructor: Buchwald.

HPS/H 172. History of Mathematics: A Global View with Close-ups. 9 units (3-0-6). Offered by announcement. The course will provide students with a brief yet adequate survey of the history of mathematics, characterizing the main developments and placing these in their chronological, cultural, and scientific contexts. A more detailed study of a few themes, such as Archimedes' approach to infinite processes, the changing meanings of “analysis” in mathematics, Descartes' analytic geometry, and the axiomatization of geometry c. 1900; students' input in the choice of these themes will be welcomed. Instructor: Staff.

HPS/H 173. History of Chemistry. 9 units (3-0-6); first term. This course examines developments in chemistry from medieval alchemy to the time of Lavoisier. It will examine the real content of alchemy and its contributions to modern science, as well as how to decode its bizarre language; chemistry's long quest for respect and academic status; the relations of chemistry with metallurgy, medicine, and other fields; and the content and development of the chemical theories and the chemical laboratory and its methods. Instructor: Principe.

HPS/H 174. Celestial and Terrestrial Mechanisms: Landmarks in the Development of Greek Astronomy. 9 units (3-0-6); first term. The course will highlight the background and some of the landmarks in the evolution of Greek astronomy from its tentative beginnings in the 5th century B.C., to its culmination in the work of Ptolemy in the 2nd century A.D. Instructor: Yavetz.

HPS/H 175. Matter, Motion, and Force: Physical Astronomy from Ptolemy to Newton. 9 units (3-0-6); second term. The course will examine how elements of knowledge that evolved against significantly different cultural and religious backgrounds motivated the great scientific revolution of the 17th century. Instructor: Yavetz.

Humanities

All courses numbered 1 through 20 are freshman humanities courses. Courses numbered above 99 are open only to students who have fulfilled the freshman humanities requirement.

Hum/H 1 ab. East Asian History. 9 units (3-0-6). Offered by announcement. Late imperial values, institutions, and behaviors and their evolution in the 19th and 20th centuries. Hum/H 1 a will deal largely with China, and Hum/H 1 b with Japan. The readings will consist of selected thematic texts as well as a chronological textbook. Each term is independent of the other, and students will normally take only one of the two terms. Instructor: Staff.

Hum/H 2. American History. 9 units (3-0-6). Offered by announcement. Among the major events, trends, and problems of our country's history are the American Revolution, the framing and development of the Constitution, wars, slavery and emancipation, ethnic and gender relations, immigration, urbanization, westward conquest, economic fluctuations, changes in the sizes and functions of governments, foreign relations, class conflicts, domestic violence, and social and political movements. Although no one course can treat all of these themes, each freshman American history course will deal with two or more of them. How have American historians approached them? What arguments and evidence have scholars offered for their interpretations and how can we choose between them? In a word, what can we know about our heritage? Instructor: Kousser.

Hum/H 3 abc. European Civilization. 9 units (3-0-6). Offered by announcement. This course will be divided into three terms, each of which will focus on a coherent period in the history of European civilization. Each term is independent of the others, and students will normally take only one of the three terms.

a. **The Classical and Medieval Worlds.** Will survey the evolution of Mediterranean and European civilization from antiquity through the end of the Middle Ages. It will emphasize the reading and discussion of primary sources, especially but not exclusively literary works, against the backdrop of the broad historical narrative of the periods. The readings will present students with the essential characteristics of various ancient and medieval societies and give students access to those societies' cultural assumptions and perceptions of change. Instructors: Brown, Hoffman, Pigman.

b. **Early Modern Europe.** Will survey the evolution of European civilization from the 14th century to the early 19th century. The topics covered will depend on the individual instructor, but they will include some of the major changes that transformed Western civilization in the early modern period, such as the Renaissance, the Reformation, the rise of sovereign states and the concomitant military revolution, the Scientific Revolution and the Enlightenment, and the French and industrial revolutions. Readings will include major works from the
Hum/H 4 abc. Civilization, Science, and Archaeology. 9 units (3-0-6). Offered by announcement. This course will be divided into three terms, each of which will focus on a particular aspect of pre-classical antiquity or premodern science. Each term is independent of the others, and students will normally take only one of the three terms.
Instructor: Buchwald.

a. Before Greece: The Origins of Civilization in Mesopotamia. This course will introduce students to the early development of civilization in Mesopotamia and Egypt from 4000 B.C.E. through 1000 B.C.E. Origins of agriculture and writing, the evolution of the city, and the structures of the Mesopotamian economy and social order will be discussed. Comparison with contemporary developments in Egypt during the Old and Middle Kingdoms may include a reading of Gilgamesh from 3000 B.C.E. and of the Egyptian Tale of Sinuhe. The course concludes with a discussion of life during the late Bronze Age. Focus will be on life as it was lived and experienced by many groups in pre-classical antiquity rather than on kings and dynasties.

b. Before Copernicus: Exploration of the Development of Science from Babylon through the Renaissance. Connections in antiquity between astrology and astronomy, the first comprehensive accounts of vision and light by al-Kindi in 9th-century Baghdad, the emergence of new concepts of knowledge about nature during the Middle Ages in Europe, alchemy in the early laboratory, and the development of linear perspective during the Renaissance.

c. The Discovery of Pre-Classical Antiquity. How did we learn about Mesopotamia and Egypt? How were languages now lost translated? How did we learn to read cuneiform and hieroglyphics? And how did archaeology emerge as a science? Discussion of the rediscovery of pre-classical antiquity during the 18th through the 20th centuries by reading histories of these developments as well as accounts written at the time of the discoveries, explorations, translations, and decodings.

Hum/En 5. Major British Authors. 9 units (3-0-6). Offered by announcement. This course will introduce students to the three most important genres of English literature—poetry, drama, and prose fiction—by studying major authors from different periods. Sometimes the course will cover a wide range of authors, while at others it will concentrate on a few. Authors might include Chaucer, Shakespeare, Milton, Austen, George Eliot, or Joyce.

Hum/En 6. Major American Authors. 9 units (3-0-6). Offered by announcement. This course will study major American authors from the 18th through 20th centuries, and students will be introduced to basic concepts of literary analysis. Authors may include Benjamin Franklin, Nathaniel Hawthorne, Emily Dickinson, Tennessee Williams, William Faulkner, Edith Wharton, and Toni Morrison. Students will be exposed to a variety of genres, including the novel, drama, and poetry.

Hum/Pl 8. Right and Wrong. 9 units (3-0-6). Offered by announcement. This course addresses the question “Where do moral ideas come from and how should they guide our conduct?” by exploring selections from the great works of moral and political philosophy—Aristotle’s Nicomachean Ethics, Plato’s Republic, Hobbes’s Leviathan, Locke’s Second Treatise on Government, Mill’s Utilitarianism, Rousseau’s The Social Contract, Kant’s Groundworks for a Metaphysics of Morals, Rawls’s A Theory of Justice—as well as a variety of more modern texts and commentaries. Throughout, an attempt will be made to acquaint students with the basic elements of Western moral and political tradition: notions about human rights, democracy, and the fundamental moral equality of all human beings. This historical approach will then provide a background for the issues that frame contemporary discussions of moral and political ideas.

Instructor: Philosophy staff.

Hum/Pl 9. Knowledge and Reality. 9 units (3-0-6). Offered by announcement. The theme of this course is the scope and limitations of rational belief and knowledge. Students will examine the nature of reality, the nature of the self, the nature of knowledge, and how we learn about the natural world. Students will be introduced to these issues through selections from some of the world’s greatest philosophical works, including Descartes’s Meditations, Pascal’s Pensées, Hume’s Enquiry Concerning Human Understanding, Berkeley’s Principles of Human Knowledge, and Kant’s Prolegomena to any Future Metaphysics. A variety of more contemporary readings will also be assigned.

Instructor: Philosophy staff.

Hum/H/HPS 10. Introduction to the History of Science. 9 units (3-0-6). Offered by announcement. Major topics include the following: What are the origins of modern Western science, when did it emerge as distinct from philosophy and other cultural and intellectual productions, and what are its distinguishing features? When and how did observation, experiment, quantification, and precision enter the practice of science? What were some of the major turning points in the history of science? What is the changing role of science and technology? Using primary and secondary sources, students will take up significant topics in the history of science, from ancient Greek science to the 20th-century revolution in physics, biology, and technology.

Hum/H/HPS 10 may be taken for credit toward the additional 36-unit
The course will focus each term on one kind of motion picture—either a film genre, or films made by an individual director, or from a single nation or region of the world or particular historical era. Included are weekly screenings, readings on film, a weekly discussion meeting, and a term paper. Instructor: Rosenstone.

Hum 134. Introduction to Classical Hollywood Cinema. 9 units (3-0-6); third term. This course examines the period of classical filmmaking in Hollywood from roughly 1925 through the 1950s. It covers some of the basic vocabulary and techniques of film analysis, as students learn to approach films as texts with distinctive formal properties. In addition, the course attends to the special features of Hollywood filmmaking. Topics include the rise and collapse of the studio system, technical transformations (sound, color, deep focus), genres (the musical, the Western), cultural contexts (the Depression, the Cold War), and the economic history of the film corporations. Instructor: Jurca.

Hum 135. Hollywood in the ‘40s. 9 units (3-0-6); offered by announcement. This course covers Hollywood filmmaking during the most tumultuous decade in its history, from the last days of the Depression, through the extraordinary boom of World War II, to the postwar bust and the death of the studio system. It considers specific films (e.g., Boom Town, Mrs. Miniver, They Were Expendable, Gentleman’s Agreement, Out of the Past) as well as general strategies of filmmaking at a time when the ever-changing domestic and world situation made the movie-going public’s tastes and needs less predictable than ever. Topics include the rise of market research and public relations in Hollywood, the emergence and evolution of particular genres (the combat film, the home front melodrama, film noir), the “maturing” of the postwar audience, and the European art film. Instructor: Jurca.

Hum 119. Selected Topics in Humanities. 9 units (3-0-6). Offered by announcement. Instructors: Staff, visitors.

Hum 32. Humanities on Film. 3 units (1-1-1). Offered by announcement. A minicourse centered around a series of films (usually five) screened as part of the Caltech Film Program. Students will be required to attend prefilm lectures and postfilm discussions, to do some reading, and to produce a short paper. Not offered 2005–06.

INDEPENDENT STUDIES PROGRAM

Students who have chosen to enter the Independent Studies Program (ISP) instead of a formulated undergraduate option may enroll in special ISP courses. These courses are designed to accommodate individual programs of study or special research that fall outside ordinary course offerings. The student and the instructor first prepare a written course contract specifying the work to be accomplished and the time schedule for reports on progress and for work completed. The units of credit and form of grading are decided by mutual agreement between the instructor, the student, and his or her advisory committee. See page 214 for complete details.

LANGUAGES

Additional information about these courses can be found at http://languages.caltech.edu.

L. 101. Selected Topics in Language. Units to be determined by arrangement with the instructor. Graded pass/fail. Instructors: Staff, visiting lecturers.

L. 102 abc. Elementary French. 10 units (3-1-6); first, second, third terms. The course uses French in Action, a multimedia program, and emphasizes the acquisition of fundamental skills: oral ability, comprehension, writing, and reading. Students are evaluated on the basis of quizzes and compositions (1/3), midterm and final (1/3), and class participation (1/3). The course is mainly designed for students with no previous knowledge of French. Students who have had French in secondary school or college must consult with the instructor before registering. Instructors: Orcel, de Bedts.

L. 103 abc. Intermediate French. 9 units (3-0-6); first, second, third terms. Prerequisite: L. 102 abc or equivalent. The first two terms feature an extensive grammar review and group activities that promote self-expression. Op-Ed articles and a series of literary texts provide a basis for classroom discussion and vocabulary expansion. Several short written compositions are required. The third term is designed to further develop an active command of the language. A variety of 19th- and 20th-century short stories are discussed in class to improve comprehension and oral proficiency. Students are expected to do an oral presentation, to write four short compositions, and a final paper. Second and third terms are offered for advanced humanities credit. Instructors: de Bedts, Orcel.

L. 104. French Cinema. 9 units (3-0-6); first term. Prerequisite: L. 103 abc or equivalent. A critical survey of major directors, genres, and movements in French cinema. Particular attention is devoted to the development of film theory and criticism in France and their relation to film...
production. The course may also focus on problems of transposition from literature to cinema. The course includes screenings of films by Melies, Dulac, Clair, Renoir, Carné, Pagnol, Cocteau, Bresson, Tati, Truffaut, Godard, Resnais, Lelouch, Malle, Pialat, Rohmer, and Varda. Students are expected to write three 5-page critical papers. Conducted in French. Instructor: Orcel.

L 105 ab. French Literature. 9 units (3–0–6); second, third terms. Prerequisite: L 103 abc or equivalent. Close critical analysis of representative works from 19th- and 20th-century authors. The texts are examined in relation to the artistic, intellectual, and political context. Designed for the nonspecialist with little or no background in French literary history. Autobiography in 20th-century France, the modern French novel, the French avant-garde, the modern French theater and its aesthetic, and women's voices: 20th-century French narrative prose, are some of the topics offered previously. Film versions of the texts studied may be included. Conducted in French. Three 5-page critical papers on topics chosen by the student are required. L 105 a may be repeated for credit. Instructor: Orcel.

L 106 abc. Elementary Japanese. 10 units (5–1–4); first, second, third terms. Emphasis on oral-aural skills, and understanding of basic grammar. Immediate introduction of the native script—hiragana, katakana—and gradual introduction to 300 to 500 characters. Not offered on a pass/fail basis. Instructor: Hirai.

L 107 abc. Intermediate Japanese. 10 units (5–1–4); first, second, third terms. Prerequisite: L 106 abc or equivalent. Continued instruction and practice in conversation, building up vocabulary, and understanding complex sentence patterns. The emphasis, however, will be on developing reading skills. Recognition of approximately 1,000 characters. Not offered on a pass/fail basis. Instructor: Hirai.

L 108 abc. Advanced Japanese. 10 units (3–1–6); first, second, third terms. Prerequisite: L 107 abc or equivalent. Developing overall language skills. Literary and newspaper readings. Technical and scientific translation. Improvement of listening and speaking ability so as to communicate with Japanese people in real situations. Recognition of the 1,850 “general-use characters.” Not offered on a pass/fail basis. Instructor: Hirata.

L 110 abc. Elementary Spanish. 10 units (3–1–6); first, second, third terms. Grammar fundamentals and their use in understanding, speaking, reading, and writing Spanish. Exclusively for students with no previous knowledge of Spanish. Instructors: Garcia, Arjona.

L 112 abc. Intermediate Spanish. 9 units (3–0–6); first, second, third terms. Prerequisite: L 110 abc or equivalent. Grammar review, vocabulary building, practice in conversation, and introduction to relevant history, literature, and culture. Literary reading and writing are emphasized in the second and third terms. Students who have studied Spanish elsewhere must consult with the instructor before registering. Instructors: Garcia, Arjona.

L 114 abc. Spanish and Latin American Literature. 9 units (3–0–6). Offered by announcement. Prerequisite: L 112 abc or equivalent. First and second terms: study of literary texts from the Spanish American and Spanish traditions, their cultural and historical relevance, covering all periods, with emphasis on contemporary authors. Third term: contemporary topics in literature and/or film of the Hispanic world. Conducted in Spanish. Instructors: Garcia, Arjona.

L 130 abc. Elementary German. 10 units (3–1–6); first, second, third terms. Grammar fundamentals and their use in aural comprehension, speaking, reading, and writing. Students who have had German in secondary school or college must consult with the instructor before registering. Instructor: Aebi.

L 132 abc. Intermediate German. 9 units (3–0–6); first, second, third terms. Prerequisite: L 130 abc or equivalent. Reading of short stories and plays, grammar review, aural and oral drills and exercises, expansion of vocabulary, and practice in reading, writing, and conversational skills. Second and third terms will emphasize written expression, technical/scientific translation, and literary readings. Students who have studied German elsewhere must consult with the instructor before registering. Instructor: Aebi.

L 140 abc. German Literature. 9 units (3–0–6). Prerequisite: L 132 c or equivalent (two years of college German), or instructor's permission. Reading and discussion of works by selected 12th–21st-century authors, current events on Internet/TV, exposure to scientific and technical writings, business communication. Viewing and discussion of German-language films. Conducted in German. Not offered 2005–06.

L 152 ab. French Literature in Translation: Classical and Modern. 9 units (3–0–6); first, second terms. First term: French classical literature of the 17th and 18th centuries; second term: reading and discussion of works by selected 19th- and 20th-century authors. The approach is both historical and critical. Conducted in English, but students may read the French originals. Film versions of the texts studied may be included. Instructors: de Bedts, Orcel.

L 162. Spanish and Latin American Literature in Translation. 9 units (3–0–6). Offered by announcement. This class is an introduction to the literary masterworks of the Hispanic tradition from the 16th to the 20th centuries. Readings and discussions are in English, but students may read Spanish originals. Instructor: Staff.
L 167 abc. Latin Literature. 9 units (3-0-6); first, second, third terms. Prerequisite: three years of high-school Latin. Major works of Latin literature, usually one per term. No work will be studied more than once in four years, and students may repeat the course for credit. Instructor: Pigman.

L 170 abc. Introduction to Chinese. 10 units (4-1-5); first, second, third terms. An introductory course in standard Chinese (Mandarin) designed for students with no previous knowledge of the language. The course introduces the fundamentals of Chinese, including pronunciation, grammar, and Chinese characters, emphasizing the four basic language skills: listening, speaking, reading, and writing. By the end of the three-term sequence, students will have acquired knowledge of basic rules of grammar and the ability to converse, read, and write on simple topics of daily life, and will have command of more than 800 Chinese compounds and 700 characters. Instructor: Wang.

L 171 abc. Elementary Chinese. 10 units (4-1-5); first, second, third terms. Prerequisite: placement exam results or instructor's permission. A fast-paced course for students who have had prior exposure to the language. Students are introduced to the basic principles of written and oral communication. Emphasis will be placed on consolidating basic grammar, and developing the ability to use the language creatively in talking about oneself and in dealing with daily situations within a Chinese cultural context. Instructor: Wang.

L 172 abc. Intermediate Chinese. 10 units (4-1-5); first, second, third terms. Prerequisite: L 170 abc or L 171 abc or equivalent. A course designed to meet the personal interests and future professional goals of students who have had one year of elementary modern Chinese. Students will learn new vocabulary, sentence patterns, idiomatic expressions, and proverbs, as well as insights into Chinese society, culture, and customs. Instructor: Ming.

L 173 ab. Advanced Chinese. 10 units (3-1-6); first, second terms. Prerequisite: L 172 abc or equivalent. A course designed to further develop overall language proficiency through extensive reading of selected texts representing a wide variety of styles and genres, including newspapers and magazines, visual materials, and a selection of works of major modern writers. Classes are conducted primarily in Chinese. Instructor: Ming.

L 174. Topics in Chinese Literature. 9 units (3-0-6). Offered by announcement. Prerequisite: instructor's permission. Reading and discussion of representative Chinese works from the 16th century to the present, including contemporary works from China, Taiwan, and Hong Kong. Conducted in Chinese. Students are expected to examine literary works in light of their socio-political and historical contexts. Instructor: Ming.

LAW

Law 33. Introduction to the Law. 9 units (3-0-6); second term. An introduction to Anglo-American law from both the legal and the social-scientific points of view. Subject can vary from year to year. Available for introductory social science credit. Instructor: Klerman.

Law 134. Law and Technology. 9 units (3-0-6); third term. A sophisticated introduction to and exploration of the intersection of science and the law, focusing on the intellectual property system and the various means by which the conduct and products of scientific research are regulated. The course will analyze and compare American, international, and theoretical alternative systems, in part by means of economics modeling. "The latter portion of the course will explore a particular scientific area in depth, typically using guest lecturers or coauthors to convey the science element (examples include the human genome project, the Internet and cyberspace; the law of the sea; and outer-space exploration). Some background in law and economics would be helpful. Instructor: McCaffery.

H/PS/Law 148 ab. The Supreme Court in U.S. History. 9 units (3-0-6). For course description, see History.

MATERIALS SCIENCE

Additional information concerning these courses can be found at http://www.matsci.caltech.edu/courses.html.

MS 78 abc. Senior Thesis. 9 units; first, second, third terms. Prerequisite: instructor's permission. Supervised research experience, open only to senior-class materials science majors. Requirements will be set by the faculty supervisor, but will include written and oral reports based upon actual research results. Only the first term may be taken pass/fail. Instructor: Staff.

MS 90. Materials Science Laboratory. 9 units (1-6-2); third term. An introductory laboratory in relationships between the structure and properties of materials. Experiments involve materials processing and characterization by X-ray diffraction, scanning electron microscopy, and optical microscopy. Students will learn techniques for measuring mechanical and electrical properties of materials, as well as how to optimize these properties through microstructural and chemical control. Independent projects may be performed depending on the student's interests and abilities. Instructor: Staff.

MS 100. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of students working toward the M.S. degree or of qualified undergraduate students. Graded pass/fail for research and reading. Instructor: Staff.
MS 105. Phase Transformations. 9 units (3-0-6); third term. Prerequisite: APb 105 b or ChE/Ch 164, or instructor’s permission. Thermodynamics and kinetics of phase transformations. Phase diagrams for decomposition and ordering. Nucleation, spinodal decomposition, microstructural morphologies. Role of strain energy in solid-solid phase transformations. Thermomechanical processing of selected materials. Instructor: Staff.

MS 110 abc. Materials Research Lectures. 1 unit (1-0-0); first, second, third terms. A seminar course designed to introduce advanced undergraduates and graduate students to modern research in materials science. Instructor: Staff.

MS 115 ab. Fundamentals of Materials Science. 9 units (3-0-6); first, second terms. Prerequisite: Ph 2. An introduction to the structure and properties of materials and the processing routes utilized to optimize properties. All major classes of materials are covered, including metals, ceramics, electronic materials, composites, and polymers. In the first term, emphasis is on the relationships between chemical bonding, crystal structure, thermodynamics, phase equilibria, microstructure, and properties. In the second term, generic processing and manufacturing methods are presented for each class of materials with particular focus on the influence of these processes on mechanical properties. Emphasis is placed on the basic materials science behind each processing method, covering such topics as thermodynamics, diffusion, kinetics of phase transformations, and microstructure development. Instructors: Fultz, staff.

MS 130. Diffraction and Structure. 9 units (3-0-6); second term. Prerequisite: graduate standing or instructor’s permission. Content is identical to MS 132 but without the laboratory exercises. Instructor: Fultz.

MS 131. Structure and Bonding in Materials. 9 units (3-0-6); first term. Prerequisite: graduate standing or introductory quantum mechanics. Atomic structure, hybridization, molecular orbital theory, dependence of chemical bonding on atom configurations. Covalency, ionicity, electronegativity. Madelung energy. Effects of translational periodicity on electron states in solids. Band structures of group IV semiconductors; transition metals and ferromagnetism. Structural features of materials such as point defects, dislocations, disclinations, and surfaces. Structures of defects calculated with the embedded atom method. Instructor: Goddard.

MS 132. Diffraction and Structure of Materials. 12 units (3-3-6); second term. Prerequisite: MS 131 or instructor’s permission. Principles of electron and X-ray diffraction, with applications for characterizing materials. Topics include scattering and absorption of electrons and X rays by atoms. The transmission electron microscope (TEM) and the X-ray diffractometer. Kinematical theory of diffraction: effects of strain, size, disorder, and temperature. Crystal defects and their characterization. A weekly laboratory will complement the lectures. Instructors: Fultz and Ahn.

MS 142. Application of Diffraction Techniques in Materials Science. 9 units (2-3-4); third term. Prerequisites: MS 132 or instructor’s permission. Applications of X-ray and neutron diffraction methods to the structural characterization of materials. Emphasis is on the analysis of polycrystalline materials but some discussion of single crystal methods is also presented. Techniques include quantitative phase analysis, crystalline size measurement, lattice parameter refinement, internal stress measurement, quantification of preferred orientation (texture) in materials, Rietveld refinement, and determination of structural features from small angle scattering. Homework assignments will focus on analysis of diffraction data. Samples of interest to students for their thesis research may be examined where appropriate. Not offered 2005–06.

MS 143. Electrochemical Energy Storage and Conversion. 9 units (3-0-6); first term. Electrochemical thermodynamics and kinetics, with emphasis on processes in electrode materials and electrolytes used in batteries, fuel cells, and supercapacitors. Electroanalytical characterization techniques. Electrode materials for energy storage: mixed (ion and electron) conductors, intercalation materials. Theoretical and practical energy density, rate capability and energy vs. power characteristics. Factors affecting electrode performance, diagnostic techniques, and failure mechanisms. Applications include batteries (primary, secondary, and advanced), fuel cells (ceramic, molten salts, and polymer electrolytes systems), supercapacitors (aqueous, organic, and solid-state systems). Safety and environmental issues. Not offered 2005–06.

MS 200. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of advanced graduate students.

Ac/AM/MS/ME 213. Mechanics and Materials Aspects of Fracture. 9 units (3-0-6). For course description, see Aeronautics.
ME/MS 260 abc. Micromechanics. 15 units (3-0-12). For course description, see Mechanical Engineering.

MS 300. Thesis Research.

MATHEMATICS

Ma 1 abc. Calculus of One and Several Variables and Linear Algebra. 9 units (4-0-5); first, second, third terms. Prerequisites: high-school algebra, trigonometry, and calculus. Special section of Ma 1 a, 12 units (5-0-7). Review of calculus. Complex numbers, Taylor polynomials, infinite series. Comprehensive presentation of linear algebra. Derivatives of vector functions, multiple integrals, line and path integrals, theorems of Green and Stokes. Ma 1 b, c is divided into two tracks: analytic and practical. Students will be given information helping them to choose a track at the end of the fall term. There will be a special section or sections of Ma 1 a for those students who, because of their background, require more calculus than is provided in the regular Ma 1 a sequence. These students will not learn series in Ma 1 a and will be required to take Ma 1 d. Instructors: Simon, Aschbacher, Wales, Ramakrishnan, Dunfield.

Ma 1 d. Series. 5 units (2-0-3); second term only. Prerequisite: special section of Ma 1 a. This is a course intended for those students in the special calculus-intensive sections of Ma 1 a who did not have complex numbers, Taylor polynomials, and infinite series during Ma 1 a. It may not be taken by students who have passed the regular Ma 1 a.
Instructor: Staff.

Ma 2 ab. Differential Equations, Probability and Statistics. 9 units (4-0-3); first, second terms. Prerequisite: Ma 1 abc. Ordinary differential equations, probability, statistics. Instructors: Makarov, Calegari, Lorden.

Ma 3. Number Theory for Beginners. 9 units (3-0-6); third term. Some of the fundamental ideas, techniques, and open problems of basic number theory will be introduced. Examples will be stressed. Topics include Euclidean algorithm, primes, Diophantine equations, including $a^n + b^n = c^n$ and $a^2 - db^2 = \pm 1$, constructible numbers, composition of binary quadratic forms, and congruences. Instructor: Dimitrov.

Ma 4. Introduction to Mathematical Chaos. 9 units (3-0-6); third term. An introduction to the mathematics of “chaos.” Period doubling universality, and related topics; interval maps, symbolic itineraries, stable/unstable manifold theorem, strange attractors, iteration of complex analytic maps, applications to multidimensional dynamics systems and real-world problems. Possibly some additional topics, such as Sarkovski’s theorem, absolutely continuous invariant measures, sensitivity to initial conditions, and the horseshoe map. Instructor: Gorodetski.

Ma 5 abc. Introduction to Abstract Algebra. 9 units (3-0-6); first, second, third terms. Freshmen must have instructor’s permission to register. Introduction to groups, rings, fields, and modules. The first term is devoted to groups and includes treatments of semidirect products and Sylow’s theorem. The second term discusses rings and modules and includes a proof that principal ideal domains have unique factorization and the classification of finitely generated modules over principal ideal domains. The third term covers field theory and Galois theory, plus some special topics if time permits. Instructors: Wambach, Wales.

Ma/CS 6 abc. Introduction to Discrete Mathematics. 9 units (3-0-6); first, second, third terms. Prerequisite: for Ma/CS 6 c, Ma/CS 6 a or Ma 5 a or instructor’s permission. First term: a survey emphasizing graph theory, algorithms, and applications of algebraic structures. Graphs: paths, trees, circuits, breadth-first and depth-first searches, colorings, matchings. Enumeration techniques; formal power series; combinatorial interpretations. Topics from coding and cryptography, including Hamming codes and RSA. Second term: directed graphs; networks; combinatorial optimization; linear programming. Permutation groups; counting nonisomorphic structures. Topics from extremal graph and set theory, and partially ordered sets. Third term: elements of computability theory and computational complexity. Discussion of the P=NP problem, syntax and semantics of propositional and first-order logic. Introduction to the Gödel completeness and incompleteness theorems. Instructors: Keevash, Ku, Caienced.

Ma 8. Problem Solving in Calculus. 3 units (3-0-0); first term. Prerequisite: simultaneous registration in Ma 1 a. A three-hour per week hands-on class for those students in Ma 1 needing extra practice in problem solving in calculus. Instructor: Staff.

Ma 10. Oral Presentation. 3 units (2-0-1); first term. Open for credit to anyone. Freshmen must have instructor’s permission to enroll. In this course, students will receive training and practice in presenting mathematical material before an audience. In particular, students will present material of their own choosing to other members of the class. There will also be elementary lectures from members of the mathematics faculty on topics of their own research interest. Instructor: Staff.

Ma 11. Mathematical Writing. 3 units (0-0-3); third term. Students will work with the instructor and a mentor to write and revise a self-contained paper dealing with a topic in mathematics. In the first week, an introduction to some matters of style and format will be given. Some help with typesetting in TeX may be available. Students are encouraged to take advantage of the Hixon Writing Center. The mentor and the topic are selected in consultation with the instructor. It is expected that in most cases the paper will be in the style of a textbook or journal article, at the level of the student’s peers. Fulfills the Institute scientific writing requirement. Graded pass/fail. Instructor: Wilson.

Courses
Ma 12. Chance. 9 units (4-0-5); second term. This course will explore the use and misuse of notions of probability and statistics in popular culture and in science. The course will be structured around case studies chosen from mass media and from the scientific literature. Not offered 2005–06.

Ma 17. How to Solve It. 4 units (2-0-2); first term. There are many problems in elementary mathematics that require ingenuity for their solution. This is a seminar-type course on problem solving in areas of mathematics where little theoretical knowledge is required. Students will work on problems taken from diverse areas of mathematics; there is no prerequisite and the course is open to freshmen. May be repeated for credit. Graded pass/fail. Instructor: Staff.

Ma 92 abc. Senior Thesis. 9 units (0-0-9); first, second, third terms. Prerequisite: To register, the student must obtain permission of the mathematics undergraduate representative, Richard Wilson. Open only to senior mathematics majors who are qualified to pursue independent reading and research. This research must be supervised by a faculty member. The research must begin in the first term of the senior year and will normally follow up on an earlier SURF or independent reading project. Two short presentations to a thesis committee are required: the first at the end of the first term and the second at the midterm week of the third term. A draft of the written thesis must be completed and distributed to the committee one week before the second presentation. Graded pass/fail in the first and second terms; a letter grade will be given in the third term.

Ma 98. Independent Reading. 3–6 units by arrangement. Occasionally a reading course will be offered after student consultation with a potential supervisor. Topics, hours, and units by arrangement. Graded pass/fail.

Ma 105. Elliptic Curves. 9 units (3-0-6); first term. Prerequisite: Ma 5, Ma 3, or equivalents. The ubiquitous elliptic curves will be analyzed from elementary, geometric, and arithmetic points of view. Possible topics are the group structure via the chord-and-tangent method, the Nagel-Lutz procedure for finding division points, Mordell’s theorem on the finite generation of rational points, points over finite fields through a special case treated by Gauss, Lenstra’s factoring algorithm, integral points. Other topics may include diophantine approximation and complex multiplication. Not offered 2005–06.

Ma 108 abc. Classical Analysis. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 2 or equivalent, or instructor’s permission. May be taken concurrently with Ma 109. First term: structure of the real numbers, topology of metric spaces, a rigorous approach to differentiation in \mathbb{R}^n. Second term: brief introduction to ordinary differential equations, Lebesgue integration and an introduction to Fourier analysis. Third term: the theory of functions of one complex variable. Instructors: Gorodetski, Pramanik.

Ma 109 abc. Introduction to Geometry and Topology. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 2 or equivalent, and Ma 108 must be taken previously or concurrently. First term: aspects of point set topology, and an introduction to geometric and algebraic methods in topology. Second term: the differential geometry of curves and surfaces in two- and three-dimensional Euclidean space. Third term: an introduction to differentiable manifolds. Transversality, differential forms, and further related topics. Instructors: Oh, Dunfield, Gorodnik.

Ma 111 ab. Analysis, II. 9 units (3-0-6); first, second terms. Prerequisite: Ma 110 or instructor’s permission. This course will discuss advanced topics in analysis, including zeros of analytic functions and functions on the unit disk, Riemann surfaces, probabilistic methods in analysis, combinatorial methods in analysis, operator theory, C^*-algebras. First term: advanced topics in the theory of a complex variable, including elliptic functions, Picard’s theorems, zeros, properties of bounded analytic functions on the disk. Second term: potential theory. Instructors: Simon, Makarov.

Ma 112 ab. Statistics. 9 units (3-0-6); first, second terms. Prerequisite: Ma 2 or equivalent or instructor’s permission. The first term covers general methods of testing hypotheses and constructing confidence sets, including regression analysis, analysis of variance, and nonparametric methods. The second term covers permutation methods and the bootstrap, point estimation, Bayes methods, and multistage sampling. Part b not offered 2005–06. Instructor: Lorden.

Ma 116 abc. Mathematical Logic and Axiomatic Set Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 or equivalent, or instructor’s permission. Propositional logic, predicate logic, formal
Ma/CS 117 abc. Computability Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 or equivalent, or instructor’s permission. Various approaches to computability theory, e.g., Turing machines, recursive functions, Markov algorithms; proof of their equivalence. Church’s thesis. Theory of computable functions and effectively enumerable sets. Decision problems. Undecidable problems: word problems for groups, solvability of Diophantine equations (Hilbert’s 10th problem). Relations with mathematical logic and the Gödel incompleteness theorems. Decidable problems, from number theory, algebra, combinatorics, and logic. Complexity of decision procedures. Inherently complex problems of exponential and superexponential difficulty. Feasible (polynomial time) computations. Polynomial deterministic vs. nondeterministic algorithms, NP-complete problems and the P = NP question. Not offered 2005–06.

Ma 118 a. Topics in Mathematical Logic. 9 units (3-0-6); first term. Prerequisite: Ma 116 or Ma 117 or equivalent. Topics to be chosen from model theory and its applications, infinitary logic and admissible sets, ordinary and generalized recursion theory, consistency and independence results in set theory, large cardinals, descriptive set theory. Contents vary from year to year so that students may take the course in successive years. Not offered 2005–06.

Ma 120 abc. Abstract Algebra. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 or equivalent. Undergraduates who have not taken Ma 5 must have instructor’s permission. Basic theory of groups, rings, modules, and fields, including free groups; Sylow’s theorem; soluble and nilpotent groups; factorization in commutative rings; integral extensions; Wedderburn theorems; Jacobson radical; semisimple, projective, and injective modules; tensor products; chain conditions; Galois theory; cyclotomic extensions; separability; transcendental extensions. Instructors: Aschbacher, Dimitrov.

Ma 122 ab. Topics in Group Theory. 9 units (3-0-6); first, second terms. Prerequisite: Ma 5 abc or instructor’s permission. Groups of Lie type: classical groups, Coxeter groups, root systems, Chevalley groups, weight theory, linear algebraic groups, buildings. Not offered 2005–06.

Ma 123. Classification of Simple Lie Algebras. 9 units (3-0-6); second term. Prerequisite: Ma 5 or equivalent. This course is an introduction to Lie algebras and the classification of the simple Lie algebras over the complex numbers. This will include Lie’s theorem, Engel’s theorem, the solvable radical, and the Cartan Killing trace form. The classification of simple Lie algebras proceeds in terms of the associated reflection groups and a classification of them in terms of their Dynkin diagrams. Not offered 2005–06.

EE/Ma 126 ab. Information Theory. 9 units (3-0-6). For course description, see Electrical Engineering.

EE/Ma 127 ab. Error-Correcting Codes. 9 units (3-0-6). For course description, see Electrical Engineering.

CS/EE/Ma 129 abc. Information and Complexity. 9 units (3-0-6) first, second terms; (1-4-4) third term. For course description, see Computer Science.

Ma 130 abc. Algebraic Geometry. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 120 (or Ma 5 plus additional reading). Plane curves, rational functions, affine and projective varieties, products, local properties, birational maps, divisors, differentials, intersection numbers, schemes, sheaves, general varieties, vector bundles, coherent sheaves, curves and surfaces. Instructors: Arinkin, Flach.

Ma 131. Algebraic Geometry of Curves. 9 units (3-0-6); second term. Prerequisites: Ma 5, Ma 108, and Ma 109, or equivalent. The theory of algebraic curves is a central branch of mathematics, having relations to fields as diverse as complex analysis, number theory, combinatorics, codes, topology, representation theory, and physics. The aim of the course is to give a substantial introduction to this subject. The topics will include affine and projective plane curves, mappings, differentials, divisors and line bundles, Jacobians, sheaves, cohomology, and moduli. Important results such as Riemann-Roch theorem, Hurwitz’s theorem, and Abel’s theorem will be discussed. Not offered 2005–06.

Ma 135 ab. Arithmetic Geometry. 9 units (3-0-6); first, third terms. Prerequisite: Ma 130. The course deals with aspects of algebraic geometry that have been found useful for number theoretic applications. Topics will be chosen from the following: general cohomology theories (étale cohomology, flat cohomology, motivic cohomology, or p-adic Hodge theory), curves and Abelian varieties over arithmetic schemes, moduli spaces, Diophantine geometry, algebraic cycles. Part b not offered 2005–06. Instructor: Flach.

Ma/ACM 142 abc. Ordinary and Partial Differential Equations. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 108. Ma 109 is desirable. The mathematical theory of ordinary and partial differential equations, including a discussion of elliptic regularity, maximal principles, solubility of equations. The method of characteristics. Not offered 2005–06.

Ma/ACM 144 ab. Probability. 9 units (3-0-6); first, second terms.

Ma 147 abc. Dynamical Systems. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 108, Ma 109, or equivalent. First term: real dynamics and ergodic theory. Second term: Hamiltonian dynamics. Third term: complex dynamics. Not offered 2005–06.

Ma 148. Topics in Mathematical Physics. 9 units (3-0-6); third term.
The course will discuss the moment problem, inverse spectral theory for one-dimensional Schrödinger operators, and the connections between them. May be taken for credit in multiple years. Instructor: Damanik.

Ma 151 abc. Algebraic and Differential Topology. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 108 ab or equivalent. A basic graduate core course. Fundamental groups and covering spaces, homology and calculation of homology groups, exact sequences. Fibrations, higher homotopy groups, and exact sequences of fibrations. Bundles, Eilenberg-MacLane spaces, classifying spaces. Structure of differentiable manifolds, transversality, degree theory, De Rham cohomology, spectral sequences. Instructors: Groves, Dunfield.

Ma 157 ab. Riemannian Geometry. 9 units (3-0-6); second, third terms. Prerequisite: Ma 131 or equivalent, or instructor's permission. Part a: basic Riemannian geometry: geometry of Riemannian manifolds, connections, curvature, Bianchi identities, completeness, geodesics, exponential map, Gauss's lemma, Jacobi fields, Lie groups, principal bundles, and characteristic classes. Part b: basic topics may vary from year to year and may include elements of Morse theory and the calculus of variations, locally symmetric spaces, special geometry, comparison theorems, relation between curvature and topology, metric functionals and flows, geometry in low dimensions. Instructors: Gorodnik, Calegari.

Ma 160 abc. Number Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5. In this course, the basic structures and results of algebraic number theory will be systematically introduced. Topics covered will include the theory of ideals/divisors in Dedekind domains, Dirichlet unit theorem and the class group, p-adic fields, ramification, Abelian extensions of local and global fields. Parts b, c not offered 2005–06. Instructor: Oh.

Ma 162 abc. Topics in Number Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 160. The course will discuss in detail some advanced topics in number theory, selected from the following: Galois representations, elliptic curves, modular forms, L-functions, special values, automorphic representations, p-adic theories, theta functions, regulators. Instructors: Dimitrov, Ramakrishnan.

Note: The courses labeled Ma 191, Ma 192, etc., are topics courses. Different courses are offered each year, reflecting the interests of faculty, visiting faculty, and students. Those offered in the fall term have an “a” designation, and “b” and “c” denote winter and spring. None of these courses is a prerequisite for any other.

Ma 191 a. Special Functions. 9 units (3-0-6); first term. Introduction to some of the classical special functions, with their most important properties in mind. The historical perspective will be kept in view and at the same time the aim is to give an up-to-date picture of the development and some of the problems that still may be unsolved, such as the Riemann hypothesis. Instructor: Christiansen.

Ma 191 b. Topics in Orthogonal Polynomials. 9 units (3-0-6); second term. The course will focus on the basics of the general theory of orthogonal polynomials on the real line and on the unit circle. Topics include zeros and the fine structure of the zeros, periodic recursion coefficients, random and ergodic recursion coefficients. Instructor: Simon.

Ma 191 c. Random Matrices. 9 units (3-0-6); third term. Topics will include time-reversal invariance, definition of unitary, symplectic, and orthogonal ensembles of random matrices; unitary ensembles and orthogonal polynomials; the joint probability density function for the
eigenvalues, gap probabilities, n-point correlation functions, the nearest-neighbor spacing distribution; Riemann-Hilbert problems and the Riemann-Hilbert approach to universality of distributions in random matrix theory. Instructor: Strahov.

Ma 192 a. Foliations and the Geometry of 3-Manifolds. 9 units (3-0-6); first term. Interactions of foliations and geometric structures on 3-manifolds. The course is suitable for graduate students with a general background in geometry/topology, and we expect to reach current developments in the theory. Discussion of a number of open problems that would make a suitable Ph.D. thesis topic. Undergraduate students require instructor’s permission to register. Instructor: Calegari.

Ma 192 b. Geometry of Ordinary Differential Equations. 9 units (3-0-6); second term. The course will focus on linear ordinary differential equations and their systems (or, in the geometric language, bundles with connections on curves). Elementary aspects of this theory, such as formal classification of singularities, which is essentially an exercise in linear algebra. More advanced topics include the analytical classification of singularities (which involves Stokes multipliers) and the Riemann-Hilbert correspondence. Instructor: Arinkin.

Ma 192 c. Topics in Rigidity Theory. 9 units (3-0-6); third term. Various rigidity phenomena for lattices of semisimple Lie groups. Instructor: Oh.

Ma 193 a. Combinatorics of Finite Sets. 9 units (3-0-6); first term. The course will cover properties of subsets of finite sets. Topics will include Sperner systems, shadows and the shifting operation, intersecting families, the four functions theorem, isoperimetric problems, and one-factorization of the complete uniform hypergraphs. Instructor: Ku.

Ma 193 b. Topics in Logic, Ergodic Theory, and Topological Dynamics. 9 units (3-0-6); second term. Topics include the descriptive set theory of Borel equivalence relations and group actions, a theory of complexity of classification problems in mathematics, countable equivalence relations and ergodic theory, topological dynamics of the infinite symmetric group and automorphism groups of countable structures with applications to model theory and combinatorics, the Urysohn space and its group of isometries. Other subjects will be discussed depending on the interests and backgrounds of the students. Instructor: Kechris.

Ma 193 c. Topics in Dynamics. 9 units (3-0-6); third term. Prerequisite: undergraduate Analysis sequence. This course will cover fundamental problems in number theory that can be studied using ideas from the theory of dynamical systems. The course includes a self-contained introduction to ergodic theory and a discussion of equidistribution, counting, and Diophantine approximation problems in number theory. Instructor: Gorodnik.

Ma 194 c. Combinatorial Number Theory. 9 units (3-0-6); third term. In recent years, there has been much progress in understanding the combinatorial structures arising from arithmetic operations, using techniques from many branches of mathematics, including probability, Fourier analysis, and ergodic theory. Topics include Freiman’s structure theorem, Szemeredi’s theorem on arithmetic progressions, and the recent result of Green and Tao that the primes contain arbitrarily long arithmetic progressions. Instructor: Keevash.

SS/Ma 214. Mathematical Finance. 9 units (3-0-6). For course description, see Social Science.

Ma 290. Reading. Hours and units by arrangement. Occasionally, advanced work is given through a reading course under the direction of an instructor.

Note: The following research courses and seminars, intended for advanced graduate students, are offered according to demand. They cover selected topics of current interest. The courses offered, and the topics covered, will be announced at the beginning of each term.

Ma 316 abc. Seminar in Mathematical Logic. Instructor: Kechris.

Ma 324 abc. Seminar in Combinatorics. Instructor: Wilson.

Ma 325 abc. Seminar in Algebra. Instructors: Aschbacher, Wales.

Ma 345 abc. Seminar in Analysis and Dynamics. Instructors: Borodin, Kaloshin, Makarov, Schlag.

Ma 348 abc. Seminar in Mathematical Physics. Instructor: Simon.

Ma 351 abc. Seminar in Geometry and Topology. Instructors: Calegari, Dunfield, Oh.

Ma 360 abc. Seminar in Number Theory. Instructors: Flach, Ramakrishnan.

Ma 390. Research. Units by arrangement.

Ma 392. Research Conference. Three terms.

See also the list of courses in Applied and Computational Mathematics.
MECHANICAL ENGINEERING

Additional advanced courses in the field of mechanical engineering may be found listed in other engineering options such as aeronautics, applied mechanics, applied physics, control and dynamical systems, and materials science.

ME 18 ab. Thermodynamics. 9 units (3-0-6); first, second terms. An introduction to classical thermodynamics with engineering applications. First term includes the first and second laws; closed and open systems; properties of a pure substance; availability and irreversibility; generalized thermodynamic relations. Second term emphasizes applications: gas and vapor power cycles; propulsion; mixtures; combustion and thermochemistry; chemical equilibrium. Instructor: Shepherd.

ME 19 ab. Fluid Mechanics. 9 units (3-0-6); first, second terms. Prerequisites: Ma 2, Ph 1 abc. Properties of fluids, basic equations of fluid mechanics, theorems of energy, linear and angular momentum. Euler's equations, inviscid potential flow, surface waves, airfoil theory. Navier-Stokes equations, vorticity and vorticity transport. Flow of real fluids, similarity parameters, flow in ducts. Boundary layer theory for laminar and turbulent flow, transition to turbulence. Drag, lift, and propulsion. Instructor: Brennen.

ME 35 abc. Statics and Dynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc. Introduction to statics and dynamics of rigid and deformable bodies. Equilibrium of force systems, principle of virtual work, distributed force systems, friction, static analysis of rigid and deformable structures, kinematics, particle dynamics, rigid-body dynamics, dynamics of deformable systems, and vibrating systems. Instructor: Hall.

ME 65. Mechanics of Materials. 9 units (3-0-6); first term. Prerequisites: ME 35 abc, Ma 2 ab. Introduction to continuum mechanics, principles of elasticity, plane stress, plane strain, axisymmetric problems, stress concentrations, thin films, fracture mechanics, variational principles, frame structures, finite element methods, composites, and plasticity. Taught concurrently with Ae/AM/CE/ME 102.

ME 66. Vibration. 9 units (3-0-6); third term. Prerequisites: ME 35 abc, Ma 2 ab. Introduction to vibration and wave propagation in continuous and discrete multi-degree-of-freedom systems. Springs, mass-spring systems, mechanical devices, elastic continua. Equations of motion, Lagrange's equations, Hamilton's principle, and time-integration schemes. Instructor: Heaton.

ME 71. Introduction to Engineering Design. 9 units (3-5-1); third term. Prerequisite: ME 35 ab recommended. Enrollment is limited and will be based on response to a questionnaire available in the Registrar's Office during registration. Not offered on a pass/fail basis. Introduction to mechanical engineering design, fabrication, and visual communication. Concepts are taught through a series of short design projects and design competitions emphasizing physical concepts. Many class projects will involve substantial use of the shop facilities, and construction of working prototypes. Instructor: Antonsson.

ME 72. Engineering Design Laboratory. 15 units (3-10-2); first term. Prerequisites: ME 35 abc, ME 71, Me 18 ab, CS 1 or equivalent and instructor's permission. Enrollment is limited. A project-based course in which teams of students will design, fabricate, analyze, and test an electromechanical device to compete against devices designed by other student teams. The class lectures and the projects will stress the integration of mechanical design, sensing, engineering analysis, and computation to solve problems in system design. The laboratory units of ME 72 can be used to fulfill a portion of the laboratory requirement for the ME or E&S option. Not offered on a pass/fail basis. Instructor: Hunt.

ME 73. Machine Component Design. 9 units (3-4-2); second term. Prerequisites: ME 35 abc, ME 72, or instructor's permission. Basic machine components, including bearings, seals, shafts, gears, belts, chains, couplings, linkages, and cams. Analysis and synthesis of these devices, as well as their use in the design of larger engineering systems, will be examined. The laboratory section makes use of contemporary mechanical hardware to provide students with "hands-on" experience with the components discussed in class. Not offered 2005–06.

CS/EE/ME 75 abc. Introduction to Multidisciplinary Systems Engineering. 3 units (2-0-1) first term; 3–6 units second term; 12 units (2–9–1) or 18 units (2–15–1) third term. For course description, see Computer Science.

ME 90 abc. Senior Thesis, Experimental. 9 units; (0-0-9) first term; (0-9-0) second, third terms. Prerequisite: senior status; instructor's permission. Experimental research supervised by an engineering faculty member. The topic selection is determined by the adviser and the student and is subject to approval by the Mechanical Engineering Undergraduate Committee. First and second terms: midterm progress report and oral presentation during finals week. Third term: completion of thesis and final presentation. The second and third terms may be used to fulfill laboratory credit for E&S. Not offered on a pass/fail basis. Instructor: Hunt.

ME 91 abc. Senior Thesis, Analytical. 9 units; (0-0-9); first, second, third terms. Prerequisite: senior status; instructor's permission. Undergraduate research supervised by an engineering faculty member. The topic selection is determined by the adviser and the student and is subject to approval by the Mechanical Engineering Undergraduate Committee.
ME 96. Mechanical Engineering Laboratory. 6 or 9 units as arranged with instructor; third term. Prerequisites: ME 18 ab, ME 19 ab, ME 35 ab. A laboratory course in the experimental techniques for heat transfer, fluid mechanics, solid mechanics, and dynamics. Students usually select approximately three regular experiments, but they may propose special investigations of brief research projects on their own. Instructor: Hunt.

ME 100. Advanced Work in Mechanical Engineering. The faculty in mechanical engineering will arrange special courses on problems to meet the needs of qualified undergraduate students. Graded pass/fail for research and reading. A written report is required for each term.

Ac/Ph/ME 101 abc. Fluid Mechanics. 9 units (3-0-6). For course description, see Aeronautics.

Ac/AM/CE/ME 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6). For course description, see Aeronautics.

E/ME 103. Management of Technology. 9 units (3-0-6). For course description, see Engineering.

E/ME 105. Product Design. 9 units (3-0-6). For course description, see Engineering.

ME 110. Special Laboratory Work in Mechanical Engineering. 3–9 units per term; maximum two terms. Special laboratory work or experimental research projects may be arranged by members of the faculty to meet the needs of individual students as appropriate. A written report is required for each term of work. Instructor: Staff.

ME 115 ab. Introduction to Kinematics and Robotics. 9 units (3-0-6); second, third term. Prerequisites: Ma 2, ACM 95/100 ab recommended. Introduction to the study of planar, rotational, and spatial motions with applications to robotics, computers, computer graphics, and mechanics. Topics in kinematic analysis will include screw theory, rotational representations, matrix groups, and Lie algebras. Applications include robot kinematics, mobility in mechanisms, and kinematics of open and closed chain mechanisms. Additional topics in robotics include path planning for robot manipulators, dynamics and control, and assembly. Course work will include laboratory demonstrations using simple robot manipulators. Instructor: Burdick.

ME 118. Thermodynamics. 9 units (3-0-6); first term. Prerequisites: ME 18 ab, ME 19 ab. Fundamentals of classical and statistical thermodynamics. Basic postulates, thermodynamic potentials, chemical and phase equilibrium, phase transitions, and thermodynamic properties of solids, liquids, and gases. Not offered 2005–06.

ME 119 ab. Heat and Mass Transfer. 9 units (3-0-6); second, third term. Prerequisites: ME 18 ab, ME 19 ab, ACM 95/100 (may be taken concurrently). Transport properties, conservation equations, conduction heat transfer, convective heat and mass transport in laminar and turbulent flows, phase change processes, thermal radiation. Instructors: Hunt, Goodwin.

Ac/ME 120 ab. Combustion Fundamentals. 9 units (3-0-6). For course description, see Aeronautics.

ME 131. Advanced Robotics: Manipulation and Sensing. 9 units (3-0-6); third term. Prerequisite: ME 115 ab. The course focuses on current topics in robotics research in the area of robotic manipulation and sensing. Past topics have included advanced manipulator kinematics, grasping and dextrous manipulation using multifingered hands, and advanced obstacle avoidance and motion planning algorithms. The lectures will be divided between a review of the appropriate analytical techniques and a survey of the current research literature. Course work will focus on an independent research project chosen by the student. Not offered 2005–06.

CS/ME 132. Advanced Robotics: Navigation and Vision. 9 units (3-0-6). For course description, see Computer Science.

Ac/Ge/ME 160 ab. Continuum Mechanics of Fluids and Solids. 9 units (3-0-6). For course description, see Aeronautics.

AM/ME 165 ab. Elasticity. 9 units (3-0-6). For course description, see Applied Mechanics.

ME 170. Introduction to Mechanical CAD. 4 units (1-0-3); third term. An introduction to the use of one or more mechanical computer-aided design (CAD) packages via a series of weekly instructional exercises. Instructor: Staff.

ME 171. Computer-Aided Engineering Design. 9 units (3-0-6); second term. Prerequisites: ACM 95/100 abc, ME 35 abc, ME 72, CS 1, or equivalent, working knowledge of the C computer programming language. Methods and algorithms for design of engineering systems using computer techniques. Topics include the design process; interactive computer graphics; curves and surfaces (including cubic and B-splines); solid modeling (including constructive solid geometry and boundary models); kinematic and dynamic mechanism simulation; single and multivariable optimization; optimal design, and symbolic manipulation. Assessment of CAD as an aid to the design process. Not offered 2005–06.

ME 175. Fuzzy Sets in Engineering. 9 units (3-0-6); second term. Prerequisites: ACM 95/100 abc, working knowledge of the C computer programming language. The relatively new mathematics of fuzzy sets has recently been used to represent and manipulate vague and imprecise
information in engineering. This course will present the basics of fuzzy sets and fuzzy mathematics and explore applications in the areas of data representation; function representation; filters and triggers; engineering design and optimization, including (fuzzy) set-based concurrent engineering. Not offered 2005–06.

ME 200. Advanced Work in Mechanical Engineering. The faculty in mechanical engineering will arrange special courses on problems to meet the needs of graduate students. Graded pass/fail; a written report is required for each term of work.

ME 202 abc. Engineering Two-Phase Flows. 9 units (3-0-6). Prerequisites: ACM 95/100 abc, Ae/AM/CE/ME 101 abc, or equivalents. Selected topics in engineering two-phase flows with emphasis on practical problems in modern hydro-systems. Fundamental fluid mechanics and heat, mass, and energy transport in multiphase flows. Liquid/vapor/gas (LVG) flows, nucleation, bubble dynamics, cavitating and boiling flows, models of LVG flows; instabilities, dynamics, and wave propagation; fluid/structure interactions. Discussion of two-phase flow problems in conventional, nuclear, and geothermal power plants, marine hydrofoils, and other hydraulic systems. Not offered 2005–06.

Ae/AM/MS/ME 213. Mechanics and Materials Aspects of Fracture. 9 units (3-0-6). For course description, see Aeronautics.

Ae/AM/CE/ME 214 abc. Computational Solid Mechanics. 9 units (3-0-6). For course description, see Aeronautics.

Ae/AM/ME 215. Dynamic Behavior of Materials. 9 units (3-0-6). For course description, see Aeronautics.

Ae/AM/ME 223. Plasticity. 9 units (3-0-6). For course description, see Aeronautics.

Ae/AM/ME 225. Special Topics in Solid Mechanics. Units to be arranged. For course description, see Aeronautics.

ME/MS 260 abc. Micromechanics. 15 units (3-0-12). Prerequisites: ACM 95/100 or equivalent, and Ae/AM/CE/ME 102 abc or Ae 160 abc or instructor's permission. The course gives a broad overview of micromechanics, emphasizing the microstructure of materials, its connection to molecular structure, and its consequences on macroscopic properties. Topics include phase transformations in crystalline solids, including martensitic, ferroelectric, and diffusional phase transformations, twinning and domain patterns, active materials; effective properties of composites and polycrystals, linear and nonlinear homogenization; defects, including dislocations, surface steps, and domain walls; thin films, asymptotic methods, morphological instabilities, self-organization; selected applications to microactuation, thin-film processing, composite materials, mechanical properties, and materials design. Open to undergraduates with instructor's permission. Not offered 2005–06.

Ae/Ge/ME 266 ab. Dynamic Fracture and Frictional Faulting. 9 units (3-0-6). For course description, see Aeronautics.

ME 300. Research in Mechanical Engineering. Hours and units by arrangement. Research in the field of mechanical engineering. By arrangement with members of the faculty, properly qualified graduate students are directed in research.

MUSIC

These courses are open only to students who have fulfilled the freshman humanities requirement.

Mu 10. Selected Topics in Music. Offered by announcement. Units to be determined by arrangement with instructor. Instructors: Staff, visiting lecturers.

Mu 21. Understanding Music. 9 units (3-0-6); first term. The Listening Experience I. How to listen to and what to listen for in classical and other musical expressions. Listening, analysis, and discussion of musical forms, genres, and styles. Course is intended for musicians as well as nonmusicians and is strongly recommended as an introduction to other music courses. Instructor: Neenan.

Mu 22. Life and Music of Mozart. 9 units (3-0-6); second term. This course will explore Mozart's music within the context of his life and times, including the early works composed as a child prodigy and touring artist; the first masterpieces he composed, and finally the masterworks written during his meteoric rise and his equally amazing fall from grace. Not offered 2005–06.

Mu 23. Life and Music of Beethoven. 9 units (3-0-6); third term. The course will examine the exuberant works of Beethoven's youth, the series of grand, heroic masterpieces of the early 1800s, and the puzzling and mysterious works of his final decade. Not offered 2005–06.

Mu 24. Introduction to Opera. 9 units (3-0-6); second term. Opera exploded onto the cultural scene around the year 1600 and quickly became the most popular, expensive, and lavish spectacle in all of Europe. The course will trace the history of the genre examining masterpieces by Monteverdi, Handel, Mozart, Rossini, Verdi, Wagner, Strauss, Berg, and Britten, and will sample a host of newer works, including Einstein on the Beach, The Death of Klinghoffer, and The Ghosts of Versailles. Instructor: Neenan.

Mu 25. History of Chamber Music. 9 units (3-0-6); third term. To be coordinated with Caltech's spring chamber music performances; enrollment limited to students preparing performances of chamber music during the term. The course will survey the history of chamber
music and will offer more in-depth exploration of works in preparation for performance. Not offered 2005–06.

Mu 26. Jazz History. 9 units (3-0-6); third term. This course will examine the history of jazz in America from its roots in the unique confluence of racial and ethnic groups in New Orleans around 1900 to the present. The lives and music of major figures such as Robert Johnson, Jelly Roll Morton, Louis Armstrong, Benny Goodman, Duke Ellington, Count Basie, Charlie Parker, Dizzy Gillespie, Thelonious Monk, Miles Davis and others will be explored. Instructor: Neenan.

Mu 27. Fundamentals of Music Theory and Elementary Ear Training. 9 units (3-0-6); first term. Basic vocabulary and concepts of music theory (rhythm and pitch notation, intervals, scales, function of key signatures, etc.); development of aural perception via elementary rhythmic and melodic dictation, and sight-singing exercises. Instructor: Neenan.

Mu 28. Harmony I. 9 units (3-0-6). Prerequisite: Mu 27 or entrance exam. Study of tonal harmony and intermediate music theory; techniques of chord progression, modulation, and melody writing according to common practice; ear training, continued. Instructor: Neenan.

Mu 29. Harmony II. 9 units (3-0-6). Prerequisite: Mu 28 or entrance exam. More advanced concepts of music theory, including chromatic harmony, and 20th-century procedures relating to selected popular music styles; ear training, continued. Instructor: Neenan.

Mu 30. Monteverdi to Bach: Music of the Baroque. 9 units (3-0-6); second term. Survey of musical forms and composers during the period 1600–1750. The course will include masterworks of Monteverdi, Purcell, Vivaldi, Handel, Bach, and others. Not offered 2005–06.

Mu 31. Music of Courts and Cathedrals. 9 units (3-0-6). Explores the music of the Middle Ages and Renaissance, including that of the great medieval monasteries, cathedrals, and chapels. The course will include study of the music and dances from courts, towns, and countryside by trouvères, troubadours, and other entertainers. Not offered 2005–06.

Mu 32. Music of the Age of Enlightenment. 9 units (3-0-6); third term. Music of the so-called pre-Classic and Classic periods (ca. 1750–1825), with emphasis on C. P. E. Bach, Gluck, Haydn, Mozart, and the early works of Beethoven. Not offered 2005–06.

Mu 33. History I: Music History to 1750. 9 units (3-0-6); first term. The course traces the history of music from ancient Greece to the time of Bach and Handel. A survey of the contributions by composers such as Machaut, Josquin, and Palestrina will lead to a more in-depth look at the music of Monteverdi, Purcell, Corelli, Vivaldi, and the two most important composers of the high baroque, Bach and Handel. Given in alternate years; not offered 2005–06. Instructor: Neenan.

Mu 34. History II: Music History from 1750 to 1850. 9 units (3-0-6); second term. Music composed between 1750 and 1850 is among the most popular concert music of today and the most recorded music in the classical tradition. This course will focus on developments in European music during this critical period. An in-depth look at the music of Haydn, Mozart, and Beethoven along with the cultural and societal influences that shaped their lives will be the primary focus. Music of composers immediately preceding and following them (the Bach sons, Schubert, Chopin, and others) will also be surveyed. Given in alternate years; not offered 2005–06. Instructor: Neenan.

Mu 35. History III: Music History from 1850 to the Present. 9 units (3-0-6); third term. From the end of the 19th century to the present day, classical music has undergone the fastest and most radical changes in its history. The course explores these changes, tracing the development of various musical styles, compositional methods, and music technologies while examining acknowledged masterpieces from throughout the period. Given in alternate years; not offered 2005–06. Instructor: Neenan.

PERFORMANCE AND ACTIVITIES

Courses under this heading cover the instructional content of a range of extracurricular activities and work in the fine arts and elsewhere. These courses will appear on the student's transcript, and will be graded pass/fail only. The units count toward the total unit requirement for graduation, but they do not count toward the 108-unit requirement in humanities and social sciences.

PA 15 abc. Student Publications. 3 units (1-0-2); first, second, third terms. The elementary principles of newspaper writing and editing, with special attention to student publications at the Institute. Instructor: Staff.

PA 20 abc. Debate. 3 units (1-0-2); first, second, third terms. Study and discussion of the annual intercollegiate debate topic. Instructor: Staff.

PA 30 abc. Women’s Glee Club. 3 units (0-3-0); first, second, third terms. Performance of women’s choral repertoire in all style periods, from the Renaissance to the present. Includes performances with orchestra and with the Men’s Glee Club (singing mixed-voice repertoire). Includes opportunities for individual instruction. No previous experience required. Three hours a week. Instructor: LaVertu.

PA 31 abc. Chamber Music. 3 units (0-3-0); first, second, third terms. Study and performance of music for mixed ensembles of three to seven members and for piano four-hands. Literature ranges from the baroque to contemporary eras. Open to students who play string, woodwind, brass instruments, or piano. After auditioning, pianists
will be placed in either section by the instructors.
Section 1: Mixed ensembles. Instructor: D. Bing.
Section 2: Piano four-hands. Instructor: Gross.

PA 32 abc. Symphony Orchestra. 3 units (0-3-0); first, second, third terms. Study and performance of music written for full symphony orchestra and chamber orchestra. The orchestra performs both the standard symphonic repertoire and contemporary music. Two and a half hours of rehearsal per week. Instructor: Gross.

PA 33 abc. Concert Band. 3 units (0-3-0); first, second, third terms. Study and performance of music written for the classical wind ensemble. Emphasis is placed on the traditional literature, but the study of contemporary music is an important part of the curriculum. Instructor: W. Bing.

PA 34 abc. Jazz Band. 3 units (0-3-0); first, second, third terms. Study and performance of all styles of jazz, from Duke Ellington to Pat Metheny. Jazz improvisation is also stressed. Instructor: W. Bing.

PA 35 abc. Guitar. 3 units (0-3-0); first, second, third terms. Offered on three levels: beginning (no previous experience required), intermediate, and advanced. Instruction emphasizes a strong classical technique, including an exploration of various styles of guitar—classical, flamenco, folk, and popular. Instructor: Denning.

PA 36 abc. Men's Glee Club. 3 units (0-3-0); first, second, third terms. Performance of repertoire from the Renaissance to the present day for men's voices in all styles. Opportunity for performance with orchestra and for mixed voices. No prerequisite or previous experience necessary. Three hours of rehearsal a week. Individual instruction. Instructor: Caldwell.

PA 37 abc. Chamber Singers. 3 units (0-3-0); first, second, third terms. A sixteen-voice SATB-auditioned ensemble, the Chamber Singers provide costumed entertainments for the Athenaeum and community in December; participate with orchestra in the annual All-Mozart Concert in April, and present a musical theater review in June. One and a half hours of rehearsal per week. Instructor: Caldwell.

PA 40 abc. Theater Arts. 3 units (2-0-1); first, second, third terms. Instruction in all phases of theatrical production, culminating in multiple performances for the public. A hands-on, practical approach includes workshops in stage combat, costume construction, scenic arts, occasional informal encounters with professional actors, designers, and directors, as well as a few relevant field trips offered as possible. Understanding of dramatic structure, respect for production values, and problem solving are stressed. Material of academic value is drawn from 3,000 years of worldwide dramatic literature. Instructor: Marneus.

PHILOSOPHY

Courses numbered 30 or greater are open only to students who have fulfilled the freshman humanities requirement.

Hum/Pl 8. Right and Wrong. 9 units (3-0-6). For course description, see Humanities.

Hum/Pl 9. Knowledge and Reality. 9 units (3-0-6). For course description, see Humanities.

Pl 30. Reading in Philosophy. Units to be determined by the instructor. Elective in any term. Reading in philosophy, done either in connection with the regular courses or independently of any course, but under the direction of members of the department. One or more short papers may be required. Graded pass/fail. Not available for credit toward humanities–social science requirement.

Pl 90 ab. Senior Thesis. 9 units (1-0-8). Required of students taking the philosophy option. To be taken in any two consecutive terms of the senior year. Students will research and write a thesis of 10,000–12,000 words on a philosophical topic to be determined in consultation with their thesis adviser. Instructor: Staff.

Pl 102. Selected Topics in Philosophy. 9 units (3-0-6). Offered by announcement. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or instructor's permission.

HPS/Pl 120. Introduction to Philosophy of Science. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 121. Causation and Explanation. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 122. Confirmation and Induction. 9 units (3-0-6). For course description, see History and Philosophy of Science.
HPS/Pl 124. Philosophy of Space and Time. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 125. Philosophical Issues in Quantum Physics. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 126. Foundations of Probability and Inductive Inference. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 129. Introduction to Philosophy of Biology. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 130. Philosophy and Biology. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 132. Introduction to Philosophy of Mind and Psychology. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 133. Philosophy and Neuroscience. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 134. Current Issues in Philosophical Psychology. 9 units (3-0-6). For course description, see History and Philosophy of Science.

HPS/Pl 136. Ethics in Research. 4 units (2-0-2) or 9 units (2-0-7). For course description, see History and Philosophy of Science.

Pl 150. History of Early Modern Philosophy. 9 units (3-0-6); first term. Prerequisite: Hum/Pl 8 or Hum/Pl 9 or instructor’s permission. A study of important figures and ideas in the empiricist and rationalist traditions in the period from Descartes through Kant. Material covered will vary depending on the decision of the instructor, but will include readings from some of the following: Descartes, Spinoza, Leibniz, Kant, Hobbes, Locke, Berkeley, and Hume. Instructor: Staff. Not offered 2005-06.

HPS/Pl 169. Selected Topics in Philosophy of Science. 9 units (3-0-6). For course description, see History and Philosophy of Science.

Pl 185. Moral Philosophy. 9 units (3-0-6); third term. A survey of topics in moral philosophy. The emphasis will be on meta-ethical issues, although some normative questions may be addressed. Meta-ethical topics that may be covered include the fact/value distinction; the nature of right and wrong (consequentialism, deontological theories, rights-based ethical theories, virtue ethics); the status of moral judgments (cognitivism vs. noncognitivism, realism vs. irrealism); morality and psychology; moral relativism, moral skepticism; moral self-interest; the nature of justice. The implications of these theories for various practical moral problems may also be considered. Not offered 2005-06.

Pl 186. Political Philosophy. 9 units (3-0-6). Offered by announcement. This course will address one or more issues in contemporary political theory and/or the history of political thought. Topics may include the nature of democracy; liberalism; distributive justice; human rights; the moral and legal regulation of warfare; the status of positive law; social choice theory; the relations between the market and the state. The work of figures such as Plato, Aristotle, Locke, Hobbes, Mill, Machiavelli, and Rawls will be discussed. Instructors: Murphy, Woodward.

Pl 187. Natural Justice. 9 units (3-0-6); first term. This course examines the unorthodox view that morality is a natural phenomenon—the product of a combination of biological and cultural evolution. It reviews and criticizes the traditional arguments used to deny both moral naturalism and moral relativism, notably the Naturalistic Fallacy. It assesses the success of the approach advocated by evolutionary biologists and psychologists. It examines the evidence from laboratory experiments on fairness and justice. Finally, it attempts to synthesize all these strands using the theory of games as a unifying framework. Instructor: Binmore.

PHYSICAL EDUCATION

PE 1. Student Designed Fitness. 3 units. Independent fitness program as arranged with instructor, three times a week. Students may also receive credit for participation on any of the club sport teams. Proposals must be submitted in writing during first week of each term. Instructors: Uribe, D’Auria.

PE 2. Skin Diving. 3 units. A prerequisite for PE 3 (Scuba). Fundamentals of skin diving and oceanography. Instructor: Dodd.

PE 3. Scuba, Beginning. 3 units. Prerequisite: PE 2. Open Water Scuba Diving will involve classroom instruction on diving physics, physiology, water safety, equipment, and oceanography. There will be confined water training (pool), and open water training consisting of two dives from a local beach and two dives from a boat. A third trip will be to conduct snorkeling. Students must pass a difficult swim test (see instructor for men's and women's qualifying standards) prior to enrollment. Instructor: Dodd.

PE 4. Introduction to Power Walking. 3 units. Introduction to walking for fitness. Emphasis on cardiovascular benefits for a healthy lifestyle. The program is progressive and suitable for walkers of all levels. Instructor: Levesque.

PE 6. Core Training, Beginning/Intermediate. 3 units. Learn to develop functional fitness using core stability training techniques that focus on working the deep muscles of the entire torso at once. The
Courses

482

PE 7. Speed and Agility Training, Intermediate/Advanced. 3 units. Instruction to increase foot speed and agility with targeted exercises designed to help the student increase these areas for use in competitive situations. Instruction will focus on increasing foot speed, leg turnover, sprint endurance, and competitive balance. Proper technique and specific exercises as well as the development of an individual or sport-specific training workout will be taught. Instructor: Staff.

PE 8. Fitness Training, Beginning. 3 units. An introductory class for students who are new to physical fitness. Students will be introduced to different areas of fitness such as weight training, core training, walking, aerobics, yoga, swimming, and cycling. Students will then be able to design an exercise program for lifelong fitness. Instructor: Staff.

PE 10. Aerobic Dance. 3 units. Each class includes a thorough warm-up, a cardiovascular workout phase that also includes a variety of conditioning exercises designed to tone and strengthen various muscle groups, and a relaxation cool-down and stretch, all done to music. Instructor: Staff.

PE 12. Baseball Skills, Intermediate/Advanced. 3 units. Baseball skills—including infield/outfield, pitcher/catcher, and batting drills—taught, leading to competitive play. Students must have experience in hard ball. Instructor reserves the right to exclude students who do not fit criteria. Instructor: D’Auria.

PE 20. Fencing, Beginning and Intermediate/Advanced. 3 units. Beginning fencing includes basic techniques of attack, defense, and counter-offense. Lecture topics include fencing history, strategy, scouting and analysis of opponents, and gamesmanship. Intermediate/Advanced covers foil theory and techniques, group drillwork, and video analysis. Instructor: Paffenroth.

PE 23. Track and Field, Beginning. 3 units. Features instruction on 10 different track events, allowing the student an opportunity to attempt a variety of skills: shot put, discus, javelin, sprints, hurdles, long jump, high jump, middle- and long-distance running, and the relays. Class emphasis placed on learning new skills safely with time devoted to warm-up and stretching, as well as weight training for specific events. Instructor: Levesque.

PE 24. Yoga, Beginning. 3 units. Hatha Yoga is a system of physical postures designed to stretch and strengthen the body, calm the nervous system, and center the mind. It is a noncompetitive activity designed to reduce stress for improved health of body and mind while increasing flexibility, strength, and stamina, and reducing the chance of athletic injury. Instructor: Staff.

PE 27. Ultimate Frisbee. 3 units. Instruction will center on developing students’ knowledge of techniques, rules, strategy, etiquette, and safety regulations of the game. Students will develop the ability to perform all the skills necessary to play the game confidently on a recreational basis. Instructors: Landesman, Boortz.

PE 30. Golf, Beginning, Intermediate, and Advanced. 3 units. Beginning class covers fundamentals of the game, including rules, terminology, etiquette, basic grip, set-up, swing, and club selection for each shot. The following shots will be covered: full swing (irons and woods), chip, pitch, sand, and putting. Intermediate class will focus on swing development of specialty shots and on course play management. Advanced instruction covers course management and mental aspects of performance. Instructors: D’Auria, Dow.

PE 35. Diving, Beginning/Intermediate. 3 units. Teaches the fundamentals of springboard diving to include basic approach, and five standard dives. Intermediate class includes instruction in the back somersault, forward somersault, forward somersault full twist, and reverse somersault. Instructor: Dodd.

PE 36. Swimming, Beginning/Intermediate and Advanced. 3 units. Instruction in all basic swimming strokes, including freestyle, elementary backstroke, racing backstroke, breaststroke, sidestroke, and butterfly. Advanced class focuses on proper technique of the four competitive strokes using video and drills along with instruction on training methods and proper workout patterns. Instructor: Dodd.

PE 38. Water Polo. 3 units. Basic recreational water polo with instruction of individual skills and team strategies. A background in swimming is encouraged. Instructors: Dodd, Allison.

PE 44. Karate (Shotokan), Beginning and Intermediate/Advanced. 3 units. Fundamental self-defense techniques including form practice and realistic sparring. Emphasis on improving muscle tone, stamina, balance, and coordination, with the additional requirement of memorizing one or more simple kata (forms). Instructor: McClure.
PE 46. Karate (Tang Soo Do), Beginning and Intermediate/Advanced. 3 units. Korean martial art focusing on self-defense and enhancement of physical and mental health. Practical and traditional techniques such as kicks, blocks, hyungs (forms) are taught. Intermediate/Advanced level incorporates technique combinations, sparring skills, jumping and spinning kicks, and history and philosophy. Instructor: D'Auria.

PE 48. T'ai Chi Ch'uan, Beginning and Intermediate/Advanced. 3 units. Chinese movement art emphasizing relaxation and calm awareness through slow, flowing, meditative movement using only the minimum of strength needed to accomplish the action. Instructor: Staff.

PE 50. Badminton, Beginning/Intermediate. 3 units. Basic skills will be taught, including grip, services, overhead and underwater strokes, and footwork. Rules, terminology, and etiquette are covered. Intermediate skills such as drives, service returns, forehand and backhand smash returns, attacking clears, and sliced drop shots are taught. Singles and doubles play along with drill work throughout the term. Instructor: Mao.

PE 54. Racquetball, Beginning and Intermediate/Advanced. 3 units. Fundamentals of the game will be emphasized, including rules, scoring, strategy, and winning shots. All types of serves will be covered, as well as a variety of shots to include kill, pinch-off, passing, ceiling, and off-the-backwall. Singles and doubles games will be played. Intermediate/Advanced course will review all fundamentals with a refinement of winning shots and serves and daily games. Instructors: D'Auria, Levesque.

PE 56. Squash, Beginning, Intermediate, Advanced. 3 units. Learn by playing as the basic rules and strokes are taught. Fundamentals to include proper grip, stroke, stance, and positioning, along with serve and return of serve. Intermediate and Advanced classes will concentrate on skill development with the inclusion of forehand and backhand drives, lobs, volleys, and drops, with an emphasis on court movement, shot selection, and tactics. Instructor: Bresanello.

PE 60. Tennis, Beginning, Beginning/Intermediate, Intermediate, and Advanced. 3 units. Stroke fundamentals, singles and doubles play, plus rules, terminology, and etiquette are covered in all classes. Beginning class emphasizes groundstrokes, volleys, serve, and grips. Beginning/Intermediate class is for those players caught between levels and will concentrate on strategy, drills, and match play. Intermediate level focuses on improving technique, footwork, and court positioning, with instruction on approach shots, volleys, overheads, and lobs. Advanced course fine tunes each individual's skills while targeting weaknesses. Instructors: D'Auria, Gamble, Uribe.

PE 70. Weight Training, Beginning/Intermediate. 3 units. Active participation in a strength and conditioning program designed for individual skill level and desired effect. Course will enlighten students on various methods, terminology, and techniques in the areas of isokinetic strength and cardiovascular fitness training. Instructors: Dow, Marbut.

PE 77. Volleyball, Beginning, Intermediate, and Advanced. 3 units. Fundamental instruction on drills, strategies, and rules, with game-playing opportunity. Basics of serve, pass, set, spike, defense, and court position will be taught. Intermediate level focuses on skill development to a more competitive standard and features multiple offenses and understanding officiating. Advanced class emphasizes specialization of all skills, court position, and multiple offenses and defenses. Instructor: D'Auria.

PE 80 abc. Health Advocates. 3 units (1-1-1); first, second, third terms. A course designed to involve students with health care and education, develop familiarity with common college health problems, and provide peer health services on and off campus. First term: CPR and first aid certification and basic anatomy and physiology. Second and third terms: lectures and discussions on current student and community health problems, symptoms, and treatment. Each student will be expected to devote one hour per week to a supervised clinical internship at the Health Center. Does not satisfy the Institute physical education requirement. Instructor: Staff.

PE 82. Rock Climbing, Beginning and Intermediate. 3 units. Basic skills will be covered to utilize each student's strength and endurance while learning to climb safely. Use of climbing rope and other equipment for belaying, rappelling, and emergency ascent will be taught. Skills will be demonstrated and practiced on a climbing wall and then later at an off-campus climbing site. Intermediate level will include ascents on prussiks or jumars, with more off-campus climbing. Instructor: Scalise.

PE 84. Table Tennis, Beginning, Intermediate, and Advanced. 3 units. Introductory course to provide general knowledge of equipment, rules, and basic strokes, including topspin drive, backspin chop, and simple block in both forehand and backhand. Multiball exercise utilizing robot machines and video. Intermediate class covers regulations for international competition and fundamentals of winning table tennis, including footwork drills, smash, serve, and attack. Instructor: Wang.

Intercollegiate Teams

PE 85. Intercollegiate Track and Field Team (Men and Women). 3 units. Coach: Levesque.
PE 87. Intercollegiate Swimming Team (Men and Women). 3 units. Coach: Dodd.

PE 89. Intercollegiate Fencing Team (Men and Women). 3 units. Coach: Paffenroth.

PE 90. Intercollegiate Water Polo Team (Men and Women). 3 units. Coach: Dodd.

PE 95. Intercollegiate Tennis Team (Men). 3 units. Coach: Gamble.

PE 96. Intercollegiate Tennis Team (Women). 3 units. Coach: Gamble.

PHYSICS

………

Ph 1 abc. Classical Mechanics and Electromagnetism. 9 units (4-0-5); first, second, third terms. The first year of a two-year course in introductory classical and modern physics. Topics: Newtonian mechanics in Ph 1 a; electricity and magnetism, and special relativity, in Ph 1 b, c. Emphasis on physical insight and problem solving. Ph 1 b, c is divided into two tracks: the Practical Track emphasizing practical electricity with take-home lab kits, and the Analytic Track, which has no lab component but teaches and uses methods of multivariable calculus. Students will be given information helping them to choose a track at the end of fall term. Lecturers: Goodstein, Martin, Politzer.

Ph 2 ab. Statistical Physics, Waves, and Quantum Mechanics. 9 units (4-0-5); first, second terms. Prerequisites: Ph 1 abc, Ma 1 abc, or equivalents. The second year of a five-term introductory course in classical and modern physics. Topics to be covered include statistical physics and classical waves first term, introductory quantum mechanics second term. Students may transfer from Ph 12 b to Ph 2 b any time dur -

Ph 3. Physics Laboratory. 6 units; first, second, third terms. Prerequisite: Ph 1 a or instructor’s permission. An introduction to experimental technique, commonly used in the physical sciences. A variety of topics is presented, including the Maxwell top, electrical and mechanical resonant systems, and radioactivity. Special emphasis is given to data analysis techniques based on modern statistical methods. The course consists of one three-hour laboratory session a week, conferences with the instructor, prelaboratory preparation, and analysis of experimental results. Graded pass/fail; seniors receive letter grades. Only one term may be taken for credit. Instructors: Sannibale, Rice, Kimble.

Ph 5. Physics Laboratory. 9 units; first term. Prerequisites: Ph 1 abc, Ph 3, or equivalents. A laboratory course dealing with "operational" electronics with emphasis on analog electronics. The following topics are studied: RC circuits, electrical oscillations, operational amplifiers, diodes, and transistors. Combining diodes, transistors, and operational amplifiers; computer data acquisitions. The course culminates in a two-week project of the student's choosing. Instructors: Rice, Sannibale, Kimble.

Ph 6. Physics Laboratory. 9 units; second term. Prerequisites: Ph 1 abc, Ph 2 b or Ph 12 b (or taken concurrently), and Ph 3 or equivalent. Experiments in electromagnetic phenomena such as electromagnetic induction, properties of magnetic materials, and high-frequency circuits. Mobility of ions in gases; precise measurement of the value of e/m of the electron. Instructors: Rice, Sannibale, Kimble.

Ph 7. Physics Laboratory. 9 units; third term. Prerequisite: Ph 6 or equivalent. Experiments in atomic and nuclear physics, including studies of the Balmer series of hydrogen and deuterium, the decay of radioactive nuclei, absorption of X rays and gamma rays, ratios of abundances of isotopes, and the Stern-Gerlach experiment. Instructors: Rice, Sannibale, Kimble.

Ph 10. Frontiers in Physics. 3 units (2-0-1); first term. Open for credit to freshmen and sophomores. Weekly seminar by a member of the physics department or a visitor, to discuss his or her research at an introductory level; the other class meetings will be used to explore background material related to seminar topics and to answer questions that arise. The course will also help students find faculty sponsors for individual research projects. Graded pass/fail. Instructor: Soifer.

Ph 11 abc. Research Tutorial. 6 units (2-0-4); second and third terms of freshman year and first term of sophomore year. A small number of students will be offered the opportunity to enroll in this tutorial, the purpose of which is to demonstrate how research ideas arise, and are evaluated and tested, and how those ideas that survive are developed. This
Courses

Ph 12 abc. Waves, Quantum Physics, and Statistical Mechanics. 9 units (4-0-5); first, second, third terms. Prerequisites: Ph 1 abc, Ma 1 abc, or equivalents. A one-year course primarily for students intending further work in the physics option. Topics include classical waves; wave mechanics, interpretation of the quantum wave-function, one-dimensional bound states, scattering, and tunneling; thermodynamics, introductory kinetic theory, and quantum statistics. May be taken to fulfill the Institute Ph 2 requirement. Students may transfer from Ph 12 b to Ph 2 b any time during the term, before the last day for dropping courses. The final grade will be based on the combined record in the two courses.
Instructors: Kimble, Filippone, Ooguri.

Ph 20, 21, 22. Freshman/Sophomore Computational Physics Laboratory. A series of courses on the application of computational techniques to simulate or solve simple physical systems, with the intent of aiding both physics understanding and programming ability.
Instructors: Mach, Prince, Libbrecht.
20. 6 units (0-6-0); first, second, third terms. Prerequisite: CS 1 or equivalent experience in programming. Introduction to scientific computing with applications to physics. Use of simple numerical algorithms and symbolic manipulation packages for solution of physical problems. Numerical integration and numerical solution of differential equations of motion. Simulation of orbital mechanics.
21. 6 units (0-6-0); second, third terms. Prerequisite: Ph 20 or equivalent experience with programming and simple numerical techniques. Introduction to numerical algorithms for scientific computing. Root-finding, Runge-Kutta methods, Monte Carlo techniques, numerical solution of partial differential equations, minimization techniques such as neural networks. Applications to problems in classical mechanics and discrete-element electromagnetism.
22. 6 units (0-6-0); third term. Prerequisite: Ph 20 or equivalent experience with programming and simple numerical techniques. Introduction to scientific computing on parallel computers. Introduction to parallel computing and multiprocessing. Message passing on networked workstations. Algorithm decomposition and parallelization. Numerical solution of N-body systems on multiprocessor computers. Additional information concerning this course can be found at http://www.pma.caltech.edu/~physlab.

Ph 70. Oral and Written Communication. 6 units (2-0-4); first, third terms. Provides practice and guidance in oral and written communication of material related to contemporary physics research. Students will choose a topic of interest, make presentations of this material in a variety of formats, and, through a guided process, draft and revise a technical or review article on the topic. The course is intended for senior physics majors. Fulfills the Institute scientific writing requirement.
Instructor: Hitlin.

Ph 77 abc. Advanced Physics Laboratory. 9 units (0-5-4); first, second, third terms. A three-term laboratory course to familiarize students with equipment and procedures used in the research laboratory. Experiments illustrate fundamental physical phenomena in atomic, optical, condensed-matter, nuclear, and particle physics, including NMR, laser-based atomic spectroscopy, gamma and X-ray spectroscopy, muon decay, weak localization, superconductivity, positron annihilation, and others. Instructors: Black, Libbrecht.

Ph 78 abc. Senior Thesis, Experimental. 9 units; first, second, third terms. Prerequisite: To register for this course the student must obtain approval of the chair of the Physics Undergraduate Committee (Steven Frautschi). Open only to senior physics majors. This research must be supervised by a faculty member, the student’s thesis adviser. Laboratory work is required for this course. Two 15-minute presentations to the Physics Undergraduate Committee are required, one at the end of the first term and the second at the midterm week of the third term. The written thesis must be completed and submitted to the committee one week before the second presentation. Not offered on a pass/fail basis. See Note, below.

Ph 79 abc. Senior Thesis, Theoretical. 9 units; first, second, third terms. Prerequisite: To register for this course the student must obtain approval of the chair of the Physics Undergraduate Committee (Steven Frautschi). Open only to senior physics majors. This research must be supervised by a faculty member, your thesis adviser. Two 15-minute presentations to the Physics Undergraduate Committee are required, one at the end of the first term and the second at the midterm week of the third term. The written thesis must be completed and distributed to the committee one week before the second presentation. Not offered on a pass/fail basis. See Note, below.

Note: Students wishing assistance in finding an adviser and/or a topic for a senior thesis are invited to consult with the chair of the Physics Undergraduate Committee, or any other member of this committee. A grade will not be assigned in Ph 78 or Ph 79 until the end of the third term. P grades will be given the first two terms, and then changed at the end of the course to the appropriate letter grade.

Ph 101. Order-of-Magnitude Physics. 9 units (3-0-6); third term. Emphasis will be on using basic physics to understand complicated systems. Examples will be selected from properties of materials, geophysics, weather, planetary science, astrophysics, cosmology, biomechanics, etc. Not offered 2003–06.
Ph 101 ab. Topics in Contemporary Physics. 9 units (3-0-6); second, third terms. Prerequisite: instructor’s permission. A series of introductory one-term, independent courses. Students may register for any particular term or terms.

a. Atomic and Molecular Spectroscopy. Second term. This course will review the basic spectroscopy of atoms and molecules, with applications to astrophysics, the terrestrial atmosphere, and the laboratory. Species to be discussed include hydrogen and simple multielectron atoms such as carbon, diatomic and polyatomic molecules, and some solids. Mechanisms and effects determining linewidths and lineshapes will be discussed for laboratory, atmospheric, and astrophysical conditions. Instructor: Phillips.

Ph/Bi 103 b. Neuroscience for Physicists and Engineers. Third term. A laboratory course dealing with topics ranging from the function of single neurons to methods for studying multineural activity in synapses; electrical recording; vision; positron and NMR topography; and neural modeling. Preference is given to physics seniors. Instructor: Pine.

Ph 105. Analog Electronics for Physicists. 9 units; first term. Prerequisites: Ph 1 abc, Ph 3, or equivalents (the take-home lab of Ph 1 bc may be substituted for Ph 3). A laboratory course dealing with “operational” electronics with emphasis on analog electronics. The following topics are studied: RC circuits, electrical oscillations, operational amplifiers, diodes, and transistors. Combining diodes, transistors, and operational amplifiers; computer data acquisition. The course culminates in a two-week project of the student’s choosing. Instructors: Rice, Sannibale, Kimble.

Ph 106 abc. Topics in Classical Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 2 ab or Ph 12 abc, Ma 2. An intermediate course in the application of basic principles of classical physics to a wide variety of subjects. Roughly half of the year will be devoted to mechanics, and half to electromagnetism. Topics include Lagrangian and Hamiltonian formulations of mechanics, small oscillations and normal modes, boundary-value problems, multipole expansions, and various applications of electromagnetic theory. Instructors: Godlawa, Eisenstein.

Ph/EE 118 ab. Low-Noise Electronic Measurement. 9 units (3-0-6); first, second terms. Prerequisite: Ph 105 or equivalent. An introduction to ultralow-noise electrical measurements and sensor technology as applied to experimental research. Topics include physical noise processes, signal transduction, synchronous and lock-in detection, digital signal transforms, and other aspects of precision measurements. Specific sensor technologies will include SQUID sensors, single electron transistors, transition-edge sensors, tunnel junction detectors, micro- and nanomechanical detectors, and biosensors. Instructor: Roukes.

Ph 125 abc. Quantum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 2 ab, Ph 12 abc or Ph 2 ab, or equivalents. A one-year course in quantum mechanics and its applications, for students who have completed Ph 12 or Ph 2. Wave mechanics in 3-D, scattering theory, Hilbert spaces, matrix mechanics, angular momentum, symmetries, spin-1/2 systems, approximation methods, identical particles, and selected topics in atomic, solid-state, nuclear, and particle physics. Instructors: Wise, Kamionkowski.

Ph 127 abc. Statistical Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 12 c or equivalent, and a basic understanding of quantum and classical mechanics. A course in the fundamental ideas and applications of classical and quantum statistical mechanics. Topics to be covered include the statistical basis of thermodynamics; ideal classical and quantum gases (Bose and Fermi); lattice vibrations and phonons; weak interaction expansions; phase transitions; and fluctuations and dynamics. Instructor: Refael.

Ph 129 abc. Mathematical Methods of Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 106 abc and ACM 95/100 abc or Ma 108 abc, or equivalents. Mathematical methods and their application in physics. First term includes analytic and numerical methods for solving differential equations, integral equations, and transforms, and other applications of real analysis. Second term focuses on probability and statistics in physics. Third term covers group theoretic methods in physics. The three terms can be taken independently. Instructors: Porter, Gottschalk.

Ph 134. String Theory. 9 units (3-0-6); third term. Prerequisites: Ph 125 ab, Ph 106 ab. A basic course in string theory designed to be accessible to a broad audience. The main topics include the motion of relativistic point particles and strings, actions, world-sheet symmetries and currents, light-cone quantization, and the spectra of relativistic open and closed strings. The course will conclude with an exploration of D-branes, T-duality, or string thermodynamics, depending on student interest. Instructor: Schulz.

Ph 135 ab. Applications of Quantum Mechanics. 9 units (3-0-6); first, second terms. Prerequisite: Ph 125 abc or equivalent. Applications of quantum mechanics to topics in contemporary physics. Elementary particle physics and neutrino physics will be offered first, second terms, respectively. Terms may be taken separately. Instructors: Hughes, Frey, McKeown, Vogel.

Ph 136 abc. Applications of Classical Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 106 abc or equivalent. Applications of classical physics to topics of interest in contemporary “macroscopic” physics. Continuum physics and classical field theory; elasticity and hydrodynamics; plasma physics; magnetohydrodynamics; thermodynamics and statistical mechanics; gravitation theory, including general relativity and cosmology; modern optics. Content will vary from year to year.
Applications of quantum field theory

Ph 171. Reading and Independent Study. Units in accordance with work accomplished. Occasionally, advanced work involving reading, special problems, or independent study is carried out under the supervision of an instructor. Approval of the instructor and of the student’s departmental adviser must be obtained before registering. Graded pass/fail.

Ph 172. Research in Experimental Physics. Units in accordance with work accomplished. Approval of the student’s research supervisor and department adviser must be obtained before registering. Graded pass/fail.

Ph 173. Research in Theoretical Physics. Units in accordance with work accomplished. Approval of the student’s research supervisor and departmental adviser must be obtained before registering. Graded pass/fail.

CNS/Bi/BE/Ph 178. Evolution and Biocomplexity. 9 units (3-0-6). For course description, see Computation and Neural Systems.

CNS/Bi/Ph/CS 187. Neural Computation. 9 units (3-0-6). For course description, see Computation and Neural Systems.

Ph 199. Major Open Questions in Physics. 9 units (3-0-6); third term. Prerequisites: Ph 125 abc, Ph 106 abc. This course will examine several open questions in modern physics. Topics will include the following: What is the expansion history of the universe? What are dark matter and dark energy? Where does mass come from? Why is the universe made of matter rather than antimatter? Is nature supersymmetric? Is there a quantum theory of gravity that can describe the universe? Why is there a spectrum of fermion masses? How heavy are neutrinos, and what was their role in the formation of the universe? Where do ultrahigh-energy cosmic rays come from? What can we learn from the detection of gravitational waves? Instructor: Weinstein.

Ph 205 abc. Relativistic Quantum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 125. Topics: the Dirac equation, second quantization, quantum electrodynamics, scattering theory, Feynman diagrams, non-Abelian gauge theories, Higgs symmetry-breaking, the Weinberg-Salam model, and renormalization. Instructor: Kapustin.

Ph 210. Theoretical Quantum Chromodynamics. 9 units (3-0-6); third term. Prerequisite: Ph 205 ab. Applications of quantum field theory to quantum chromodynamics, including operator product expansion, twist expansion and applications to deep inelastic scattering and Drell-Yan; effective field theories, including chiral perturbation theory, heavy quark effective theory, and soft collinear effective theory; large Nc introduction to lattice chromodynamics. Applications to strong interaction phenomenology and weak decays. Instructor: Ramsey-Musolf.

Ph/CS 219 abc. Quantum Computation. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 129 abc or equivalent. The theory of quantum information and quantum computation. Overview of classical information theory, compression of quantum information, transmission of quantum information through noisy channels, quantum error-correcting codes, quantum cryptography and teleportation. Overview of classical complexity theory, quantum complexity, efficient quantum algorithms, fault-tolerant quantum computation, physical implementations of quantum computation. Instructor: Preskill.

Ph/Ay 221 abc. Cosmology and Particle Astrophysics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 106 and Ph 125, or equivalents. An introduction to current research in cosmology and particle astrophysics. First term will focus on basics of the Friedman-Robertson-Walker metric, aspects of physical cosmology, and gravitational lensing. Second term will include the early universe and particle astrophysics (e.g., inflation, phase transitions, neutrino astrophysics, particle dark matter, and baryogenesis). Third term will focus on cosmological perturbation theory, structure formation, and the cosmic microwave background. Not offered 2005–06.

Ph/APh 223 abc. Advanced Condensed-Matter Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 125 or equivalent, or instructor’s permission. Advanced topics in condensed-matter physics, emphasizing the application of formal quantum field theory and group theory methods to many-body systems. Selected topics may include path integral and canonical formalisms, Green’s function techniques and Feynman diagrams, Fermi liquid theory, symmetry breaking, Landau-Ginzburg theory of phase transitions, critical phenomena and renormalization group theory, group theory and its applications, field theory for interacting bosons and superfluidity, superconductivity, topological field theory, and strongly correlated electronic systems. Instructor: Yeh.

Ph 225 abc. Advanced Quantum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 125 or equivalent. Advanced theory of quantum mechanics, focusing on formal methods and applications in different fields of physics. Topics will include selections from atomic and molecular physics, quantum optics, quantum information, condensed-matter physics, and nuclear and particle physics, with specific content depending on the instructors. Emphasis will be placed on subject matter directly relevant to research in condensed-matter physics, quantum optics, and atomic physics. Instructors: Yeh, Mabuchi.

Ph 229 abc. Advanced Mathematical Methods of Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 129 abc or equivalent. Advanced topics in geometry and topology that are widely used in...
modern theoretical physics. Emphasis will be on understanding and applications more than on rigor and proofs. First term will cover basic concepts in topology and manifold theory. Second term will include Riemannian geometry, fiber bundles, characteristic classes, and index theorems. Third term will include anomalies in gauge-field theories and the theory of Riemann surfaces, with emphasis on applications to string theory. Instructor: Kapustin.

Ph 230 abc. Elementary Particle Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 205 abc or equivalent. Advanced methods in quantum field theory. First term: introduction to supersymmetry, including the minimal supersymmetric extension of the standard model, supersymmetric grand unified theories, extended supersymmetry, supergravity, and supersymmetric theories in higher dimensions. Second and third terms: nonperturbative phenomena in non-Abelian gauge field theories, including quark confinement, chiral symmetry breaking, anomalies, instantons, the 1/N expansion, lattice gauge theories, and topological solitons. Not offered 2005–06.

Ph 231 abc. Elementary Particle Physics. 9 units (3-0-6); first, second terms. Prerequisite: Ph 125 or equivalent. An introduction to elementary particle physics, stressing experimental phenomena and their theoretical interpretations. The standard model and its confrontation with experiment will be covered. Current notions for particle physics beyond the standard model will be explored, along with possible experimental signatures. Experimental techniques will also be discussed, including an introduction to accelerator physics. Instructor: Porter.

Ph 235 abc. Introduction to Supersymmetry and String Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 205. First term: introduction to supersymmetry. After explaining the basic concepts of supersymmetry, the emphasis will be on formulating and analyzing the minimal supersymmetric extension of the standard model and supersymmetric grand unified theories. There will also be brief introductions to supersymmetric theories in higher dimensions, theories with extended supersymmetry, and supergravity. Second term: introduction to superstring theory. Topics to be discussed include relativistic strings and their quantization, perturbative string theory, low energy effective supergravity theories, p-brane solutions and p-brane world volume theories, compactification of extra dimensions, M theory and F theory, dualities relating various superstring and M theory configurations, problems and prospects. Instructor: Schwarz.

Ph 236 abc. Relativity. 9 units (3-0-6); first, second, third terms. Prerequisite: a mastery of special relativity at the level of Goldstein’s Classical Mechanics, or of Jackson’s Classical Electrodynamics. A systematic exposition of Einstein’s general theory of relativity, with emphasis on applications to astrophysical and cosmological problems. In 2005–06, offered first and second terms. Instructors: Thorne, Lindblom.

Ph 237 ab. Gravitational Waves. 9 units (3-0-6); second, third terms. Prerequisite: Ph 106. The theory of gravitational waves: their generation, propagation, and interaction with detectors. Astrophysical sources of gravitational waves: the Big Bang, early-universe phenomena, binary stars, black holes, supernovae, and neutron stars. Gravitational-wave detectors: their design, noise, data analysis, and underlying physics, with emphasis on LIGO and LISA but also detectors based on resonant masses, doppler tracking of spacecraft, pulsar timing, and the polarization of the cosmic microwave background. Not offered 2005–06.

Ph 242 ab. Physics Seminar. 3 units (2-0-1); first, second terms. Topics in physics emphasizing current research at Caltech. One two-hour meeting per week. Speakers will be chosen from both faculty and students. Registration restricted to first-year graduate students in physics; exceptions only with permission of instructor. Graded pass/fail. Instructor: Stone.

Ph 250. Introduction to String Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 205 or equivalent. The first two terms will focus largely on the bosonic string. Topics covered will include conformal invariance and construction of string scattering amplitudes, the origins of gauge interactions and gravity from string theory, T-duality, and D-branes. The third term will cover perturbative aspects of superstrings, supergravity, various BPS branes, and string dualities. Not offered 2005–06.

Ph 300. Thesis Research. Units in accordance with work accomplished. Ph 300 is elected in place of Ph 172 or Ph 173 when the student has progressed to the point where research leads directly toward the thesis for the degree of Doctor of Philosophy. Approval of the student’s research supervisor and department adviser or registration representative must be obtained before registering. Graded pass/fail.

POlITICAL SCIENCE

PS 12. Introduction to Political Science. 9 units (3-0-6); first, second, third terms. Introduction to the tools and concepts of analytical political science. Subject matter is primarily American political processes and institutions. Topics: spatial models of voting, redistributive voting, games, presidential campaign strategy, Congress, congressional-bureaucratic relations, and coverage of political issues by the mass media. Instructors: Kiewiet, Ordeshook.

PS 101. Selected Topics in Political Science. Units to be determined by arrangement with the instructor. Offered by announcement. Instructor: Staff.
PS 120. American Electoral Behavior and Party Strategy. 9 units
(3-0-6). A consideration of existing literature on the voting behavior of the citizen, and an examination of theoretical and empirical views of the strategies followed by the parties. Instructor: Alvarez.

PS 121. Congressional Policy Formation and Legislative Process.
9 units (3-0-6). Decision making in legislative bodies, with emphasis on the United States Congress. An investigation into the impact of congressional structure and practices on the policies adopted by the federal government. Not offered 2005–06.

PS 122. Problems of Representation. 9 units (3-0-6). Prerequisite: PS 12. Considers the theoretical foundations of democratic governments and modern problems of representation, including alternative approaches and solutions to representing minorities. Not offered 2005–06.

PS 123. Fiscal Federalism. 9 units (3-0-6). In the United States, as in many other countries, taxes are collected and benefits are provided by federal, state, and local governments. Because politicians like to take credit for benefits but avoid blame for taxes, fiscal relations between levels of government are an ongoing source of controversy and confusion. Course covers the major budgetary problems that currently face state, local, and federal governments. Specific topics will include intergovernmental revenue flows, the municipal bond market, and policy mandates. Not offered on a pass/fail basis. Not offered 2005–06.

PS/SS 125. Political Economy of Development. 9 units (3-0-6).
Prerequisite: PS 12 or SS 13. The role of political institutions in economic development and the interplay between economic development and political change. The course applies tools drawn from economics and political science to examples from history and from current-day developing countries. Not offered 2005–06.

PS 126. Political Corruption. 9 units (3-0-6); second term.
This course explores fundamental questions related to the scientific study of corruption. Political corruption will first be defined and then how one might go about measuring it will be discussed. The following questions will be asked: What are the stylized facts about the common determinants of corruption across countries? Do certain political institutions constrain corruption, and if so, what are the constraining mechanisms? How is political corruption related to bureaucratic corruption? The course builds on the latest literature in economics and political science; hence, some background in economics and/or political science is desirable. Instructor: Kunicova.

PS 130. Introduction to Social Science Surveys: Methods and Practice. 9 units (3-0-6); second term.
In this course, students will learn the basic methodologies behind social science survey analysis: self-completion and interview-assisted surveying, sampling theory, questionnaire design, theories of survey response, and the basic analysis and presentation of survey results will be covered, as well as contemporary research in survey methodology and public opinion analysis. Students will be involved in the active collection and analysis of survey data and the presentation of survey results; students will be required to complete an independent project involving some aspect of survey methodology. Not offered 2005–06.

PS 132. Formal Theories in Political Science. 9 units (3-0-6).
Prerequisite: PS 12 or equivalent. Axiomatic structure and behavioral interpretations of game theoretic and social choice models and models of political processes based on them. Instructors: Ordeshok, Yariv.

PS 135. Analyzing Legislative Elections. 9 units (3-0-6); second term.
The purpose of this course is to understand legislative elections. The course will study, for example, what role money plays in elections and why incumbents do better at the polls. It will also examine how electoral rules impact the behavior both of candidates and voters, and will explore some of the consequences of legislative elections, such as divided government. Not offered 2005–06.

PS/SS 139. Comparative Politics. 9 units (3-0-6). Prerequisite: PS 12 or SS 13. The politics of non-American political systems. Areas of study: the politics of nondemocratic states, including the Communist nations; the politics of developing societies; the politics of the Western European democracies. Emphasis on the effect of distinctive institutions on the performance of government and the content of public policy. Instructor: Ordeshok.

9 units (3-0-6). Offered by announcement. This class will examine budgetary conflict at key junctures in U.S. history. Topics include the struggle to establish a viable fiscal system in the early days of the Republic, the ante bellum tariff, the “pension politics” of the post–Civil War era, the growth of the American welfare state, and the battle over tax and entitlement reform in the 1980s and 1990s. Instructor: Kiewiet.

H/PS/Law 148 ab. The Supreme Court in U.S. History.
9 units (3-0-6). For course description, see History.

Ec/PS 160 abc. Laboratory Experiments in the Social Sciences.
9 units (3-3-3). For course description, see Economics.

PS/Ec 172. Noncooperative Games in the Social Sciences.
9 units (3-0-6); first term. Prerequisite: PS 12 or equivalent. Axiomatic structure and behavioral interpretations of game theory models in social science. Axiomatic utility theory and general noncooperative games. Instructor: Echenique.

9 units (3-0-6). Prerequisite: PS/Ec 172 or instructor’s permission. Game theoretic and evolutionary approaches to modeling various types of cooperative, altruistic, and social behavior. Emphasis on economic and political applications. Instructor: Chambers.
Ec/PS 190. Undergraduate Research. Units to be arranged. For course description, see Economics.

PSYCHOLOGY

Ps 15. Social Psychology. 9 units (3-0-6); offered by announcement. The study of how people think about other people and behave toward or around others. Topics include attribution, social cognition, motivation and incentive, social influence, liking, stereotyping, deception, fairness and altruism, and conformity. Instructor: Castelli.

Ps 20. Introduction to Cognitive Psychology. 9 units (3-0-6); third term. This course will develop basic concepts in how humans process different kinds of information such as visual, auditory, and symbolic. These concepts will then be used to explore topics such as visual perception, attention and automaticity, working and long-term memory, imagery, knowledge representation, language acquisition and comprehension, judgement and choice, reasoning and decision making, problem solving, and group differences. Instructor: Spezio.

Ps 101. Selected Topics in Psychology. Units to be determined by arrangement with the instructor. Offered by announcement. Instructor: Staff.

CNS/Bi/Ps 120. The Neuronal Basis of Consciousness. 9 units (4-0-5). For course description, see Computation and Neural Systems.

Ps 125. Reading and Research in Psychology. Same as Ps 25, but for graduate credit. Not available for credit toward humanities–social science requirement.

Ps/CNS 130. Introduction to Human Memory. 9 units (3-0-6); second term. The course offers an overview of experimental findings and theoretical studies in the study of human memory. Topics include iconic and echoic memory, working memory, spatial memory, implicit learning and memory; forgetting: facts vs. skills, memory for faces; retrieval: recall vs. recognition, context-dependent memory, semantic memory, spreading activation models and connectionist networks, memory and emotion, infantile amnesia, memory development, and amnesia. Instructor: Adolphs.

Ps/Bi/CNS 131. The Psychology of Learning and Motivation. 9 units (3-0-6); second term. This course will serve as an introduction to basic concepts, findings, and theory from the field of behavioral psychology, covering areas such as principles of classical conditioning, blocking and conditioned inhibition, models of classical conditioning, instrumental conditioning, reinforcement schedules, punishment and avoidance learning. The course will track the development of ideas from the beginnings of behavioral psychology in the early 20th century to contemporary learning theory. Instructor: O’Doherty.

SS/Ps/Bi/CNS 140. Social Neuroscience. 9 units (3-0-6). For course description, see Social Science.

SS/Ps/Bi/CNS 255. Topics in Emotion and Social Cognition. 9 units (3-0-6). For course description, see Social Science.

SOCIAL SCIENCE

SS 13. The Application of Social Scientific Methods to Problems in History. 9 units (3-0-6); first term. The application of theory from economics, political science, and demography to historical subjects, with an emphasis on questions of institutional change. The historical topics covered will depend upon the instructor. Not offered 2005–06.

BEM/Ec/SS 20. Scientific Writing and Oral Presentation in the Social Sciences. 6 units (2-0-4). For course description, see Business Economics and Management.

SS 98. Reading in Social Science. Units to be determined for the individual by the department. Elective, in any term. Reading in social science and related subjects, done either in connection with the regular courses or independently of any course, but under the direction of members of the department. A brief written report will usually be required. Graded pass/fail. Not available for credit toward humanities–social science requirement.

SS 101. Selected Topics in Social Science. 9 units (3-0-6). Offered by announcement. Not available for social science credit unless specifically approved by social science faculty. Instructors: Staff, visiting lecturers.

Ps/SS 125. Political Economy of Development. 9 units (3-0-6). For course description, see Political Science.

Ec/SS 129. Economic History of the United States. 9 units (3-0-6). For course description, see Economics.

Ec/SS 130. Economic History of Europe from the Middle Ages to the Industrial Revolution. 9 units (3-0-6). For course description, see Economics.

Ps/SS 139. Comparative Politics. 9 units (3-0-6). For course description, see Political Science.
SS/Psy/Bi/CNS 140. Social Neuroscience. 9 units (3-0-6); third term. Prerequisite: Bi/CNS 150 recommended. This course will survey the neural basis of social behavior, drawing on both theoretical and empirical approaches. Recent findings from cognitive neuroscience will be discussed, with an emphasis on data from humans. Topics will include motivation, emotion, theory of mind, social perception, and simulation. Instructor: Adolphs.

H/SS 154 ab. Race Relations in History and Social Science. 9 units (3-0-6). For course description, see History.

The graduate courses listed below are not necessarily taught each year. They will be offered as need dictates.

SS 200. Selected Topics in Social Science. Units to be determined by arrangement with instructors. Offered by announcement. Instructors: Staff, visiting lecturers.

SS 201 abc. Analytical Foundations of Social Science. 9 units (3-0-6). This course covers the fundamentals of utility theory, game theory, and social choice theory. These basic theories are developed and illustrated with applications to electoral politics, market trading, bargaining, auctions, mechanism design and implementation, legislative and parliamentary voting and organization, public economics, industrial organization, and other topics in economics and political science. Instructors: Echenique, Chambers, Goeree.

SS 202 abc. Political Theory. 9 units (3-0-6). Course will introduce the student to the central problems of political theory and analysis, beginning with the essential components of the democratic state and proceeding through a variety of empirical topics. These topics will include the analysis of electoral and legislative institutions, legislative agenda processes, voting behavior, comparative political economy, and cooperation and conflict in international politics. The student will be sensitized to the primary empirical problems of the discipline and trained in the most general applications of game theoretic reasoning to political science. Instructors: Kunicova, Alvarez, Ordeshook.

SS 205 abc. Foundations of Economics. 9 units (3-0-6). Prerequisite: Ec 121 ab or instructor's permission. This is a graduate course in the fundamentals of economics. Topics include comparative statics and maximization techniques, the neoclassical theory of consumption and production, general equilibrium theory and welfare economics, public goods and externalities, the economic consequences of asymmetric information and incomplete markets, and recursive methods with applications to labor economics and financial economics. Instructors: Ledyard, Jackson.

SS 210 abc. Foundations of Political Economy. 9 units (3-0-6). Prerequisite: SS 202 c, SS 205 b. Mathematical theories of individual and social choice applied to problems of welfare economics and political decision making as well as to the construction of political economic processes consistent with stipulated ethical postulates, political platform formulation, the theory of political coalitions, and decision making in political organizations. Instructors: Chambers, Jackson, Mattoozi.

SS 211 abc. Advanced Economic Theory. 9 units (3-0-6). May be repeated for credit. Advanced work in a specialized area of economic theory, with topics varying from year to year according to the interests of students. Instructors: Echenique, Ledyard.

SS 212. Application of Microeconomic Theory. 9 units (3-0-6). May be repeated for credit. A working seminar in which the tools of microeconomic theory are applied to the explanation of events and the evaluation of policy. Instructor: Camerer.

SS 213 abc. Financial Economics. 9 units (3-2-4). First term: asset pricing theory, statistical tests on historical data and evidence from financial markets experiments. Second term: financial econometrics, with emphasis on applications to risk management. Third term: general equilibrium foundations of asset and option pricing theory. Instructor: Bossaerts.

SS/Ma 214. Mathematical Finance. 9 units (3-0-6); second term. A course on fundamentals of the mathematical modeling of stock prices and interest rates, the theory of option pricing, risk management, and optimal portfolio selection. Students will be introduced to the stochastic calculus of various continuous-time models, including diffusion models and models with jumps. Instructor: Cvitanic.

SS 216. Interdisciplinary Studies in Law and Social Policy. 9 units (3-0-6); second term. A policy problem or problems involving the legal system will be studied, using concepts from at least one social science discipline. Each offering will be taught by a law professor, alone or in conjunction with a member of the social science faculty. The topic will differ from term to term, so the course may be taken more than once. Selected undergraduates may enroll in this course with the permission of the instructor. Not offered 2005–06.

SS 222 abc. Econometrics. 9 units (3-0-6). Introduction to the use of multivariate and nonlinear methods in the social sciences. Instructors: Sherman, Lee.

SS 223 abc. Advanced Topics in Econometric Theory. 9 units (3-0-6). Prerequisite: SS 222 abc; may be repeated for credit. A course in quantitative methods for second- and third-year social science graduate students. Instructors: Sherman, Lee.

SS 227. Identification Problems in the Social Sciences. 9 units (3-0-6); second term. Prerequisite: SS 222 abc. There is a tension in modeling social science phenomena between making strong assumptions, which lead to descriptive or normative conclusions that are precise when the assumptions hold but invalid when they do not hold, and
making weak assumptions, which lead to less precise conclusions but hold more generally. The preponderance of social science research to date takes the former approach. This course studies recent advances in the latter approach. The course will review the work of Manski on bounds identification and estimation and trace some of the developments in this line of research to the present. Various applications of the methodology will be considered, including applications to Stanford-9 test-score data and data on organic pollutants in the Love Canal.

Instructor: Sherman.

SS 228. Applied Data Analysis for the Social Sciences. 9 units (3-0-6); third term. The course covers issues of management and computation in the statistical analysis of large social science databases. Maximum likelihood and Bayesian estimation will be the focus. This includes a study of Markov Chain Monte Carlo (MCMC) methods. Substantive social science problems will be addressed by integrating programming, numerical optimization, and statistical methodology.

Instructor: Katz.

SS 229 abc. Theoretical and Quantitative Dimensions of Historical Development. 9 units (3-0-6). May be repeated for credit. Introduction to modern quantitative history. The tools of economic and political theory applied to problems of economic, social, and political development in a historical context. Second and third terms will be graded together. A pass/fail will be assigned in the second term and then changed to the appropriate letter grade at the end of the third term. Instructor: Kiewiet.

SS 230. Techniques of Policy Research. 9 units (3-0-6). Prerequisite: SS 205 ab. The application of social science theory and methods to the formulation and evaluation of public policy.

Instructor: Dubin.

SS/CS 241 ab. Introduction to Social and Information Sciences. 9 units (3-0-6); second, third terms. Undergraduates cannot use this course towards fulfilling the core Institute social science requirement. Introduction to techniques and methods used in research at the intersection of social and information sciences: aggregation of dispersed information and optimal allocation of resources through markets, networks, and other social systems; formation and off-equilibrium behavior of these systems; distributed cognition; related computational issues; aggregation, allocation, formation, and equilibration enhancements through technology—hardware and software, economic theory applied to the design of communication networks and computational systems; distributed information systems supporting economic activity.

Instructors: E&AS and HSS faculty.

SS/CNS 251. Human Brain Mapping: Theory and Practice. 9 units (3-1-5); second term. A course in functional brain imaging. An overview of contemporary brain imaging techniques, usefulness of brain imaging compared to other techniques available to the modern neuroscientist. Review of what is known about the physical and biological bases of the signals being measured. Design and implementation of a brain imaging experiment and analysis of data (with a particular emphasis on fMRI).

Instructor: O’Doherty.

SS/Psy/Bi/CNS 255. Topics in Emotion and Social Cognition. 9 units (3-0-6); third term. Prerequisite: SS/Psy/Bi/CNS 140 or instructor’s permission. This course will cover recent findings in the psychology and neurobiology of emotion and social behavior. What role does emotion play in other cognitive processes, such as memory, attention, and decision making? What are the component processes that guide social behavior? To what extent is the processing of social information domain-specific? Readings from the current literature will emphasize functional imaging, psychophysical, and lesion studies in humans.

Instructor: Adolphs.

SS 260. Experimental Methods of Political Economy. 9 units (3-3-3). Survey of laboratory experimental research related to the broad field of political economy. Topics: the behavior of markets, organizations, committee processes, and election processes. Emphasis on experimental methods and techniques. Students will design and conduct experiments. May be repeated for credit with instructor’s permission.

Instructor: Plot.

SS 280. Modern Topics in Social Science. 9 units (3-0-6); first term. This course will teach students about the major modern contributions of social science in fields outside their areas of specialization. Students will cover a series of basic topics by reading and discussing the central papers or books that characterize what is known about each topic area. Different sections of the course will be offered in different social sciences (e.g., economics and political science).

Instructor: Staff.

SS 281. Graduate Social Science Writing Seminar. 9 units (3-0-6); third term. Only open to advanced graduate students in social science. How can social scientists write in a style that makes someone actually want to read their papers? This seminar combines writing exercises with help in planning a professional social science paper and with extensive comments on drafts.

Instructor: Kousser.

SS 300. Research in Social Science. Units to be arranged.
OFFICERS

Kent Kresa, Chairman
Walter L. Weissman, Vice Chairman
David Baltimore, President
Paul C. Jennings, Provost
Dean W. Currie
 Vice President for Business and Finance
Gary Dicovitsky
 Vice President for Development and Alumni Relations
Charles Elachi
 Vice President and Director, Jet Propulsion Laboratory
Margo Post Marshak
 Vice President for Student Affairs
Robert L. O'Rourke
 Vice President for Public Relations
Mary L. Webster
 Secretary
Harry M. Yohalem
 General Counsel

William H. Davidow (1996)
 General Partner
 Mohr Davidow Ventures
John D. Dieckman (2003)
 Founder and Managing Partner
 SAM Ventures
Louise M. Dyer (1998)
 Chairman and CEO (Retired)
 Ionics, Inc.
William T. Gross (1994)
 Chairman and Founder ideate!
David D. Ho (1997)
 Director
 The Aaron Diamond AIDS Research Center
Louise Kirkbride (1995)
Kent Kresa (1994)
 Chairman Emeritus
 Northrop Grumman Corporation
Edward M. Lambert (1996)
 President and CEO
 Wise Foods, Inc.
David Li Lee (2000)
 Managing General Partner
 Clarity Partners, L.P
York Liao (1997)
 Managing Director
 Winbridge Company Ltd.
Alexander Lidow (1998)
 Chief Executive Officer
 International Rectifier Corporation
Ronald K. Linde (1989)
 Independent Investor and Chairman of the Board
 The Ronald and Maxine Linde Foundation
A. Michael Lipper (2005)
 President and CEO
 Lipper Advisory Services, Inc.
John W. Mack (2004)
 President
 Los Angeles Urban League
Shirley M. Malcom (1999)
 Director, Education and Human Resource Programs
 American Association for the Advancement of Science
 Principal
 Regulus International Capital Corp.
Peter W. Mullin (1990)
 Chairman and CEO
 Mullin Consulting, Inc.

BOARD OF TRUSTEES

Trustees
(with date of first election)
George L. Argyros (1992)
 Chairman and CEO
 Arnel and Affiliates
David Baltimore (1997)
 President
 California Institute of Technology
Gordon M. Binder (1995)
 Managing Director
 Coastsides Capital
Paul A. Brest (2003)
 President
 The William and Flora Hewlett Foundation
John E. Bryson (2005)
 Chairman, President and CEO
 Edcon International
Milton Chang (2005)
 Managing Director
 Incubic LLC

Trustees, Administration, Faculty
Senior Trustees
(with date of first election and date of election as Senior Trustee)

Philip M. Neal (2003)
Chairman and CEO
Avery Dennison Corporation

Philip M. Neches (1995)
Consultant and Entrepreneur

Patrick H. Nettles, Jr. (1998)
Executive Chairman
Ciena Corporation

Ronald L. Olson (1998)
Senior Partner
Munger, Tolles & Olson

Stephen R. Onderdonk (1986)
President and CEO (Retired)
E unfold Control Products, Inc.

John Puerner (2004)
Publisher, President and CEO
Los Angeles Times

Sally Kristen Ride (2000)
President
Imaginary Lines, Inc., and
Ingrid and Joseph Hibben Professor of Physics
University of California, San Diego

Stephen A. Ross (1993)
Co-Chairman
Roll and Ross Asset Management Corp., and Franco Modigliani
Professor of Finance and Economics
Massachusetts Institute of Technology

President
TCW Group, Inc.

Donald W. Tang (2005)
Senior Managing Director
Bear Stearns and Company

Co-Founder
Trimble Navigation, Ltd.

Senior Trustees
President
Atkins Company

G. Patricia Beckman (2003, 2005)
Chairman
AIG SunAmerica Inc.

Eli Broad (1993, 2005)
President Emeritus
Center for Strategic and International Studies (CSIS)

Walter Burke (1975, 1994)
Treasurer
Sherman Fairchild Foundation, Inc.

Harry M. Conger (1985, 2002)
Chairman & CEO, Emeritus
Homestake Mining Company

Retired Chairman
Seafirst Bank

President Emeritus
California Institute of Technology

Camilla C. Frost (1977, 1997)
Trustee of the Chandler Trust
and a Director and Secretary-Treasurer

Chandis Securities Company

Shirley M. Hufstader (1975, 1997)
Senior Of Counsel
Morrison & Foerster

Private Investor

President and CEO (Retired)
Atlantic Richfield Co.

Gordon E. Moore (1983, 2001)
Chairman Emeritus
Chairman Emeritus
Intel Corporation

Chairman and CEO (Retired)
Getty Oil Company

Private Investor

Richard M. Rosenberg (1989, 2002)
Chairman and CEO (Retired)
Bank of America Corporation

Life Trustees
(with date of first election and date of election as Life Trustee)

Robert Anderson (1975, 2002)
Chairman Emeritus
Rockwell International Corporation

Chairman and CEO (Retired)
Atlantic Richfield Company

Chairman Emeritus and Director
Bechtel Group, Inc.

Chairman of the Board
The Irvine Company

Chairman of the Board
Cody Resources LP

Chairman Emeritus
Southern California Edison Co.

Philip M. Hawley (1973, 1997)
President

P. M. Hawley, Inc.

President (Retired)
The World Bank

Ruben F. Mettler (1969, 1995)
Chairman Emeritus
Retired Chairman and CEO
TRW Inc.

Simon Ramo (1964, 1985)
Co-Founder & Director Emeritus
TRW Inc.

Principal
Arthur Rock and Company

Benjamin M. Rosen (1986, 2005)
Chairman Emeritus

Chairman Emeritus

Compaq Computer Corporation

Vice Chairman (Retired)
General Motors Corporation

Mary L. Scracenia (1974, 1990)
Nonprofit Consultant

Dennis Stanfill (1976, 1999)
Private Investor

Charles H. Townes (1979, 1987)
Nobel Laureate and
Professor in the Graduate School
Department of Physics
University of California, Berkeley

Harry Wetzel (1979, 2002)
Chairman and CEO (Retired)
The Garrett Corporation

Albert D. Wheelon (1987, 2001)
Chairman and CEO (Retired)
The Garrett Corporation

* ex officio member

Standing Committees

Trustees, Administration, Faculty
Executive Compensation
Subcommittee—A. Lidow, Chair;
K.Kresa*, D.L. Lee*, P.M. Neches,
W.L. Weisman, Advisory Member;
D. Baltimore

Institute and Alumni Relations
Committee—W.H. Davidson,
Chair; E.M. Lambert, Vice Chair;
D. Baltimore*, P.A. Brest, L.M.
Dyer, W.T. Gross, L. Kirkbrane, K.
Kresa*, Y. Liao, R.K. Linde, S.M.
Malcom, P.W. Mullin, P.M.
Neches, S.R. Onderdonk, W.L.
Weisman, V.V. Weldon, G.E.
Wilson; Advisory Members: K.
Chang*, J.A. Cutts, H.P. Dally, G.
Dicovitsky, D.G. Goodwin*, R.T.
Jenkins*, P.C. Jennings, P. Liu*,
M.P. Marshak, R.E. McQuinn, R.L.
O’Rourke

Investment Committee—S.A.
Ross, Chair; A. Lidow, Vice Chair;
D. Baltimore*, K. Kresa*, R.K.
Linde, G.E. Moore; Consulting
Members: A.M. Lipper, R.F. Mettler,
A. Rock, B.M. Rosen; Advisory
Members: D.W. Currie, S.A. Ell,
P.C. Jennings, H. Marks, R. Perry,
H.M. Yohalem

Jet Propulsion Laboratory
Committee—S.K. Ride, Chair;
C.R. Trimble, Vice Chair; D.
Baltimore*, H. Brown, W. Burke,
T.E. Everhart, S.M. Hufstedler,
B.R. Inman, L. Kirkbrane, K.
Kresa*, G.E. Moore, P.M. Neches,
R.L. Olson, S.R. Onderdonk, S.R.
Rawn, Jr., W.L. Weisman, G.E.
Wilson; Consulting Members: R.
Anderson, R.F. Mettler, R.J.
Schultz, C.H. Townes, A.D.
Wheelon; Advisory Members: D.W.
Currie, H.P. Dally, C. Elachi, P.C.
Jennings, R.L. O’Rourke, R.P.
O’Toole, H.M. Yohalem

Nominating Committee—G.E.
Wilson, Chair; A. Lidow, Vice
Chair; D. Baltimore*, E. Broad, H.
Brown, J.P. Cobb, W.H. Davidow,
C.C. Frost, B.R. Inman, W.F.
Kieschnick, L. Kirkbrane, K.
Kresa*, D.L. Lee, R.K. Linde, R.M.
Rosenberg, W.L. Weisman, V.V.
Weldon; Consulting Members: R.F.
Mettler, S. Ramo; Advisory
Members: G. Dicovitsky, P.C.
Jennings

Technology Transfer
Committee—P.M. Neches, Chair;
L. Kirkbrane, Vice Chair; D.
Baltimore*, G.M. Binder, H.
Brown, J.D. Dickman, L.M. Dyer,
A.L. Goldstein, K. Kresa*, E.M.
Lambert, A. Lidow, R.K. Linde,
C.S. Miller, P.H. Nettles, Jr., R.L.
Olson, C.R. Trimble, L.W. van
Amerongen; Advisory Members:
D.W. Currie, S.A. Ell, D.L.
Goodstein, P.C. Jennings, T.A.
Tombrrello, R.A. Wolf, H.M.
Yohalem

Transaction Review
Subcommittee—P.M. Neches, Chair;
L. Kirkbrane, A. Lidow, R.K. Linde, R.L. Olson;
Advisory Member: H.M. Yohalem

* ex officio member

Trustees, Administration, Faculty

Administrative Officers

Robert L. O’Rourke
Vice President for Public Relations

Thomas W. Schmitt
Associate Vice President for
Human Resources

Mary L. Webster
Secretary, Board of Trustees

Harry M. Yohalem
General Counsel

Chairs of Divisions

Elliot M. Meyerowitz
Biology

David A. Tirrell
Chemistry and Chemical
Engineering

David B. Rutledge
Engineering and Applied Science

Kenneth A. Farley
Geological and Planetary Sciences

Jean E. Ensminger
Humanities and Social Sciences

Thomas A. Tombrello
Physics, Mathematics and
Astronomy

Dean W. Currie
Vice President for Business and
Finance

Hall P. Daily
Assistant Vice President for
Government and Community
Relations

Gary Dicovitsky
Vice President for Development
and Alumni Relations

Charles Elachi
Vice President and Director, Jet
Propulsion Laboratory

Sandra Ell
Treasurer and Chief Investment
Officer

David L. Goodstein
Vice Provost

Margo Post Marshak
Vice President for Student Affairs
Administrative Committees

Administrative Management Council (AMC)—D. Baltimore, Chair; D.W. Currie, G. Dicovitsky, C. Elachi, P.C. Jennings, M.P. Marshak, R.L. O’Rourke, M.L. Webster, H.M. Yohalem

Institute Academic Council (IAC) [fills the role of Caltech’s Institutional Academic Council—IACC] (Reports to the Provost)—J.E. Ensminger, Chair; D. Baltimore, J.E. Ensminger, K.A. Farley, E.M. Meyerowitz, D.B. Rutledge, D.A. Tirrell, T.A. Tombrello

Performing and Creative Arts (Reports to the Vice President for Student Affairs)—S.C. Frautsch, Chair; P.D. Asimow, J. Barry, D.L. Denning, P.T. Hoffman, J. La Belle, S.A. Marneus, D. Nelson Nash, J.H. Richards, J.D. Roberts, T. Varathangkul

Sponsored Research (Reports to the Provost)—D.W. Zeh, Chair; P.H. Patterson, N.C. Yeh

*ex officio member
1 representing undergraduate students

Faculty Officers and Committees 2005–06

Officers

Chair: H. A. Lester
Vice Chair: J. L. Campbell
Secretary: D. B. Wales

Faculty Board

T. J. Ahmed, 2007
R. A. Andersen, 2008
J. F. Brady, 2006
S. M. Haile, 2008
T. H. Heaton, 2007
L. Hillenbrand, 2006
Y. T. Hou, 2006
J. L. Kirschvink, 2008
J. La Belle, 2008
K. G. Libbrecht, 2008
G. A. Lorden, 2006
S. L. Mayo, 2006
P. H. Patterson, 2007
C. R. Plot, 2006
J. H. Seinfeld, 2008
B. M. Stoltz, 2007
C. Weinstein, 2007
K. G. Zinn, 2007

Ex Officio:

D. Baltimore
J. E. Ensminger
K. A. Farley
J. F. Hall
M. R. Hoffmann
P. C. Jennings
M. P. Marshak
E. M. Meyerowitz
D. B. Rutledge
D. A. Tirrell
T. A. Tombrello

Steering

H. A. Lester, Chair
J. L. Campbell*
D. L. Goodstein*
P. C. Jennings*
D. B. Wales*
C. A. Weinstein, 2006

*ex officio member
Division of Biology

Elliot M. Meyerowitz, Chair
Pamela Bjorkman, Executive Officer for Biology
Erin M. Schuman, Executive Officer for Neurobiology

Professors Emeriti

John N. Abelson, Ph.D.
George Beadle Professor of Biology
Seymour Benzer, Ph.D., D.Sc.h.c.,
Craford Laureate
James G. Buzwell Professor of Neuroscience (active)
Charles J. Brokaw, Ph.D.
Biology

John J. Hopfield, Ph.D.
Rusco G. Dickinson Professor of Chemistry and Biology
Ray D. Owen, Ph.D., Sc.D.h.c.
Biology

Melvin S. Simon, Ph.D.
Anne P. and Benjamin F. Biaggini Professor of Biological Sciences

Senior Research Associate Emeritus

Roy J. Britten, Ph.D.
Distinguished Carnegie Senior Research Associate in Biology, Emeritus

Professors

John M. Allman, Ph.D.
Frank P. Hixon Professor of Neurobiology
Richard A. Andersen, Ph.D.
James G. Buzwell Professor of Neuroscience
David J. Anderson, Ph.D.
Roger W. Sperry Professor of Biology
Giuseppe Attardi, M.D.
Grace C. Steele Professor of Molecular Biology

David Baltimore, Ph.D., D.Sc.h.c.,
D.Phil.h.c., Nobel Laureate
Biology

Pamela Bjorkman, Ph.D.¹
Max Delbruck Professor of Biology
Marianne Bronner-Fraser, Ph.D.
Albert Billings Rudder Professor of Biology
Judith L. Campbell, Ph.D.
Chemistry and Biology
Eric H. Davidson, Ph.D.
Norman Chandler Professor of Cell Biology
Raymond Deshaies, Ph.D.¹
Biology

Michael H. Dickinson, Ph.D.
Ester M. and Abe M. Zarem Professor of Bioengineering
William G. Dunphy, Ph.D.
Biology

Scott E. Fraser, Ph.D.
Anna L. Rosen Professor of Biology and Professor of Bioengineering
Mary B. Kennedy, Ph.D.
Allen and Lenabelle Davis Professor of Biology

Christof Koch, Ph.D.
Luis and Victor Y. Trujillo Professor of Cognitive and Behavioral Biology and Professor of Computation and Neural Systems
Masakazu Konishi, Ph.D.
Bing Professor of Behavioral Biology

Gilles J. Laurent, Ph.D., D.V.M.
Lawrence A. Hanson, Jr. Professor of Biology and Computation and Neural Systems

Henry A. Lester, Ph.D.
Bren Professor of Biology
Stephen L. Mayo, Ph.D.¹
Biology and Chemistry

Elliot M. Meyerowitz, Ph.D.
George W. Beadle Professor of Biology

Paul H. Patterson, Ph.D.
Biology

Jean-Paul Revel, Ph.D.²
Albert Billings Rudder Professor of Biology

Ellen Rothenberg, Ph.D.
Biology

Erik M. Schuman, Ph.D.¹
Biology

Shinsuke Shimojo, Ph.D.
Biology

Paul W. Sternberg, Ph.D.¹
Thomas Hunt Morgan Professor of Biology
James H. Strauss, Ph.D.
Ehrl Wilson Bevold and Robert Bevold Professor of Biology
Alexander J. Varshavsky, Ph.D.
Howard and Susan autistic Professor of Cell Biology
Barbara J. Wold, Ph.D.
Bren Professor of Molecular Biology

¹Joint appointment with Howard Hughes Medical Institute
²Undergraduate Student Adviser

Associate Professor

Bruce A. Hay, Ph.D.
Biology

Assistant Professors

Jose Alberola-Ila, M.D., Ph.D.
Biology
David C. Chan, M.D., Ph.D.
Biology
Bren Scholar
Michael Elowitz, Ph.D.
Biology and Applied Physics
Bren Scholar
Grant J. Jensen, Ph.D.
Biology
Athanassios G. Siapas, Ph.D.
Computation and Neural Systems
Bren Scholar
Angelica Stathopoulos, Ph.D.
Biology

Lecturers

David S. Koos, Ph.D.
Jane E. Mendel, Ph.D.
James R. Pierce, M.D.
Stewart Scherer, M.D.

Senior Research Associates

R. Andrew Cameron, Ph.D.
Anne Chomyn, Ph.D.
Iain C. Fraser, Ph.D.

Akiho Kumagai, Ph.D.
Jane E. Mendel, Ph.D.
Jose Luis Riechmann, Ph.D.
Ellen G. Strauss, Ph.D.

Senior Research Fellows

Maria Elena de Bellard, Ph.D.
Laura S. Gammill, Ph.D.
Venugopala Reddy Gendhal, Ph.D.
Peter Hajek, Ph.D.
Sang-Kyu Han, Ph.D.
Byung Joon Kwang, Ph.D.
Toshio Ito, Ph.D.
Joanna L. Jankowsky, Ph.D.
Yun Kee, Ph.D.
Ali Khoshnan, Ph.D.
Joon Lee, Ph.D.
Helen McBride, Ph.D.
David W. McCauley, Ph.D.
Jose Luis Pena, M.D.
Anthony P. West, Jr., Ph.D.
Mary An-yuan Yui, Ph.D.

Faculty Associate

Alice S. Huang, Ph.D.

Moore Distinguished Scholar

Elaine L. Bearer, M.D., Ph.D.

Visiting Professor

Joseph Bogen, M.D.

Visiting Associates

Norman Arnheim, Ph.D.
Hamid Bolouri, Ph.D.
Martin Garcia-Castro, Ph.D.
William L. Caton III, M.D.
Igor Fineman, M.D.
Leroy Hood, M.D., Ph.D.,
D.Sc.h.c., D.h.c.
Sorin Istrail, Ph.D.
Angelique Y. Louie, Ph.D.
Carol Ann Miller, M.D.
Eric Mjolsness, Ph.D.
Kathleen M. Sakamoto, M.D.,
Ph.D.
Division of Chemistry and Chemical Engineering

David A. Tirrell, Chair
Mark E. Davis, Executive Officer for Chemical Engineering
Stephen L. Mayo, Executive Officer for Biochemistry and Molecular Biophysics
Douglas C. Rees, Executive Officer for Chemistry

Professors Emeriti
Fred C. Anson, Ph.D., D.h.c.
Elizabeth W. Gilloon Professor of Chemistry
John D. Baldeschwieler, Ph.D.
J. Stanley Johnson Professor and Professor of Chemistry
Sunney I. Chan, Ph.D.
George Grant Hoag Professor of Biophysical Chemistry
George R. Gavalas, Ph.D.
Chemical Engineering
John J. Hopfield, Ph.D.
Ruscoe G. Dickinson Professor of Chemistry and Biology
John D. Roberts, Ph.D., Dr.rer.Nat.h.c., Sc.D.h.c., D.Sc.h.c.
Institute Professor of Chemistry
Nicholas W. Tschoegi, Ph.D.
Chemical Engineering

Senior Research Associates Emeriti
Richard E. Marsh, Ph.D.
Chemistry
William P. Schaefer, Ph.D.
Chemistry

Professors
Frances H. Arnold, Ph.D.
Dick and Barbara Dickinson Professor of Chemical Engineering and Biochemistry
Jacqueline K. Barton, Ph.D., D.Sc.h.c., D.L.h.c.
Arthur and Marian Hanisch Memorial Professor and Professor of Chemistry
Jesse L. Beachamp, Ph.D.
Mary and Charles Perkel Professor of Chemistry
John E. Bercaw, Ph.D.
Centennial Professor of Chemistry
Geoffrey A. Blake, Ph.D.
Cosmochemistry and Planetary Science and Chemistry
John F. Brady, Ph.D.
Chevron Professor of Chemical Engineering and Professor of Mechanical Engineering
Judith L. Campbell, Ph.D.
Chemistry and Biology
Mark E. Davis, Ph.D.
Warren and Katharine Schlinger Professor of Chemical Engineering and Professor of Mechanical Engineering
Mark E. Davis, Ph.D.
Warren and Katharine Schlinger Professor of Chemical Engineering
Peter B. Dervan, Ph.D., D.Sc.h.c.
Bren Professor of Chemistry
Dennis A. Dougherty, Ph.D.
George Grant Hoag Professor of Chemistry
Richard C. Flagan, Ph.D.
Irina and Rus McCollum–William H. Corcoran Professor of Chemical Engineering and Professor of Environmental Science and Engineering
William A. Goddard III, Ph.D.
Thomas and Elizabeth Jones Professor of Chemistry, Materials Science, and Applied Physics
Harry B. Gray, Ph.D., D.Sc.h.c., Laurea h.c., Fil.Dr.h.c., D.L.h.c.
Arnold O. Beckman Professor of Chemistry and Founding Director of the Beckman Institute
Robert H. Grubbs, Ph.D.
Victor and Elizabeth Atkins Professor of Chemistry
James R. Heath, Ph.D.
Elizabeth W. Gilloon Professor and Professor of Chemistry
Julia A. Kornfield, Ph.D.
Chemical Engineering
Aron Kuppermann, Ph.D.
Chemical Physics
Nathan S. Lewis, Ph.D.
George L. Argyros Professor and Professor of Chemistry
David W. C. MacMillan, Ph.D.
Earle C. Anthony Professor of Chemistry
Rudolph A. Marcus, Ph.D., D.Sc.h.c., Fil.Dr.h.c., D.h.c., Nobel Laureate
Arthur Amos Noyes Professor of Chemistry
Stephen L. Mayo, Ph.D.
B. Vincent McKoy, Ph.D.
Theoretical Chemistry
Mitchio Okumura, Ph.D.
Chemical Physics
Carl S. Parker, Ph.D.
Biochemistry
Douglas C. Rees, Ph.D.
Ruscoe Gilkey Dickinson Professor of Chemistry
John H. Richards, Ph.D.
Organic Chemistry and Biochemistry
John H. Seinfeld, Ph.D., D.Sc.h.c.
Laure E. Nabi Professor and Professor of Chemical Engineering
David A. Tirrell, Ph.D., D.h.c.
Rus McCollum–William H. Corcoran Professor and Professor of Chemistry and Chemical Engineering
Zhen-Gang Wang, Ph.D.
Chemical Engineering
Ahmed H. Zewail, Ph.D., D.Sc.h.c., D.h.c., D.Univ.h.c., D.Phil.h.c., L.L.D.h.c., M.D.h.c., Nobel Laureate
Linus Pauling Professor of Chemical Physics and Professor of Physics

Associate Professors
Konstantinos P. Giapis, Ph.D.
Chemical Engineering
Sossina M. Haile, Ph.D.
Materials Science and Chemical Engineering
Jonas C. Peters, Ph.D.
Chemistry
Daniel P. Weitekamp, Ph.D.
Chemical Physics

1 Joint appointment with Howard Hughes Medical Institute
Associate Professors
Emmanuel J. D. Candes, Ph.D.
Applied and Computational Mathematics
Timothy E. Colonius, Ph.D.
Mechanical Engineering
Mathieu Desbrun, Ph.D.
Computer Science
Sossina M. Haile, Ph.D.
Materials Science and Chemical Engineering
Seyed-Ali Hajimiri, Ph.D.
Electrical Engineering
Balak Hassibi, Ph.D.
Electrical Engineering
Steven Low, Ph.D.
Computer Science and Electrical Engineering
Hideo Mabuchi, Ph.D.
Physics and Control and Dynamical Systems
Dianne K. Newman, Ph.D.¹
Joint appointment with Howard Hughes Medical Institute

Assistant Professors
Jess F. Adkins, Ph.D.
Geochemistry and Global Environmental Science
Marc W. Bockrath, Ph.D.
Applied Physics
John O. Dabiri, Ph.D.
Aeronautics and Bioengineering
André DeHon, Ph.D.
Biology and Applied Physics
Jason J. Hickey, Ph.D.
Computer Science
Tracey C. Ho, Ph.D.
Computer Science
Nadia Lapusta, Ph.D.
Materials Science
Jared R. Leadbetter, Ph.D.
Environmental Microbiology
Houman Owhadi, Ph.D.
Applied and Computational Mathematics
Oskar J. Painter, Ph.D.
Applied Physics
Niles A. Pierce, Ph.D.
Applied and Computational Mathematics
Tapi Schnei doer, Ph.D.
Environmental Science and Engineering
Arthanassios G. Sias, Ph.D.
Computer Science
Christopher Umans, Ph.D.
Computer Science
Erik Winfree, Ph.D.
Computer Science
Changhui Yang, Ph.D.
Computer Science

Instructors
Jorge G. Cham, Ph.D.
Mechanical Engineering
Nevin Kapur, Ph.D.
Computer Science
Kathryn Leonard, Ph.D.
Theodore von Karman Instructor in Applied and Computational Mathematics

Lecturers
Channing C. Ahn, Ph.D.
Environmental Science
Dimitros Ananos, Ph.D.
Electrical Engineering
Payman Arabshahi, Ph.D.
Electrical Engineering
Benjamin D. Brantley, B.S.¹
Computer Science
Nathan F. Dalleska, Ph.D.
Environmental Science and Engineering
Samuel J. Dolinar, Ph.D.¹
Electrical Engineering
Marionne Epalle, B.S.¹
Engineering
Antony R. H. Fender, B.S.
Engineering
Glen A. George, M.S.
Computer Science and Electrical Engineering
Gerard J. Holzmann, Ph.D.
Computer Science
Aaron B. Kiely, Ph.D.¹
Electrical Engineering
Wang Sang Koon, Ph.D.
Control and Dynamical Systems
Corinne Ladous, M.S.¹
Mechanical Engineering
Ruo Li, Ph.D.¹
Applied and Computational Mathematics
Barry B. Megdal, Ph.D.
Electrical Engineering
Rodney Rojas
Mechanical Engineering
Stanley P. Sander, Ph.D.
Geological and Planetary Science and Environmental Science and Engineering
Jeffrey T. Scroggs, Ph.D.¹
Applied Mechanics
John P. Van Deusen, B.S.
Mechanical Engineering
Michael C. Vanier, Ph.D.
Computer Science
Jakob J. Van Zyl, Ph.D.
Electrical Engineering and Planetary Science
Michael Watkins, Ph.D.
Aeronautics
¹ In residence 2004–05

Senior Research Associates
Channing C. Ahn, Ph.D.
Materials Science
Agustín J. Colussi, Ph.D.
Environmental Science and Engineering

Senior Research Fellows
R. Dale Conner, Ph.D.
Materials Science
Shana Goffredi, Ph.D.
Environmental Science and Engineering
Michael Hucks, Ph.D.
Control and Dynamical Systems
Douglas G. MacMynowski, Ph.D.
Control and Dynamical Systems
Carlos Pantano, Ph.D.
Aeronautics
¹ In residence 2004–05

Faculty Associates
Christoph C. Adami, Ph.D.
Computation and Neural Systems
Gerald D. Buckberg, M.D.
Bioengineering
Thomas L. Sterling, Ph.D.
Center for Advanced Computing Research
Sander Weinreb, Ph.D.
Electrical Engineering

Moore Distinguished Scholar
Sandra M. Troian, Ph.D.¹
Engineering and Applied Science
¹ In residence 2004–05

Visiting Professors
Bruno Croussigni, Lib.Doc.
Applied Physics
Alain Molinari, Ph.D.¹
Clark B. Millikan Visiting Professor of Aeronautics
Kenneth A. Pickar, Ph.D.
Mechanical Engineering

Visiting Associate Professors
Shaoqiang Tang, Ph.D.¹
Applied and Computational Mathematics
Vilupanur A. Ravi, Ph.D.
Bioengineering and Materials Science
¹ In residence 2004–05

1 Joint appointment with Howard Hughes Medical Institute

In residence 2004–05
Visiting Associates
Douglas L. Abernathy, Ph.D.
Materials Science
W. French Anderson, M.D.
Applied Physics
Xavier Antoine, Ph.D.
Applied and Computational
Mathematics
Marc M. Baum, Ph.D.
Environmental Science and
Engineering
Josef Bellan, Ph.D.
Aeronautics
Robert C. Bowman, Jr., Ph.D.
Materials Science
Fred J. Brechtel, Ph.D.
Environmental Science and
Engineering
James E. Broadwell, Ph.D.
Aeronautics
Jay B. Brockman, Ph.D.
Applied and Computational
Mathematics and Computer
Science
Frederick K. Browand, Ph.D.
Aeronautics
Karsten Buse, Ph.D.
Electrical Engineering
Stefano Casotto, Ph.D.
Aeronautics
Tirong Chen, M.S.
Applied Physics
Weng-Ki Ching, Ph.D.
Environmental Science and
Engineering
Simon L. Clegg, Ph.D.
Environmental Science and
Engineering
Suvasis Dixit, Ph.D.
Environmental Science and
Engineering
Shmuel Einav, Ph.D.
Bioengineering
Fred H. Eisen, Ph.D.
Applied Physics
Anna Fontcuberta i Morral, Ph.D.
Applied Physics
Frank A. Gomez, Ph.D.
Applied Physics
Malcolm S. Gordon, Ph.D.
Bioengineering and Aeronautics
Jay R. Hove, Ph.D.
Bioengineering
Futoshi Iwata, M.S.
Electrical Engineering
Hossein Jadvar, Ph.D., M.D.
Bioengineering
Ellen Kuhl, Dr.Ing.
Aeronautics
David S. Lee, Ph.D.
Materials Science
In-seop Lee, Ph.D.
Aeronautics and Bioengineering
Reginald K. Lee, Ph.D.
Applied Physics
Henri J. Lezec, Ph.D.
Applied Physics
Ruo Li, Ph.D.
Applied and Computational
Mathematics
Martin W. Lo, Ph.D.
Computer Science
John Y. S. Luh, Ph.D.
Mechanical Engineering
Norman D. Malmuth, Ph.D.
Mechanical Engineering and
Aeronautics
Maja J. Mataric, Ph.D.
Electrical Engineering
Ellis F. Meng, Ph.D.
Electrical Engineering
John Abbott Moss, Ph.D.
Environmental Science and
Engineering
Zoran Nenadic, Ph.D.
Mechanical Engineering
Reza Olfati-Saber, Ph.D.
Control and Dynamical Systems
Anna Pandolfi, Ph.D.
Aeronautics
Gregory A. Poskrebyshev, Ph.D.
Environmental Science and
Engineering
James T. Randerson, Ph.D.
Biogeochemistry and
Environmental Science and
Engineering
Daniel Rittel, Ph.D.
Aeronautics
Alonso P. Rodriguez, Ph.D.
Engineering and Applied Science
Ross J. Salavert, Ph.D.
Geological and Planetary Science
and Environmental Engineering
Science
Stanley P. Sander, Ph.D.
Planetary Science and
Environmental Engineering
Science
Herbert M. Sauro, Ph.D.
Control and Dynamical Systems
Jan Schroers, Ph.D.
Materials Science
Jeff S. Shamma, Ph.D.
Control and Dynamical Systems
G. Jeffrey Snyder, Ph.D.
Materials Science
Stefano Soatto, Ph.D.
Control and Dynamical Systems
Claire J. Tomlin, Ph.D.
Control and Dynamical Systems
Edwin T. Upchurch, Ph.D.
Center for Advanced Computing
Research
Ersan Ustündag, Ph.D.
Materials Science
Ivan Vesely, Ph.D.
Bioengineering
Xinlong Wang, Ph.D.
Engineering Science
Claus O. Wilke, Ph.D.
Computation and Neural Systems
Joyce Y. Wong, Ph.D.
Electrical Engineering
Maria C. Yang, Ph.D.
Mechanical Engineering
Rachid Yazami, Ph.D.
Materials Science
Tao-Mu Yi, Ph.D.
Materials Science
Tao-Mu Yi, Ph.D.
Control and Dynamical Systems
Jin E. Zhang, Ph.D.
Engineering Science
Leonid E. Zhukov, Ph.D.
Computer Science
Hans Peter Zima, Ph.D.
Center for Advanced Computing
Research
Members of the
Professional Staff
Michael Aivazis, Ph.D.
Center for Advanced Computing
Research
Guy A. DeRose, Ph.D.
Applied Physics
Carol M. Garland, B.A.
Materials Science
Won-Kyu Rhim, Ph.D.
Materials Science
Keith A. Porter, Ph.D.
Civil Engineering
Senior Postdoctoral Scholars
William C. Conant, Ph.D.
Environmental Science and
Engineering
Ralf Deiterding, Ph.D.
Applied and Computational
Mathematics and Computer
Science
Marios D. Demetriou, Ph.D.
Materials Science
JM Geremia, Ph.D.
Control and Dynamical Systems
and Physics
Song Gao, Ph.D.
Environmental Science and
Engineering
Christophe A. Geuzaine, Ph.D.
Applied and Computational
Mathematics
David J. Hill, Ph.D.
Aeronautics
Cheng Jin, Ph.D.
Computer Science
Michele Milano, Ph.D.
Aeronautics
Young-Bae Park, Ph.D.
Applied Physics
Hendrik Postma, Ph.D.
Materials Science
Santiago Serebrinsky, Ph.D.
Aeronautics
Shreekrishna P. Tripathi, Ph.D.
Applied Physics
Masahiro Yanagisawa, Ph.D.
Control and Dynamical Systems
Postdoctoral Scholars
David L. Alderson, Ph.D.
Control and Dynamical Systems
Douglas L. Altshuler, Ph.D.
Bioengineering
Idit Avrahami, Ph.D.
Aeronautics and Bioengineering
Rachel M. Berquist, Ph.D.
Mechanical Engineering
Abhishek Bhattacharyya, Ph.D.
Aeronautics
Azize A. Bilgin, Ph.D.
Environmental Science and
Engineering
Tal Carmon, Ph.D.
Center for the Physics of
Information
Engineering and Applied Science
Ross Salawitch, Ph.D.
Environmental Science and Engineering
Stanley P. Sander, Ph.D.
Planetary Science and Environmental Engineering
Robert J. Stern, Ph.D.
Tectonics
Geoffrey Toon, Ph.D.,
Planetary Science
Duane Waliser, Ph.D.
Planetary Science

Mikhail Rashev, Ph.D.
Geophysics
Laura Robinson, Ph.D.
Environmental Science and Engineering
Henry Roe, Ph.D.
Planetary Science
Paula Smith, Ph.D.
Geochemistry
Yun Wang, Ph.D.
Geology
Jean-Pierre Williams, Ph.D.
O. K. Earl Postdoctoral Scholar
Jochen Woessner, Ph.D.
Geophysics
Rhea Workman, Ph.D.
Texaco Postdoctoral Scholar
Husen Zhang, Ph.D.
Geobiology
Ying Zhou, Ph.D.
Geophysics

Visitors
Jon C. Bergengren, Ph.D.
Planetary Science
Simona Bordoni, M.Sc.
Environmental Science and Engineering
James Chen, Ph.D.
Geochemistry
Mona Delitsky, Ph.D.
Planetary Science
Anton Ivanov, Ph.D.
Planetary Science
Amy Jurewicz, Ph.D.
Geochemistry
Monica Kohler, Ph.D.
Geophysics
Thomas McCord, Ph.D.
Planetary Science
Henry Ngo, Ph.D.
Geochemistry
Zaid Noi, Ph.D.
Geophysics
Asmin Pathare, Ph.D.
Planetary Science
Sudhir Rajaure, Ph.D.
Geology
Chandon Saikia, Ph.D.
Geophysics
Jason Weibel, Ph.D.
Planetary Science
Albert Yen, Ph.D.
Planetary Science
Frank Zielinski, M.Sc.
Geobiology

Division of the Humanities and Social Sciences
Jean E. Ensminger, Chair
R. Preston McAfee, Executive Officer for the Social Sciences
George W. Pigman III, Executive Officer for the Humanities

Professors Emeriti
Louis Breger, Ph.D.
Psychoanalytic Studies
J. Kent Clark, Ph.D.
Literature
Lance E. Davis, Ph.D.
Mary Stillman Harkness Professor of Social Science
David C. Elliot, Ph.D.
History
Daniel J. Kevles, Ph.D.
J. O. and Juliette Koepfli Professor of the Humanities
Burton H. Klein, Ph.D.
Economics
Oscar Mandel, Ph.D.
Geography
Thayer Scudder, Ph.D.
Anthropology
Annette J. Smith, Ph.D.
Literature
Frederick B. Thompson, Ph.D.
Applied Philosophy and Computer Science

Associate Professor Emeritus
Heinz E. Ellersieck, Ph.D.
History

Lecturers Emeriti
Lee F. Browne, M.S.
Education
Valentina A. Lindholm, M.A.
Russian

Trustees, Administration, Faculty
Humanities and Social Sciences
Professors

Ralph Adolphs, Ph.D.
Psychology and Neuroscience

R. Michael Alvarez, Ph.D.
Political Science

Kim C. Border, Ph.D.
Economics

Peter L. Bossaerts, Ph.D.
William D. Hacker Professor of Economics and Management and Professor of Finance

John Brewer, Ph.D.
Eli and Edye Broad Professor of Humanities and Social Sciences and Professor of History and Literature

Jed Z. Buchwald, Ph.D.
Doris and Henry Dreyfus Professor of History

Colin F. Camerer, Ph.D.
Rea A. and Lela G. Axline Professor of Business Economics

Jaksa Cvitanic, Ph.D.
Statistics

Jeffrey A. Dubin, Ph.D.
Economics

Jean E. Ensminger, Ph.D.
Anthropology

Mordochai Feingold, Ph.D.
History

Jacob K. Goeree, Ph.D.
Economics

David M. Grether, Ph.D.
Economics

Christopher R. Hitchcock, Ph.D.
Philosophy

Philip T. Hoffman, Ph.D.
History and Social Science

Matthew O. Jackson, Ph.D.
Ede and Lew Wasserman Professor of Economics

Jonathan N. Katz, Ph.D.
Political Science

D. Roderick Kiewiet, Ph.D.
Political Science

Dian C. Kormos-Buchwald, Ph.D.
History

J. Morgan Kousser, Ph.D.
History and Social Science

Jeni joy La Belle, Ph.D.
History

John O. Ledyard, Ph.D., D.Lit.h.c.
Professor of Economics and Social Sciences

Associate Professors

R. Preston McAfee, Ph.D.
J. Stanley Johnson Professor of Business Economics and Management

Peter C. Ordeshook, Ph.D.
Political Science

George W. Pigmant III, Ph.D.
English

Charles R. Plott, Ph.D., D.Lit.h.c.,
D.h.c.
Edward S. Harkness Professor of Economics and Political Science

Robert A. Rosenstone, Ph.D.
History

Robert P. Sherman, Ph.D.
Economics and Statistics

Cindy Weinstein, Ph.D.
English

James F. Woodward, Ph.D.
"J. O. and Juliette Koepfl Professor of the Humanities"

Assistant Professors

Christopher P. Chambers, Ph.D.
Economics

Kristine Haugen, Ph.D.
English

Mattias Larsson, Ph.D.
Economics and Political Science

Jana Kunicova, Ph.D.
Political Science

Andrea Maruotti, Ph.D.
Economics

Dominic P. Murphy, Ph.D.
Philosophy

John P. O’Doherty, D.Phil.
Psychology

Ahmanson Postdoctoral Instructor

Franz Huber, Ph.D.
Philosophy

Caltech-Huntington Mellon Postdoctoral Instructors

Ginevra Crosignani, Ph.D.
History

Xiao-Qing Wang, Ph.D.
History

Lecturers

Elizabeth Abrams, Ph.D.
Anthropology

Andreas Aebi, Ph.D.
German

Gloria Arjona, Ph.D.
Spanish

Charles de Bedts, Ph.D.
French

Jane Dini, Ph.D.
Art History

Mary L. Fonseca, M.A.
English as a Second Language

Daniel A. Garcia, M.A.
Spanish

John B. Geasland, B.S.F.S.
English as a Second Language

Merrill Joan Gerber, M.A.
Creative Writing

Carol Magum, Ph.D.
Japanese

Joseph H. Manson, Ph.D.
Anthropology

Shirley A. Marneus, M.A.
Literature

Feng-Ying Ming, Ph.D.
Chinese

Senior Research Associate

Tilman Sauer, Ph.D.
History

Senior Research Fellow

Virginia I. Holmes, Ph.D.
History

Faculty Associates

Stuart A. Ende, Ph.D.
Literature

Miriam Feldblum, Ph.D.
Humanities

Judith R. Goodstein, Ph.D.
History

Steven J. Youra, Ph.D.
Humanities

Moore Distinguished Scholar

Wolfram Schultz, Ph.D.
Neuroscience

Mellon Visiting Professors

Joseph M. Levine, Ph.D.
History

Kenneth G. Binmore, Ph.D.
Economics

Visiting Professors

Hendrik Bos, Ph.D.
History
Assistant Professors

Andrew W. Blain, Ph.D.
Astronomy

Sunil Golwala, Ph.D.
Physics

Lynne Anne Hillenbrand, Ph.D.
Astronomy

Gil Refael, Ph.D.
Theoretical Physics

Instructors

Noam Berger, Ph.D.
Mathematics

Andres E. Caicedo, Ph.D.
Harry Bateman Research Instructor in Mathematics

Jacob S. Christiansen, Ph.D.
Harry Bateman Research Instructor in Mathematics

Mladen Dimitrov, Ph.D.
Mathematics

Anton Gorodetski, Ph.D.
Mathematics

Alexander Gorodnik, Ph.D.
Mathematics

Daniel Groves, Ph.D.
Mathematics

Peter Keevash, Ph.D.
Mathematics

Cheng Yeaw Ku, Ph.D.
Harry Bateman Research Instructor in Mathematics

Associate Professors

Danny Calegari, Ph.D.
Mathematics

Nathan Dunfield, Ph.D.
Mathematics

Sergei Gukov, Ph.D.
Theoretical Physics and Mathematics

Vadim Y. Kaloshin, Ph.D.
Mathematics

Anton Kapustin, Ph.D.
Theoretical Physics

Hideo Mabuchi, Ph.D.
Physics and Control and Dynamical Systems

Hec Oh, Ph.D.
Mathematics

Re’em Sari, Ph.D.
Astrophysics and Planetary Science

Assistant Professors

Andrew W. Blain, Ph.D.
Astronomy

Sunil Golwala, Ph.D.
Physics

Lynne Anne Hillenbrand, Ph.D.
Astronomy

Gil Refael, Ph.D.
Theoretical Physics

Instructors

Noam Berger, Ph.D.
Mathematics

Andres E. Caicedo, Ph.D.
Harry Bateman Research Instructor in Mathematics

Jacob S. Christiansen, Ph.D.
Harry Bateman Research Instructor in Mathematics

Mladen Dimitrov, Ph.D.
Mathematics

Anton Gorodetski, Ph.D.
Mathematics

Alexander Gorodnik, Ph.D.
Mathematics

Daniel Groves, Ph.D.
Mathematics

Peter Keevash, Ph.D.
Mathematics

Cheng Yeaw Ku, Ph.D.
Harry Bateman Research Instructor in Mathematics

Associate Professors

Danny Calegari, Ph.D.
Mathematics

Nathan Dunfield, Ph.D.
Mathematics

Sergei Gukov, Ph.D.
Theoretical Physics and Mathematics

Vadim Y. Kaloshin, Ph.D.
Mathematics

Anton Kapustin, Ph.D.
Theoretical Physics

Hideo Mabuchi, Ph.D.
Physics and Control and Dynamical Systems

Hec Oh, Ph.D.
Mathematics

Re’em Sari, Ph.D.
Astrophysics and Planetary Science
Moore Distinguished Scholars

Robert Duncan, Ph.D.
Physics
John N. Mather, Ph.D.
Mathematics
Tsvi Piran, Ph.D.
Physics

Members of the Professional Staff

Rachel Akeson, Ph.D.
Stuart Anderson, Ph.D.
LeeArmus, Ph.D.
Thomas Barlow, Ph.D.
Bruce Berlizman, Ph.D.
James Kent Blackburn, Ph.D.
Andrew Boden, Ph.D.
Julian Bunn, Ph.D.
Robert W. Carr, M.Phil.
Walter R. Cook, Ph.D.
Dennis C. Coyne, Ph.D.
Alan C. Cummings, Ph.D.
Riccardo De Salvo, Ph.D.
Gregory Dubois-Felsmann, Ph.D.
Fan Fang, Ph.D.
Philippe Galvez, B.S.
Thomas D. Gottschalk, Ph.D.
Carl Grillmair, Ph.D.
Thomas Jarrett, Ph.D.
Jocelyn B. Keene, Ph.D.
William Kells, Ph.D.
Davy Kirkpatrick, Ph.D.
William Latter, Ph.D.
Albert Lazzarini, Ph.D.
Richard Leske, Ph.D.
Deborah Levine, Ph.D.
Phillip E. Lindquist, Eng.
Roger Linfield, Ph.D.
Carol Lonsdale, Ph.D.
Steven Lord, Ph.D.
Nanyao Lu, Ph.D.
William Mahoney, Ph.D.
Kenneth Marsh, Ph.D.
Keith Matthews, M.S.
Joseph Mazzarelli, Ph.D.
Alberto Noriega-Crespo, Ph.D.
Deborah Padgett, Ph.D.
Hal Petrie, B.S.E.
Andrew Pickles, Ph.D.
Frederick J. Raab, Ph.D.
William Rech, Ph.D.

543

Trustees, Administration, Faculty
Professional Staff
Betsy Coles, B.A.
John McDonald, M.L.S.
Judith Nollar, M.L.S.
George Porter, M.S. (L.S.)
Ted Qiu, M.L.S.
Dana Roth, M.S., M.S. (L.S.)
Caroline Smith, M.S. (L.S.)
Ed Sponsler, B.A.
Daniel Taylor, M.A., M.A. (L.S.)
Jay Walters, B.A.

Jet Propulsion Laboratory
Administered by Caltech for the National Aeronautics and Space Administration
Charles Elachi, Charles Elachi, Director
Eugene L. Tattini, Eugene L. Tattini, Deputy Director

Executive Council
Eric K. Antonsson, Eric K. Antonsson, Chief Technologist
Blaine A. Baggett, Blaine A. Baggett, Manager, Office of Communications and Education
John C. Beckman, John C. Beckman, Director for Engineering and Science
John R. Casani, John R. Casani, Manager, Project Prometheus
Diane L. Evans, Diane L. Evans, Director for Earth Science and Technology
Thomas R. Gavin, Thomas R. Gavin, Associate Director for Flight Projects and Mission Success
Cozette M. Hart, Cozette M. Hart, Director for Human Resources
Dale M. Johnson, Dale M. Johnson, Chief Financial Officer and Director for Business Operations
Chris P. Jones, Chris P. Jones, Director for Solar System Exploration Programs
Matthew R. Landano, Matthew R. Landano, Director for Safety and Mission Success
Fuk K. Li, Fuk K. Li, Manager, Mars Exploration Program Office and Director for Mars Exploration

Ombuds Office
TBA, Ombudsperson

Student Affairs
Margo Post Marshak, Margo Post Marshak, Vice President for Student Affairs
Kevin P. Austin, Kevin P. Austin, Senior Director of Health Services
Richard Bischoff, Richard Bischoff, Director of Admissions
Stan Borodinsky, Stan Borodinsky, Chief Student Affairs Administrator
Bill Burrows, Bill Burrows, Director of Caltech Bookstore
Timothy P. K. M. Chang, Timothy P. K. M. Chang, Director of Institute Housing
Darryl Denning, Darryl Denning, Director of Performing and Creative Arts
Miriam Feldblum, Miriam Feldblum, Senior Director for Academic Support and Planning
Barbara C. Green, Barbara C. Green, Associate Dean of Students
John F. Hall, John F. Hall, Dean of Students
Michael R. Hoffmann
Dean of Graduate Studies
Jerry Houser
Director of Career Development
Wendell P. Jack
Director of Athletics, Physical Education, and Recreation
Brandi P. Jones
Director of Minority Student Education
Catherine Jurca
Master of Student Houses
David S. Levy
Director of Financial Aid
André Mallié
Director and Executive Chef of Dining Services
Mindy Mallié
Director of Caltech Wired
Tom Mannion
Assistant Vice President for Student Affairs, Campus Life
Stuart Miller
Medical Director
Mary N. Morley
Registrar
Erica O’Neal
Assistant Vice President for Student Affairs, Enrolment
Candace Rypisi
Director of the Women’s Center
Lauren Stolper
Director of Fellowships Advising and Study Abroad
Debra Tuttie
Director of Student Information Systems

Trustees, Administration, Faculty

OFFICERS AND FACULTY

University of California = UC Berkeley
California State University = Cal State L.A.

David Baltimore, Ph.D., D.Sc.h.c., D.Phil.h.c., Nobel Laureate, President; Professor of Biology
B.A., Swarthmore College, 1960; Ph.D., Rockefeller University, 1963; D.Sc.h.c., Swarthmore College, Mount Holyoke College, Mount Sinai Medical Center, Bard College, University of Helsinki, Cold Spring Harbor Laboratory; University of Alabama; California Polytechnic State University; Columbia University; Yale University; Rockefeller University; D.Phil.h.c., Weizmann Institute of Science. Caltech, 1997–.

John Norman Abelson, Ph.D., George Beadle Professor of Biology, Emeritus
B.S., Washington State University, 1960; Ph.D., Johns Hopkins University, 1965. Professor, Caltech, 1982–91; Beadle Professor, 1991–2002; Beadle Professor Emeritus, 2002–. Chair, Division of Biology, 1989–95.

Douglas L. Abernathy, Ph.D., Visiting Associate in Materials Science

Elizabeth T. Abrams, Ph.D., Lecturer in Anthropology

Yaser S. Abu-Mostafa, Ph.D., Professor of Electrical Engineering and Computer Science
B.Sc., Cairo University, 1979; M.S.E.E., Georgia Institute of Technology, 1981; Ph.D., Caltech, 1983. Garrett Research Fellow in Electrical Engineering, 1983; Assistant Professor, 1983–89; Associate Professor, 1989–94; Professor, 1994–.

Allan James Acosta, Ph.D., Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering, Emeritus

Christoph Carl Adami, Ph.D., Faculty Associate in Computation and Neural Systems; Lecturer in Computation and Neural Systems

Jess F. Adkins, Ph.D., Assistant Professor of Geochemistry and Global Environmental Science

Ralph Adolphi, Ph.D., Professor of Psychology and Neuroscience

Andreas Aeby, Ph.D., Lecturer in German

Oded Aharonson, Ph.D., Assistant Professor of Planetary Science
B.S., Cornell University, 1994; M.Eng., 1995; Ph.D., Massachusetts Institute of Technology, 2002. Caltech, 2002–.

Channing C. Ahn, Ph.D., Senior Research Associate in Materials Science; Lecturer in Materials Science

Thomas J. Ahrens, Ph.D., Fletcher Jones Professor of Geophysics, Emeritus

Arden Leroy Albee, Ph.D., Professor of Geology and Planetary Science; Emeritus
Roger David Blandford, Ph.D., Visiting Associate in Physics

Douglas Carl-Johan Bock, Ph.D., Visiting Associate in Astronomy

James J. Bock, Ph.D., Visiting Associate in Physics

Marc W. Bockrath, Ph.D., Assistant Professor of Applied Physics
B.S., Massachusetts Institute of Technology, 1993; Ph.D., University of California, 1999. Visiting Associate, Caltech, 2002; Assistant Professor, 2002–.

Felix Hans Boehm, Ph.D., William L. Clements Professor of Physics, Emeritus
Dipl., Federal Institute of Technology (Zurich), 1948; Ph.D., 1951. Research Fellow, 1951–55; Senior Research Fellow, 1955–58; Assistant Professor, 1958–61; Associate Professor, 1961–65; Professor, 1965–81; Professor Emeritus, 1981–95.

Hamid Bolouri, Ph.D., Visiting Associate in Biology

Kim Christian Border, Ph.D., Professor of Economics
B.S., Caltech, 1974; Ph.D., University of Minnesota, 1979. Assistant Professor, Caltech, 1979–83; Associate Professor, 1983–95; Professor, 1995–. Executive Officer for the Social Sciences, 1995–99.

Alexei Borodin, Ph.D., Professor of Mathematics
M.Sc., Caltech, 1955; Ph.D., 1960. Assistant Professor, 1960–62; Professor, 1962–70; Chairman, 1970–72; Professor, 1972–82; Institute Professor, 1982–; Visiting Associate Professor, 1982–85; Professor of Mathematics, 1985–90; Professor Emeritus, 1990–.

Hendrik Jan Maarten Bos, Ph.D., Visiting Professor of History

Peter L. Bossaerts, Ph.D., William D. Hacker Professor of Economics and Management and Professor of Finance
Doctorandus, Universitatem Facultatem Sint Ignatius (Belgium), 1982; Ph.D., University of California (Los Angeles), 1986. Assistant Professor of Finance, Caltech, 1990–94; Associate Professor, 1994–98; Professor, 1998–. Hacker Professor, 2003–. Executive Officer for the Social Sciences, 2002–05.

Robert C. Bowman, Jr., Ph.D., Visiting Associate in Materials Science

Charles Mathias Bradford, Ph.D., Visiting Associate in Physics

John F. Brady, Ph.D., Chevron Professor of Chemical Engineering and Professor of Mechanical Engineering
B.S., University of Pennsylvania, 1975; M.S., Stanford University, 1977; Ph.D., 1981. Associate Professor, Caltech, 1985–89; Professor, 1989–90; Chevron Professor, 1999–. Professor of Mechanical Engineering, 2005–. Executive Officer for Chemical Engineering, 1993–99.

Vladimir B. Braginsky, Ph.D., Visiting Associate in Physics
M.S., Moscow University, 1954; Ph.D., 1959. Professor, Moscow State University, 1966–. Professor Emeritus, 1990–99; Visiting Associate Professor, 1990–99; Visiting Associate Professor, 1999–. Visiting Associate Professor, 2000–. Emeritus Professor, 2001–. Emeritus Professor, 2002–. Emeritus Professor, 2003–. Emeritus Professor, 2004–. Emeritus Professor, 2005–. Emeritus Professor, 2006–. Emeritus Professor, 2007–. Emeritus Professor, 2008–. Emeritus Professor, 2009–.

Christopher F. Breuer, Ph.D., Eli and Edythe Broad Professor of Humanities and Social Sciences and Professor of History and Literature
B.A., University of Cambridge, 1958; M.A., 1960; Ph.D., 1964. Research Fellow, Caltech, 1960–68; Professor, 1968–70; Associate Professor, 1970–72; Professor, 1972–75; Associate Professor, 1975–76; Associate Professor, 1976–82; Professor, 1982–85; Professor, 1985–. Master of Student Houses, 1983–87; Dean of Students, 1988–92; Executive Officer for Mechanical Engineering, 1993–97; Vice President for Student Affairs, 1997–2002.

William Bruce Bridges, Ph.D., Carl F Braun Professor of Engineering, Emeritus

Roy J. Britten, Ph.D., Distinguished Carnegie Senior Research Associate in Biology, Emeritus
B.S., University of Virginia, 1940; Ph.D., Princeton University, 1951. Visiting Associate, Caltech, 1971–73; Senior Research Associate, 1973–81; Distinguished Carnegie Senior Research Associate, 1981–99; Carnegie Senior Research Associate Emeritus, 1999–.

James F.Broadwell, Ph.D., Visiting Associate in Aeronautics

Jay B. Brockman, Ph.D., Visiting Associate in Applied and Computational Mathematics and Computer Science

Charles Jacob Brokaw, Ph.D., Professor of Biology, Emeritus
B.S., Caltech, 1955; Ph.D., University of Cambridge, 1958. Visiting Assistant Professor, Caltech, 1960; Assistant Professor, 1961–63; Associate Professor, 1963–68; Professor, 1968–2000; Professor Emeritus, 2000–. Executive Officer for Biology, 1976–80; 1985–89; Associate Chairman of the Division of Biology, 1980–85.

Marianne Bronner-Fraser, Ph.D., Albert L. and Elizabeth Hubbard Professor of Biology
B.S., Brown University, 1975; Ph.D., Johns Hopkins University, 1979. Professor, Caltech, 1996–2000; Ruddock Professor, 2000–.

Norman Herrick Brooks, Ph.D., James Irvine Professor of Environmental and Civil Engineering, Emeritus

Frederick Kent Browand, Ph.D., Visiting Associate in Aeronautics

Harold Brown, Ph.D., D.Eng.h.c., LL.D.h.c., Sc.D.h.c., D.h.c., President Emeritus
A.B., Columbia College, 1945; A.M., Columbia University, 1946; Ph.D., 1949; D.Eng.h.c., Stevens Institute; LL.D.h.c., Long Island University; Gettysburg College; Occidental College; University of California, Sc.D.h.c., University of Rochester; Brown University; University of South Carolina; Franklin and Marshall College; Chung-Ang University (Seoul); D.h.c., RAND Graduate School. President, Caltech, 1968–77; President Emeritus, 1992–.
Michael E. Brown, Ph.D., Professor of Planetary Astronomy
A.B., Princeton University, 1987; M.A., University of California, 1990; Ph.D., 1994. Visiting Associate, Caltech, 1995; Assistant Professor, 1997–2002; Associate Professor, 2002–04; Professor, 2005–.

Warren C. Brown, Ph.D., Associate Professor of History
B.S., New York University, 1985; M.A., University of Cincinnati, 1993; Ph.D., University of California (Los Angeles), 1997; Assistant Professor, Caltech, 1997–2003; Associate Professor, 2003–.

Lee F. Browne, M.S., Lecturer in Education, Emeritus
B.S., West Virginia State College, 1944; M.S., New York State University, 1945; Visiting Associate Professor, Caltech, 1969–77; Director of Secondary School Relations and Special Student Programs, 1979–82;gif

Jehoshua Bruck, Ph.D., Gordon and Betty Moore Professor of Computation and Neural Systems and Electrical Engineering; Director, Information Science and Technology
B.Sc., Technion—Israel Institute of Technology, 1982; M.Sc., 1985; Ph.D., Stanford University, 1989. Associate Professor, Caltech, 1994–98; Professor, 1998–2001; Moore Professor, 2001–. Director, 2003–.

Oscar P. Bruno, Ph.D., Professor of Applied and Computational Mathematics

Tony W. Buchanan, Ph.D., Lecturer in Psychology

Jed Z. Buchwald, Ph.D., Associate Professor of History

Alessandra Buonanno, Ph.D., Visiting Associate in Physics
Ph.D., University of Pisa, 1996. Assistant Professor, Centre National de la Recherche Scientifique, 2001–. Caltech, 2002–03; Visiting Associate Professor, 2003–05.

Joel W. Burdick, Ph.D., Professor of Mechanical Engineering and Bioengineering
B.S., Duke University, 1981; M.S., Stanford University, 1982; Ph.D., Stanford University, 1988. Assistant Professor, Caltech, 1988–94; Associate Professor, 1994–2000, Professor of Mechanical Engineering, 2000–02; Professor of Mechanical Engineering and Bioengineering, 2002–.

Donald Stacy Burnett, Ph.D., Professor of Nuclear Geoscience
B.S., University of Chicago, 1959; Ph.D., University of California, 1963. Research Fellow in Physics, Caltech, 1963–65; Assistant Professor of Nuclear Geoscience, 1965–68; Associate Professor, 1968–75; Professor, 1975–. Academic Officer, Division of Geological and Planetary Sciences, 1979–87.

Karsten Buse, Ph.D., Visiting Associate in Electrical Engineering

Alessandro Cacciaini, Ph.D., Visiting Associate in Physics

Russel E. Caflisch, Ph.D., Visiting Associate in Applied and Computational Mathematics

Andres E. Caicedo, Ph.D., Harry Bateman Research Instructor in Mathematics

Donald Graham Caldwell, D.M.A., Lecturer in Choral Music

Danny Calegari, Ph.D., Associate Professor of Mathematics
B.A., University of Melbourne, 1994; Ph.D., University of California, 2000. Assistant Professor, Caltech, 2002–03; Associate Professor, 2003–.

Colin F. Camerer, Ph.D., Rua A. and Lela G. Axline Professor of Business Economics
B.A., Johns Hopkins University, 1976; M.B.A., University of Chicago, 1979; Ph.D., 1981. Visiting Associate, Caltech, 1993; Axline Professor, 1994–.

Robert Andrew Cameron, Ph.D., Senior Research Associate in Biology
B.A., San Jose State College, 1968; Ph.D., University of California (Santa Cruz), 1975. Visiting Associate, Caltech, 1984–85; Senior Research Fellow, 1985–89; Senior Research Associate, 1989–.

Judith Lynn Campbell, Ph.D., Professor of Chemistry and Biology
B.A., Wellesley College, 1965; Ph.D., Harvard University, 1974. Assistant Professor of Chemistry, Caltech, 1977–81; Associate Professor of Chemistry, 1981–85; Associate Professor of Chemistry and Biology, 1985–89; Professor, 1989–. Assistant Professor, 1993–. Professor, 1994–. Professor, 1997–. Professor, 1998–. Professor, 2001–. Professor, 2003–. Professor, 2005–.

John M. Carpenter, Ph.D., Professor of Chemistry and Biology

Stefano Casotto, Ph.D., Visiting Associate in Aeronautics
Laurea, Università degli Studi di Padova, 1981; Ph.D., 1989. Assistant Professor, University of Texas (Austin), 1989. Assistant Professor, Università degli Studi di Padova, 1994–. Caltech, 2004–05.

Fulvia Castelli, Ph.D., Lecturer in Psychology

William L. Catton III, M.D., Visiting Associate in Biology

Jorge G. Cham, Ph.D., Instructor in Mechanical Engineering

Christopher P. Chambers, Ph.D., Assistant Professor of Economics

David C. Chan, M.D., Ph.D., Assistant Professor of Biology, Bron Scholar

Sunney Ignatius Chan, Ph.D., George Grant Hug Professor of Biophysical Chemistry, Emeritus

Gary Chanah, Ph.D., Visiting Associate in Astronomy

K. Mani Chandy, Ph.D., Simon Ramo Professor and Professor of Computer Science

Tirong Chen, M.S., Visiting Associate in Applied Physics

Yanbei Chen, Ph.D., Visiting Associate in Physics

Po-Yuan James Cheng, Ph.D., Visiting Associate in Chemistry
B.S., Fu-Fen University (Taiwan), 1983; Ph.D., University of Georgia, 1990. Associate Professor, National Tsing Hua University, 2001–. Research Fellow, Caltech, 1994–96; Visiting Associate, 2005–06.
Weng-Ki Ching, Ph.D., Visiting Associate in Environmental Science and Engineering

Junhan Cho, Ph.D., Visiting Associate in Chemical Engineering
B.S., Seoul National University, 1987; M.S., 1992; Ph.D., University of Texas (Austin), 1995; Associate Professor, Dankook University, 2002–. Caltech, 2005–06.

Anne Chomyn, Ph.D., Senior Research Associate in Biology
B.S., Drexel University, 1972; Ph.D., Caltech, 1978. Research Fellow, 1978–82; Senior Research Fellow, 1982–87; Senior Research Associate, 1989–.

Jacob S. Christiansen, Ph.D., Harry Bannister Wood Instructor in Mathematics

Robert Frederick Christy, Ph.D., Institute Professor of Theoretical Physics, Emeritus
B.A., University of British Columbia, 1954; Ph.D., University of California, 1946; Associate Professor of Physics, Caltech, 1946–50; Professor of Theoretical Physics, 1950–54; Institute Professor, 1954–68; Institute Professor Emeritus, 1968–. Visiting Associate in Physics, 1968–70; Vice President and Provost, 1970–80; Acting President, 1977–78.

J. Kent Clark, Ph.D., Professor of Literature
A.B., Brigham Young University, 1919; Ph.D., Stanford University, 1930. Instructor in English, Caltech, 1947–50; Assistant Professor, 1950–54; Associate Professor, 1954–60; Professor, 1960–68; Professor of Literature, 1968–80; Professor Emeritus, 1986–.

Francis H. Clausen, Ph.D., Clark Blanchard Millikan Professor of Engineering, Emeritus

Robert Webster Clayton, Ph.D., Professor of Geophysics

John F. Clegg, Ph.D., Distinguished Fellow in Jet Propulsion, Emeritus
B.S., University of California (Los Angeles) Anderson School of Management; Director, University of California (Los Angeles) Bank of America Research Center, 1987–. Visiting Associate Professor, Caltech, 1984; Visiting Professor, 2006.

Donald Earl Coles, Ph.D., Professor of Aeronautics, Emeritus
B.S., University of Minnesota, 1947; M.S., Caltech, 1948; Ph.D., 1953. Research Fellow, 1953–55; Senior Research Fellow, 1955–56; Assistant Professor, 1956–59; Associate Professor, 1959–64; Professor, 1964–66; Professor Emeritus, 1966–.

Charles Patrick Collier, Ph.D., Assistant Professor of Chemistry

Curtis I. Collins, Ph.D., Lecturer in Mechanical Engineering
B.S., University of California (San Diego), 1990; M.S., University of California (Irvine), 1993; Ph.D., 1997. Instructor, Caltech, 1997–98; Visiting Associate, 2002–03; Lecturer, 2003–05.

Timothy F. Colomius, Ph.D., Associate Professor of Mechanical Engineering
B.S., University of Michigan (Ann Arbor), 1987; M.S., Stanford University, 1988; Ph.D., 1994. Assistant Professor, Caltech, 1994–2000; Associate Professor, 2000–.

Agostino Colussi, Ph.D., Senior Research Associate in Environmental Science and Engineering

R. Dale Conner, Ph.D., Senior Research Fellow in Materials Science
B.S., California State Polytechnic University, 1989; M.S., Caltech, 1994; Ph.D., 1998. Visiting Associate, 2001–02; Lectures, 2002–04; Senior Research Fellow, 2003–06.

Asantha Cooray, Ph.D., Visiting Associate in Physics
B.S., Massachusetts Institute of Technology, 1997; M.S., 1997; M.S., University of Chicago, 1998; Ph.D., 2001. Assistant Professor, University of California (Irvine), 2001–05; Visiting Associate, 2005–06.

Bradford Cornell, Ph.D., Visiting Professor of Finance
A.B., Stanford University, 1970; M.S., 1974; Ph.D., 1977. Professor, University of California (Los Angeles) Anderson School of Management; Director, University of California (Los Angeles) Bank of America Research Center, 1987–. Visiting Associate Professor, Caltech, 1984; Visiting Professor, 2006.

Noel Robert Corngold, Ph.D., Professor of Applied Physics, Emeritus

Eugene Woodville Cowan, Ph.D., Professor of Physics, Emeritus
B.S., University of Missouri, 1941; S.M., Massachusetts Institute of Technology, 1943; Ph.D., Caltech, 1948. Research Fellow, 1948–50; Assistant Professor, 1950–54; Associate Professor, 1954–61; Professor, 1961–86; Professor Emeritus, 1986–.

Fiona Cowie, Ph.D., Associate Professor of Philosophy
B.A., University of Sydney, 1987; M.A., Princeton University, 1991; Ph.D., 1993. Instructor, Caltech, 1993; Assistant Professor, 1993–98; Associate Professor, 1998–.

Bruce Crosignani, Lib.Doc., Visiting Professor of Applied Physics

Ginevra Crosignani, Ph.D., Caltech–Huntington Millan Postdoctoral Instructor in History

Michael Clifфord Cross, Ph.D., Professor of Theoretical Physics

Fred E. C. Culick, Ph.D., Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering and Professor of Jet Propulsion, Emeritus
Peter K. Day, Ph.D., Visiting Associate in Physics
B.S., University of California, 1988; Ph.D., Caltech, 1993. Assistant Professor, 2000–03; Assistant Professor, 2005–.

Richard Albert Dean, Ph.D., Professor of Mathematics
B.S., Caltech, 1945; A.B., Denison University, 1947; M.S., Ohio State University, 1948; Ph.D., 1953. Assistant Professor, 1954–55; Assistant Professor, 1955–59; Associate Professor, 1959–66; Professor, 1966–86; Professor Emeritus, 1987–.

Charles de Bedts, Ph.D., Lecturer in French

Maria Elena de Bellard, Ph.D., Senior Research Fellow in Biology

Andre Delion, Ph.D., Assistant Professor of Computer Science

Marianne K. de Laet, Ph.D., Visiting Associate in Humanities

Darryl I. Denning, B.A., Lecturer in Geography

Tracy K. Dennisson, Ph.D., Assistant Professor of History

Peter B. Dervan, Ph.D., D.Sc.h.c., Bren Professor of Chemistry
B.S., Boston College, 1967; Ph.D., Yale University, 1972; D.Sc.h.c., Boston College. Assistant Professor, Caltech, 1973–79; Associate Professor, 1979–82; Professor, 1982–88; Bren Professor, 1988–. Chair, Division of Chemistry and Chemical Engineering, 1994–99.

Mathieu Desbrun, Ph.D., Associate Professor of Computer Science

Jane Ann Dini, Ph.D., Lecturer in Art History

Suvasis Dixit, Ph.D., Visiting Associate in Environmental Science and Engineering

S. George Djorgovski, Ph.D., Professor of Astronomy
B.A., University of Belgrade, 1979; M.A., University of California, 1981; Ph.D., 1985. Assistant Professor, Caltech, 1987–90; Associate Professor, 1990–97; Professor, 1997–.

Clinton Dean Dodd, B.A., Coach

Samuel J. Dolinar, Ph.D., Lecturer in Electrical Engineering

C. Darren Dowell, Ph.D., Visiting Associate in Physics

John C. Doyle, Ph.D., John G Beam Professor of Control and Dynamical Systems, Electrical Engineering, and Bioengineering
B.S., M.S., Massachusetts Institute of Technology, 1977; Ph.D., University of California, 1984. Visiting Assistant Professor of Electrical Engineering, Caltech, 1985. Visiting Associate Professor, 1986; Visiting Associate in Chemistry, 1986–87; Associate Professor of Electrical Engineering, 1987–91; Professor, 1991–2001; Professor of Control and Dynamical Systems, Electrical Engineering, and Bioengineering, 2002–04; Braun Professor, 2004–.
John M.oller, Ph.D., Associate Professor of Geosciences
B.S., University of Iowa, 1989; M.S., University of Wisconsin (Madison), 1991; Ph.D., 1994. Research Fellow, Caltech, 1994–97; Senior Research Fellow, 1997–98; Assistant Professor, 1998–2003; Associate Professor, 2003–.

Richard S. Ellis, D.Phil., D.Sc.h.c., Steele Family Professor of Astronomy, Director, Caltech Optical Observatories
B.S., University College (London), 1971; D.Phil., University of Oxford, 1974; D.Sc.h.c., University of Durham. Visiting Associate, Caltech, 1997–98; Professor, 1999–2002; Steele Professor, 2002–; Deputy Director, Palomar Observatory, 1999–2006; Director, 2008–02; Director, Caltech Optical Observatories, 2002–.

Kenneth A. Farley, Ph.D., W. M. Keck Foundation Professor of Geochemistry, Chair, Division of Geological and Planetary Sciences
B.S., Yale University, 1966; Ph.D., University of California (San Diego), 1991. Assistant Professor, Caltech, 1993–96; Associate Professor, 1996–98; Professor, 1998–2001; Keck Foundation Professor, 2001–; Director, Tectonics Observatory, 2003–04; Chair, 2004–.

Hany J. Farran, Ph.D., Visiting Associate in Aeronautics
B.S., Tennessee Technological University, 1973; M.S., 1975; Ph.D., West Virginia University, 1981. Professor, California State Polytechnic University (Pomona), 1981–. Caltech, 2005.

Ibrahim Farkullin, Ph.D., von Kármán Instructor in Applied and Computational Mathematics

Mordechai Feingold, D.Phil., Professor of History

Miriam Feldblum, Ph.D., Faculty Associate in the Humanities; Lecturer in the Humanities

Antony R. H. Fender, B.S., Lecturer in Engineering

Marcio Ferreira, Ph.D., Visiting Associate in Biology

Saied Akbari Feyzaabaadi, Ph.D., Visiting Associate in Mathematics
Ph.D., Sharif University of Technology (Iran), 1991. Associate Professor, 2000–; Caltech, 2005–06.

Bradley Ward Filipone, Ph.D., Professor of Physics
B.S., Pennsylvania State University, 1977; M.S., University of Chicago, 1976; Ph.D., 1982. Research Fellow, Caltech, 1983–84; Assistant Professor, 1984–90; Associate Professor, 1990–95; Professor, 1995–.

Michelle Effros, Ph.D., Professor of Electrical Engineering
B.S., Stanford University, 1989; M.S., 1990; Ph.D., 1994. Assistant Professor, Caltech, 1994–99; Associate Professor, 1999–2005; Professor, 2005–.
Igor Fineman, M.D., Visiting Associate in Biology

Wolfgang Fink, Ph.D., Visiting Associate in Physics
Ph.D., University of Tübingen, 1997. Senior Member of the Technical Staff, Jet Propulsion Laboratory, 2000–. Caltech, 2001–06.

Matthias Flach, Ph.D., Professor of Mathematics

Richard Charles Flagan, Ph.D., Irma and Paul Milstein–William H. Corcoran Professor of Chemical Engineering and Professor of Environmental Science and Engineering; Executive Officer for Chemical Engineering
Ph.D., 1986. B.S.E., University of Michigan, 1969; S.M., Massachusetts Institute of Technology, 1971; Ph.D., 1973. Assistant Professor of Environmental Engineering Science, Caltech, 1975–81; Associate Professor, 1981–84; Associate Professor of Environmental Engineering and Mechanical Engineering, 1984–87; Professor, 1986–90; Professor of Chemical Engineering, 1990–2000; McAllister Professor of Chemical Engineering, 2000–01; McAllister Professor of Chemical Engineering and Professor of Environmental Science and Engineering, 2003–04; McAllister–Corcoran Professor of Chemical Engineering and Professor of Environmental Science and Engineering, 2004–. Acting Executive Officer, 1996, Executive Officer, 1997, 2004–.

Mary Louise Fonseca, M.A., Lecturer in English as a Second Language

Anna Fontcuberta Morral, Ph.D., Visiting Associate in Applied Physics

Stephen J. Forman, M.D., Visiting Associate in Chemical Engineering
B.A., St. John's College, 1970; M.D., University of Southern California, 1974. Staff Physician and Chairman of the Board of Directors, City of Hope, 2001–. Caltech, 2005–06.

Joel N. Franklin, Ph.D., Professor of Applied Mathematics, Emeritus
B.S., Stanford University, 1950; Ph.D., 1953. Associate Professor of Applied Mechanics, Caltech, 1957–61; Professor of Applied Science, 1965–69; Professor of Applied Mathematics, 1969–2000; Professor Emeritus, 2000–.

Jain D. C. Fraser, Ph.D., Senior Research Associate in Biology

Scott E. Fraser, Ph.D., Anna L. Rosen Professor of Biology and Professor of Bioengineering; Director, Magnetic Resonance Imaging Center
B.S., Harvey Mudd College, 1976; Ph.D., Johns Hopkins University, 1979. Rosen Professor, Caltech, 1991–; Professor of Bioengineering, 2003–. Director, 2002–.

Fernando Fraternali, M.S., Visiting Associate in Aeronautics
B.S., University of Salerno (Italy), 1986; M.S., 1986. Associate Professor, 2001–. Caltech, 2005–06.

Steven Clark Frautschy, Ph.D., Professor of Theoretical Physics

Stuart Freed, B.A., Lecturer in Art—Ceramics

Mark R. Freeman, Ph.D., Visiting Associate in Physics

Francis Brock Fuller, Ph.D., Professor of Mathematics, Emeritus
A.B., Princeton University, 1949; M.A., 1950; Ph.D., 1952. Research Fellow, Caltech, 1952–55; Assistant Professor, 1955–59; Associate Professor, 1959–66; Professor, 1966–94; Professor Emeritus, 1994–.

Brent Thomas Fultz, Ph.D., Professor of Materials Science and Applied Physics
B.Sc., Massachusetts Institute of Technology, 1975; M.S., University of California, 1978; Ph.D., 1982. Assistant Professor of Materials Science, Caltech, 1985–90; Associate Professor, 1990–97; Professor, 1997–2003; Professor of Materials Science and Applied Physics, 2003–.

Todd C. Gaier, Ph.D., Visiting Associate in Astronomy
B.A., University of California (Santa Barbara), 1993. Principal Staff, Jet Propulsion Laboratory, 1996–. Caltech, 2004–05.

Mandy Gamble, M.A., Coach

Murray Gell-Mann, Ph.D., Sc.D.h.c., Nobel Laureate, Robert Andrews Millikan Professor of Theoretical Physics, Emeritus
B.S., Yale University, 1948; Ph.D., Massachusetts Institute of Technology, 1950; Sc.D., Columbia University; University of Cambridge; University of Chicago; University of Illinois; University of Utah; Wesleyan University; Yale University; D.Sc., University of Turin (Italy). Associate Professor, Caltech, 1953–56; Professor, 1956–67; Millikan Professor, 1967–81; Millikan Professor Emeritus, 1993–.

Glen Arthur George, M.S., Lecturer in Computer Science and Electrical Engineering

Bruno Gerard, Ph.D., Visiting Professor of Finance

Merrill Joan Gerber, M.A., Lecturer in Creative Writing

Friedrich Gezatsky, Ph.D., Visiting Associate in Mathematics

Morteza Gharib, Ph.D., Hans W. Liepmann Professor of Aeronautics and Bioengineering
B.S., Tehran University, 1976; M.S., Syracuse University, 1978; Ph.D., Caltech, 1981. Professor of Aeronautics, 1992–2001; Professor of Aeronautics and Bioengineering, 2001–02; Liepmann Professor, 2002–.

Konstantinos P. Giapis, Ph.D., Associate Professor of Chemical Engineering
Dipl., National Technical University of Athens, 1984; Ph.D., University of Minnesota, 1989. Lacey Instructor, Caltech, 1992–93; Assistant Professor, 1993–98; Associate Professor, 1999–.
Kevin Michael Gilmartin, Ph.D., Associate Professor of English
Assistant Professor of Literature, Caltech, 1991–97; Associate Professor, 1997–2004; Associate Professor of English, 2004–.

M. Michael Glosky, M.D., Visiting Associate in Chemistry

William Andrew Goddard III, Ph.D., Chemistry and Mary Ferrell Professor of Chemistry, Materials Science, and Applied Physics

Jacob K. Goeree, Ph.D., Professor of Economics
B.S., Utrecht University (Netherlands), 1989; Ph.D. (Theoretical Physics), 1993; B.A., University of Amsterdam, 1994; Ph.D. (Economics), 1997. Visiting Associate, Caltech, 1999; Visiting Professor, 2003; Professor, 2004–.

Shana Goffredi, Ph.D., Senior Research Fellow in Environmental Science and Engineering

Michael Goldberg, Ph.D., Harry Bateman Research Fellow in Mathematics

Moshe Goldberg, Ph.D., Visiting Associate in Physics

Marvin Leonard Goldberger, Ph.D., Sc.D.h.c., D.H.L.h.c., LL.D.h.c., President Emeritus
B.S., Carnegie Institute of Technology, 1943; Ph.D., University of Chicago, 1948; Sc.D.h.c., Carnegie Mellon University; University of Notre Dame; D.H.L.h.c., Hebrew Union College; University of Judaism; LL.D.h.c., Occidental College. President and Professor of Theoretical Physics, Caltech, 1978–87; President Emeritus, 1991–.

Peter Martin Goldreich, Ph.D., Lee A. DuBridge Professor of Astrophysics and Planetary Physics, Emeritus

Sunil Govilwa, Ph.D., Assistant Professor of Physics

Frank A. Gomez, Ph.D., Visiting Associate in Applied Physics
B.S., California State University, 1986; Ph.D., University of California (Los Angeles), 1991. Professor, University of California State University. 2002–. Caltech, 2003–05.

Venugopala Reddy Gopalakrishnan, Ph.D., Senior Research Fellow in Biology

Philip R. Goode, Ph.D., Visiting Associate in Physics

David Louis Goodstein, Ph.D., Professor of Physics and Applied Physics; Frank J. Gilbon Distinguished Teaching and Service Professor; Vice Provost
B.S., Brooklyn College, 1960; Ph.D., University of Washington, 1967. Research Fellow in Physics, Caltech, 1966–67; Assistant Professor, 1967–71; Associate Professor, 1971–75; Associate Professor of Physics and Applied Physics, 1975–76; Professor, 1976–; Gilbon Professor, 1995–. Vice Provost, 1987–.

Judith R. Goodstein, Ph.D., Faculty Associate in History, Archive

David George Goodwin, Ph.D., Professor of Mechanical Engineering and Applied Physics
B.S., Harvey Mudd College, 1979; M.S., Stanford University, 1980; Ph.D., 1986. Assistant Professor of Mechanical Engineering, Caltech, 1988–93; Associate Professor of Mechanical Engineering and Applied Physics, 1993–2000; Professor, 2000–.

Malcolm S. Gordon, Ph.D., Visiting Associate in Biomechanical Engineering and Aerodynamics
B.S., Cornell University, 1954; Ph.D., Yale University, 1958. Professor, University of California (Los Angeles), 1958–. Caltech, 2001–06.

Anton S. Gorodetski, Ph.D., Harry Bateman Research Instructor in Mathematics

Alexander Gorodnich, Ph.D., Olga Tausky and John Todd Instructor in Mathematics

Krystof Marian Gorski, Ph.D., Visiting Associate in Physics

Thomas D. Gottschalk, Ph.D., Lecturer in Physics

Roy Walter Gould, Ph.D., Simon Ramo Professor of Engineering, Emeritus
B.S., Caltech, 1949; M.S., Stanford University, 1950; Ph.D., Caltech, 1956. Assistant Professor of Electrical Engineering, 1955–58; Associate Professor, 1958–69; Associate Professor of Electrical Engineering and Physics, 1960–62; Professor, 1962–74; Professor of Applied Physics, 1974–80; Ramo Professor of Engineering, 1980–86; Ramo Professor Emeritus, 1996–. Executive Officer for Applied Physics, 1973–79; Chairman, Division of Engineering and Applied Science, 1979–85.

Thomas Graber, Ph.D., Associate Professor of Mathematics
A.B., Harvard University, 1994; M.A., University of California (Los Angeles); Ph.D., 1998. Caltech, 2005–.

Markus Grabner, Ph.D., Visiting Associate in Computer Science

Harry Barkus Gray, Ph.D., D.Sc.h.c., Laurea h.c., D.L.h.c., Arnold O. Beckman Professor of Chemistry, Founding Director, Beckman Institute
B.S., Western Kentucky College, 1957; Ph.D., Northwestern University, 1960; D.Sc.h.c., Northwestern University; University of Rochester; University of Chicago; Goteborg University; University of Pennsylvania; Bowling Green State University; University of Arizona; Laurea h.c., University of Florence; D.L.h.c., Illinois Wesleyan University. Visiting Professor of Inorganic Chemistry, Caltech, 1965; Professor of Chemistry, 1966–81; William R. Kenan Professor, 1976–81; Beckman Professor, 1981–. Chairman, Division of Chemistry and Chemical Engineering, 1978–84; Director, Beckman Institute, 1986–2001, Founding Director, 2001–.

David M. Grether, Ph.D., Professor of Economics
B.S., University of California, 1960; Ph.D., Stanford University, 1969. Associate Professor, Caltech, 1970–75; Professor, 1975–. Executive Officer for Social Sciences, 1978–82; Chairman, Division of the Humanities and Social Sciences, 1982–92.

Steve Griffin, Ph.D., Visiting Associate in Physics
M.S., Southern University, 2003; Ph.D., 2005. Instructor, Broadmoor High School, 1996–. Caltech, 2005–.

Allen R. Gross, D.M.A., Lecturer in Symphony Orchestra

John P. Grotzinger, Ph.D., Fletcher Jones Professor of Geology
B.S., Hobart College, 1979; M.S., University of Montana, 1981; Ph.D., Virginia Polytechnic Institute and State University, 1985. Visiting Associate Professor, Caltech, 1996; Moore Distinguished Scholar, 2004; Jones Professor, 2005–.
David George Hiltin, Ph.D., Professor of Physics B.A., Columbia University, 1961; M.A., 1965; Ph.D., 1968. Associate Professor, Caltech, 1979–85; Professor, 1986–.

Philip Thomas Hoffman, Ph.D., Richard and Barbara Rosenberg Professor of History and Social Science A.B., Harvard College, 1969; M.A., University of California, 1971; Ph.D., Yale University, 1979. Lecturer in History, Caltech, 1980–81; Instructor, 1981–82; Associate Professor, 1982–84; Associate Professor of History and Social Science, 1984–95; Professor, 1995–2001; Rosenberg Professor, 2001–. Executive Officer for the Humanities, 1995–2000.

Michael Robert Hoffmann, Ph.D., James Irvine Professor of Environmental Science, Dean of Graduate Studies B.A., Northwestern University, 1968; Ph.D., Brown University, 1974. Research Fellow, Caltech, 1973–74; Associate Professor, 1980–85; Professor of Environmental and Chemical Engineering, 1986–90; Professor of Environmental Chemistry, 1990–96; Irvine Professor of Environmental Science, 1996–. Executive Officer for Environmental Engineering Science, 1996–2002; Dean of Graduate Studies, 2002–.

Michael J. Holst, Ph.D., Professor of Applied and Computational Mathematics B.S., Colorado State University, 1987; M.S., University of Illinois (Urbana-Champaign), 1990; Ph.D., 1993. Center for Research on Parallel Computation Research Fellow in Applied Mathematics, Caltech, 1991–95; von Kármán Instructor, 1995–97; Visiting Associate in Physics, 2002–05; Professor of Applied and Computational Mathematics, 2005–.

Leroy E. Hood, M.D., Ph.D., D.Sc.h.c., D.h.c., Visiting Associate in Biology B.S., Caltech, 1960; M.D., Johns Hopkins University, 1964; Ph.D., Caltech, 1968; D.Sc.h.c., Montana State University; Mount Sinai School of Medicine of the City University of New York; University of British Columbia; University of Southern California; D.h.c., Johns Hopkins University. President and Director, Institute for Systems Biology, 1999–. Assistant Professor of Biology, Caltech, 1970–73; Associate Professor, 1973–77; Professor, 1977–79, Ethel Wilson Bowles and Robert Bowles Professor of Biology, 1977–92; Visiting Associate in Biology, 1992–2005. Chairman, Division of Biology, 1980–89; Director, Center for the Development of an Integrated Protein and Nucleic Acid Biotechnology, 1989–92.

John J. Hopfield, Ph.D., Rocce G. Dickinson Professor of Chemistry and Biology, Emeritus A.B., Swarthmore College, 1954; Ph.D., Cornell University, 1958. Dickinson Professor, Caltech, 1980–97; Dickinson Professor Emeritus, 1997–.

Yizhao Thomas Hou, Ph.D., Charles Lee Powell Professor of Applied and Computational Mathematics, Executive Officer for Applied and Computational Mathematics B.S., South China University of Technology, 1982; M.S., University of California (Los Angeles), 1985; Ph.D., 1987. Associate Professor of Applied Mathematics, Caltech, 1991–98; Professor, 1998–2000; Professor of Applied and Computational Mathematics, 2000–04; Powell Professor, 2004–. Executive Officer, 2000–.

James Morrow House, M.D., Visiting Associate in Chemical Engineering B.S., University of Kansas, 1962; M.D., 1966. Staff Physician, Huntington Memorial Hospital, 1971–. Assistant Professor, University of California (Los Angeles), 1973–. Caltech, 2002–05.

George W. Housner, Ph.D., Carl F Braun Professor of Engineering, Emeritus B.S., University of Michigan, 1931; M.S., Caltech, 1934; Ph.D., 1941. Assistant Professor, 1945–49; Associate Professor, 1949–51; Professor, 1953–74; Braun Professor, 1974–81; Braun Professor Emeritus, 1981–.

Jay R. Hove, Ph.D., Visiting Associate in Bioengineering B.S., University of Wisconsin, 1988; M.S., University of Massachusetts, 1991; Ph.D., University of California (Los Angeles), 1999. Assistant Professor, University of Cincinnati, 2004–. Lecturer, Caltech, 2001–02; Senior Research Fellow, 2002–04; Visiting Associate, 2004–06.

Linda C. Hsieh-Wilson, Ph.D., Assistant Professor of Biology B.S., Yale University, 1990; Ph.D., University of California, 1996. Caltech, 2000–.

Alice S. Huang, Ph.D., Faculty Associate in Biology B.A., Johns Hopkins University, 1961; M.S., 1963; Ph.D., 1966. Caltech, 1997–.

Franz Huber, Ph.D., Almanon Postdoctoral Instructor in Philosophy M.A., University of Salzburg (Austria), 2000; Ph.D., University of Erfurt (Germany), 2003. Caltech, 2003–07.

Emlyn W. Hughes, Ph.D., Professor of Physics B.S., Stanford University, 1982; M.A., Columbia University, 1984; M.Phil, 1985; Ph.D., 1987. Associate Professor, Caltech, 1995–99; Professor, 1999–.

Melany L. Hunt, Ph.D., Professor of Mechanical Engineering, Executive Officer for Mechanical Engineering B.S., University of Minnesota, 1983; M.S., University of California (Los Angeles), 1987. Assistant Professor, Caltech, 1988–95; Associate Professor, 1995–2001; Professor, 2001–. Executive Officer, 2002–.

Sungu Hwang, Ph.D., Visiting Associate in Chemistry B.S., Seoul National University, 1990, M.S., 1992; Ph.D., 1995. Lecturer, Miryang National University (Korea), 2002–. Caltech, 2002–05.

Matias Jose Iarcyower, Ph.D., Assistant Professor of Economics and Political Science B.A., University of Buenos Aires, 1997; M.A., University of San Andres (Buenos Aires), 1997; Ph.D., University of California (Los Angeles), 2005. Caltech, 2005–.

Andrew Perry Ingersoll, Ph.D., Earle C. Anthony Professor of Planetary Science

Ani Isaiaian, M.S., Lecturer in Chemical Engineering
B.A., California State University (Northridge), 1993; M.S., Caltech, 2004–05.

Sorin C. Istrail, Ph.D., Visiting Associate in Biology
B.S., Alexandru Ioan Cuza University (Romania), 1975; M.S., Technical University of Iasi, 1976; Ph.D., University of Bucharest, 1979. Science Fellow and Director, Calera Genomics / Applied Biosystems, 2003–. Caltech, 2004–05.

Toshiro Ito, Ph.D., Senior Research Fellow in Biology

Wilfred Dean Iwan, Ph.D., Professor of Applied Mechanics, Emeritus

Futoshi Iwata, Ph.D., Visiting Associate in Electrical Engineering

Wendell Jack, Ed.D., Director of Athletics and Physical Education

James Jackson, Ph.D., Visiting Professor of Sociology

Matthew O. Jackson, Ph.D., Edie and Lew Waterman Professor of Economics
B.A., Princeton University, 1984; Ph.D., Stanford University, 1988. Visiting Professor, Caltech, 1995; Professor, 1997–2003; Wasserman Professor, 2003–.

Hossein Jadvar, Ph.D., M.D., Visiting Associate in Bioengineering
B.S., Iowa State University, 1982; M.S., University of Wisconsin (Madison), 1984; M.S.E., University of Michigan, 1986; Ph.D., 1988. M.D., University of Chicago, 1993. Assistant Professor, University of Southern California, 1999–. Visiting Associate in Aeronautics, Caltech, 2001–02; Visiting Associate in Bioengineering, 2002–06.

Paul Christian Jennings, Ph.D., Provost; Professor of Civil Engineering and Applied Mechanics

Grant J. Jensen, Ph.D., Assistant Professor of Biology
B.S., Brigham Young University, 1994; Ph.D., Stanford University, 1999. Caltech, 2002–.

Adam R. Johnson, Ph.D., Visiting Associate in Chemistry

W. Barclay Kamb, Ph.D., Barbara and Stanley R. Razin Professor of Geology and Geophysics, Emeritus
B.S., Caltech, 1952; Ph.D., 1956. Assistant Professor of Geology, 1956–60; Associate Professor, 1960–62; Professor, 1962–63; Professor of Geology and Geophysics, 1963–69; Rawn Professor, 1990–99; Rawn Professor Emeritus, 1999–. Chairman, Division of Geological and Planetary Sciences, 1972–83; Vice President and Provost, 1987–89.

Marie Kamionkowski, Ph.D., Professor of Theoretical Physics and Astrophysics

Hiroshi Kanamori, Ph.D., John E. and Hazel S. Smith Professor of Geophysics, Emeritus

Lucile Merrill Jones, Ph.D., Visiting Associate in Geophysics

William Thomas Jones, Ph.D., Professor of Philosophy, Emeritus

Thomas H. Jordan, Ph.D., Visiting Associate in Geophysics

Catherine Jurca, Ph.D., Associate Professor of English, Master of Student Houses
B.A., University of California, 1987; M.A., Johns Hopkins University, 1992; Ph.D., 1995. Instructor in Literature, Caltech, 1995; Assistant Professor, 1995–2001; Associate Professor, 2001–04; Associate Professor of English, 2004; Master of Student Houses, 2002–.

Vadim Yu. Kaloshin, Ph.D., Associate Professor of Mathematics

Keiko Kanamori, Ph.D., Visiting Associate in Chemistry
B.A., University of Tokyo, 1962; B.S., California State University, 1976; Ph.D., Caltech, 1981. Postdoctoral Research Chemist, University of California (Los Angeles), 1982–. Visiting Associate, Caltech, 1984–95.

Nevin Kapur, Ph.D., Instructor in Computer Science

Anton Kapustin, Ph.D., Associate Professor of Theoretical Physics
M.S., Moscow State University, 1993; Ph.D., Caltech, 1997. Assistant Professor, 2001–04; Associate Professor, 2004–.

Jiro Kasahara, Ph.D., Visiting Associate in Aeronautics

Jonathan N. Katz, Ph.D., Professor of Political Science
S.B., Massachusetts Institute of Technology, 1990; M.A., University of California (San Diego), 1992; Ph.D., 1995. Assistant Professor, Caltech, 1995–98; Associate Professor, 1998–2003; Professor, 2003–.

Ralph William Kavanagh, Ph.D., Professor of Physics, Emeritus
B.A., Reed College, 1930; M.A., University of Oregon, 1952; Ph.D., Caltech, 1956. Research Fellow, 1956–58; Senior Research Fellow, 1978–60; Assistant Professor, 1960–65; Associate Professor, 1965–70; Professor, 1970–2000; Professor Emeritus, 2000–.

Seiji Kawamura, Ph.D., Visiting Associate in Physics

Alexander Sotirios Kechris, Ph.D., D.h.c., Professor of Mathematics
M.S., National Technical University (Athens), 1969; Ph.D., University of California (Los Angeles), 1972; D.h.c., University of Athens. Assistant Professor, Caltech, 1974–76; Associate Professor, 1976–81; Professor, 1981–. Executive Officer for Mathematics, 1994–97.

D. Roderick Kiewiet, Ph.D., Professor of Political Science B.A., University of Iowa, 1974; Ph.D., Yale University, 1980. Assistant Professor, Caltech, 1979–82; Associate Professor, 1982–89; Professor, 1989–. Dean of Student Affairs, 1996–2002. Associate Professor Emeritus, 2002–. Executive Officer for Applied Mathematics, 1980–85.

Mary B. Kennedy, Ph.D., Allen and Lounahbi Davis Professor of Biology B.S., St. Mary’s College, 1969; Ph.D., Johns Hopkins University, 1975. Assistant Professor, Caltech, 1981–84; Associate Professor, 1984–86; Professor, 1986–92; Davis Professor, 2002–.

Christian Keysers, Ph.D., Visiting Associate in Neuroscience B.S., University of Konstanz (Germany), 1991; M.A., University of Konstanz and University of Bochum, 1997; Ph.D., University of St. Andrews (Scotland), 2000. Assistant Professor, University of Groningen (Netherlands), 2004–. Caltech, 2005.

Ali Khoshnahn, Ph.D., Senior Research Fellow in Biology M.A., California State University, 1988; Ph.D., University of Texas Health Science Center (San Antonio), 1995. Caltech, 2002–05.

Allen Ivar Knutsen, Ph.D., Visiting Associate in Mathematics B.S., Caltech, 1991; M.S., University of California (Santa Cruz), 1992; M.S., Princeton University, 1994; Ph.D., Massachusetts Institute of Technology, 1996. Assistant Professor, University of California, 1999–. Visiting Associate, Caltech, 2001–05.

Christof Koch, Ph.D., Lois and Victor Troendle Professor of Cognitive and Behavioral Biology and Professor of Computation and Neural Systems; Executive Officer for Computation and Neural Systems; M.S., University of Tübingen, 1980; Ph.D., 1982. Assistant Professor of Computation and Neural Systems, Caltech, 1986–91; Associate Professor, 1991–94; Professor, 1994–, Troendle Professor, 2000–. Executive Officer, 1997–.

Arash Komelii, Ph.D., Senior Research Fellow in Geobiology B.S., Massachusetts Institute of Technology, 1996; Ph.D., University of California (San Francisco), 2001. Beckman Senior Research Fellow, Caltech, 2001–04; Senior Research Fellow, 2004–05.

Masakazu Konishi, Ph.D., Bing Professor of Behavioral Biology B.S., Hokkaido University (Japan), 1956; M.S., 1958; Ph.D., University of California, 1963. Professor of Biology, Caltech, 1972–80; Bing Professor, 1980–. Executive Officer for Biology, 1977–80.

Steven Elliot Koonin, Ph.D., Professor of Theoretical Physics B.S., Caltech, 1972; Ph.D., Massachusetts Institute of Technology. 1975; Assistant Professor of Theoretical Physics, Caltech, 1975–78; Associate Professor of Physics, 1978–81; Professor of Theoretical Physics, 1981–. Vice President and Provost, 1995–2001; Provost, 2001–04.

Diana Lena Kormos-Buchwald, Ph.D., Professor of History B.Sc., Technion—Israel Institute of Technology, 1983; M.Sc., T echnische Hochschule, University of Aachen, A.M., Harvard University, 1985; Ph.D., 1990. Instructor, Caltech, 1989–90; Assistant Professor, 1990–95; Associate Professor, 1996–2005; Professor, 2005–.

Julia A. Kornfield, Ph.D., Professor of Chemical Engineering B.S., Caltech, 1983; M.S., 1984; Ph.D., Stanford University, 1988. Assistant Professor, Caltech, 1990–95; Associate Professor, 1995–2001; Professor, 2001–.

Joseph Morgan Kossler, Ph.D., Professor of History and Social Science A.B., Princeton University, 1955; M.A., Yale University, 1956; Ph.D., 1961. Assistant Professor, History, 1967–71; Professor, 1971–74; Associate Professor, 1974–79; Professor, 1979–80; Professor of History and Social Science, 1980–.

J. Christopher Krok, Ph.D., Lecturer in Aeronautics B.S., State University of New York (Buffalo), 1990; M.S., Rensselaer Polytechnic Institute, 1992; Ph.D., Caltech, 1997. Lecturer, 2004–05.

Anna I. Krylov, Ph.D., Visiting Associate in Chemistry B.S., M.S., Moscow State University, 1990; Ph.D., Hebrew University of Jerusalem, 1996. Associate Professor, University of Southern California, 2004–. Caltech, 2005–06.

Cheng Yeaw Ku, Ph.D., Harry Bateman Research Instructor in Mathematics B.S., University of London (Queen Mary), 2002; Ph.D. Caltech, 2005–07.
Ellen Kuhl, Dr.Ing., Visiting Associate in Aeronautics
Dipl.Ing., University of Hannover (Germany), 1995; Dr.Ing., University of Stuttgart, 2000. Assistant Professor, Technical University of Kaiserslautern, 2002–. Caltech, 2005.

Shrinivas R. Kulkarni, Ph.D., John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Science

Akiko Kumagai, Ph.D., Senior Research Associate in Biology
B.S., Kyoro University (Japan), 1979; Ph.D., 1986. Senior Research Fellow, Caltech, 1989–95; Senior Research Associate, 1996–.

Jana Kunicova, Ph.D., Assistant Professor of Political Science

Louis Yi Kuo, Ph.D., Visiting Associate in Chemistry

Aron Kuppermann, Ph.D., Professor of Chemical Physics
M.Sc., University of São Paulo, 1948; Ph.D., University of Notre Dame, 1956. Caltech, 1963–.

Jeaniy La Belle, Ph.D., Professor of English
B.A., University of Washington, 1967; Ph.D., University of California (San Diego), 1970. Assistant Professor of English, Caltech, 1969–76; Associate Professor, 1977–80; Associate Professor of Literature, 1987–90; Associate Professor of Literature, 1990–99; Associate Professor, 1999–2002; Professor, 2000–03; Professor, 2003–06.

Guillaume Lagache, Ph.D., Visiting Associate in Physics

Andrew E. Lange, Ph.D., Marvin L. Goldberger Professor of Physics

Ralf Langen, Ph.D., Visiting Associate in Chemistry
B.S., University of Hannover (Germany), 1988; M.S., University of Southern California, 1994; Ph.D., Caltech, 1995. Assistant Professor, University of Southern California, 1999–. Visiting Associate, Caltech, 1995–2000; 2003–06.

Russell Lansford, Ph.D., Lecturer in Bioengineering

Nadia Lapusta, Ph.D., Assistant Professor of Mechanical Engineering and Geophysics
Dipl., Kiev State University, 1994; M.S., Harvard University, 1996; Ph.D., 2001. Assistant Professor, Massachusetts Institute of Technology, 2002–03; Assistant Professor of Mechanical Engineering and Geophysics, 2003–.

Gilles J. Laurent, Ph.D., D.V.M., Lawrence A. Harvey Jr. Professor of Biology and Computation and Neural Systems
B.A., University of Toulouse, 1978; Ph.D., 1985; D.V.M., National School of Veterinary Medicine of Toulouse, 1985. Assistant Professor, Caltech, 1990–95; Associate Professor, 1996–2000; Professor, 2000–03; Hanson Professor, 2003–.

L. Desiree LaVerunt, M.M., Lecturer in Human Choral Music
B.M., California State University (Fullerton), 1988; M.M., University of Nevada, 1998. Caltech, 2000–.

Eugene Lavrentv, Ph.D., Visiting Associate in Control and Dynamical Systems

Jared Leadbetter, Ph.D., Assistant Professor of Environmental Microbiology
B.S., Goucher College, 1991; Ph.D., Michigan State University, 1997. Caltech, 2000–.

John O. Ledyard, Ph.D., D.Lit.h.c., Allen and Louise Davis Professor of Economics and Social Sciences
A.B., Wabash College, 1961; M.S., Purdue University, 1965; Ph.D., 1967; D.Lit.h.c., Purdue University. Professor, Caltech, 1985–2002; Doris Professor, 2002–. Executive Officer for the Social Sciences, 1989–92; Chair, Division of the Humanities and Social Sciences, 1992–2002.

David Soon-Hua Lee, Ph.D., Visiting Associate in Materials Science

Heun Jin Lee, B.S., Lecturer in Applied Physics

In-sop Lee, Ph.D., Visiting Associate in Aeronautics and Bioengineering
B.S., Kyung Hee University (Korea), 1987; M.S., 1989; Ph.D., Osaka University (Japan). 1999. Adjunct Professor, Korea Polytechnic University, 2002–. Caltech, 2004–05.

Jennifer C. Lee, Ph.D., Beckman Senior Research Fellow in Chemistry
B.S., University of California, 1997; B.S., 1997; Ph.D., Caltech, 2002. Beckman Senior Research Fellow, 2003–06.

Joel Lee, Ph.D., Senior Research Fellow in Biology

Reginald K. Lee, Ph.D., Visiting Associate in Applied Physics

Tae-Hwy Lee, Ph.D., Visiting Professor of Economics
B.A., Seoul National University, 1985; Ph.D., University of California (San Diego), 1990. Professor, University of California (Riverside), 2004–. Caltech, 2005–06.

Anthony Leonard, Ph.D., Theodore von Kármán Professor of Aeronautics, Emeritus

Kathryn Leonard, Ph.D., von Kármán Instructor in Applied and Computational Mathematics

Nelson Jordan Leonard, Ph.D., Sc.D.h.c., D.Sc.h.c., D.h.c., Faculty Associate in Chemistry
B.S., Lehigh University, 1937; B.Sc., University of Oxford, 1940, Ph.D., Columbia University, 1942; Sc.D.h.c., Lehigh University; D.Sc.h.c., University of Oxford; University of Illinois; D.h.c, Adam Mickiewicz University (Poland). Sherman Fairchild Distinguished Scholar, Caltech, 1991–92; Faculty Associate, 1992–.

Henry Allen Lester, Ph.D., Bren Professor of Biology
A.B., Harvard College, 1966; Ph.D., Rockefeller University, 1971. Assistant Professor, Caltech, 1971–76; Associate Professor, 1976–83; Bren Professor, 2000–.

Julie Levesque, M.S., Coach
B.S., California Polytechnic State University (San Luis Obispo), 1994; M.S., 1996. Caltech, 1997–.

Joseph M. Levine, Ph.D., Mellon Visiting Professor of History

Nathan S. Lewis, Ph.D., George L. Argyros Professor and Professor of Chemistry
B.S., Caltech, 1977; M.S., 1977; Ph.D., Massachusetts Institute of Technology, 1981. Associate Professor, Caltech, 1988–91; Professor, 1991–; Argyros Professor, 2002–.

Henri J. Lezec, Ph.D., Visiting Associate in Applied Physics

Ju Li, Ph.D., Visiting Associate in Physics
B.S., Northwestern Polytechnical University (China), 1981; M.Sc., 1987; Ph.D., University of Western Australia, 1991. Sherman Fairchild Distinguished Scholar, Caltech, 2002–.

Ruo Li, Ph.D., Visiting Associate in Applied and Computational Mathematics; Lecturer in Applied and Computational Mathematics
B.S., Peking University, 1996; M.S., 1998; Ph.D., 2002. Lecturer, 2003–. Visiting Associate, Caltech, 2005–06; Lecturer, 2005,

Charles Y. Liu, Ph.D., M.D., Visiting Associate in Chemical Engineering B.S.E., University of Michigan (Ann Arbor), 1987; Ph.D., Rice University, 1991; M.D., Yale University School of Medicine, 1996. Resident Physician, University of Southern California, Keck School of Medicine, 1996–. Caltech, 2002–05.

Martin W. Lo, Ph.D., Visiting Associate in Computer Science B.S., Caltech, 1975; M.S., Cornell University, 1978; Ph.D., 1981. Member of the Technical Staff, Jet Propulsion Laboratory, 1986–. Visiting Associate, Caltech, 2003–05.

Gary Allen Lorden, Ph.D., Professor of Mathematics, Executive Officer for Mathematics B.S., Caltech, 1962; Ph.D., Cornell University, 1966. Assistant Professor, Caltech, 1968–71; Associate Professor, 1971–77; Professor, 1977–. Dean of Students, 1984–88; Vice President for Student Affairs, 1989–98; Acting Vice President, 2002; Executive Officer, 2003–.

Angelique Y. Louie, Ph.D., Visiting Associate in Biology B.S., University of California (Davis), 1985; M.S., University of California (Irvine), 1988; Ph.D., University of California (Irvine), 1994. Assistant Professor, University of California (Davis), 2002–. Research Fellow, Caltech, 1995–98; Senior Research Fellow, 1998–2002; Visiting Associate, 2003–06.

Steven Low, Ph.D., Associate Professor of Computer Science and Electrical Engineering B.S., Cornell University, 1987; M.S., University of California, 1989; Ph.D., 1992. Caltech, 2000–.

Johnson Y. S. Luh, Ph.D., Visiting Associate in Mechanical Engineering M.S., Harvard University, 1950; Ph.D., University of Minnesota, 1963. McQueen Quartz Professor, Retired, Clemson University, 1983–. Caltech, 2002–05.

Hideo Mabuchi, Ph.D., Associate Professor of Physics and Control and Dynamical Systems A.B., Princeton University, 1992; Ph.D., Caltech, 1998. Assistant Professor of Physics, 1998–2001; Associate Professor, 2001–02; Associate Professor of Physics and Control and Dynamical Systems, 2002–.

Cora E. MacBeth, Ph.D., Beckman Institute Senior Research Fellow in Chemistry B.S., Pennsylvania State University, 1996; Ph.D., University of Kansas, 2001. Caltech, 2002–05.

Malcolm A. MacFeyr, Ph.D., Visiting Associate in Mechanical Engineering B.S., University of Toronto, 1991; M.S., 1992; Ph.D., University of Illinois, 2001. Assistant Professor, Northwestern University, 2001–. Caltech, 2003–05.

David W. C. MacMillan, Ph.D., Earle C. Anthony Professor of Chemistry B.S., University of Glasgow, 1991; Ph.D., University of California (Irvine), 1996. Associate Professor, Caltech, 2000–03; Professor, 2003–04; Anthony Professor, 2004–.

Aram Mekjian, Ph.D., Visiting Associate in Physics
B.S., Caltech, 1963; Ph.D., University of Maryland, 1968. Professor, Rutgers University, 1992–. Visiting Associate, Caltech, 2005–06.

Jane E. Mendel, Ph.D., Senior Research Associate in Biology, Lecturer in Biology

Ellis F. Meng, Ph.D., Visiting Associate in Electrical Engineering
B.S., Caltech, 1997; M.S., 1998; Ph.D., 2001. Assistant Professor, University of California (Davis), 2003–. Visiting Associate, Caltech, 2003–06.

Richard A. Mewaldt, Ph.D., Senior Research Associate in Physics
B.A., Lawrence University, 1965; M.A., Washington University (St. Louis), 1967; Ph.D., 1971. Research Fellow, Caltech, 1971–73; Senior Research Fellow, 1975–81; Lecturer, 1987; Senior Research Associate, 1981–.

Elliott M. Meyerowitz, Ph.D., George W. Beadle Professor of Biology, Chair, Division of Biology
A.B., Columbia University, 1973; M.Phil., Yale University, 1975; Ph.D., 1977. Assistant Professor, Caltech, 1980–85; Associate Professor, 1985–89; Professor, 1989–2002; Beadle Professor, 2002–. Executive Officer for Biology, 1995–2000. Chair, 2000–.

Georges Meylan, Ph.D., Visiting Associate in Astronomy

Douglas G. Michael, Ph.D., Senior Research Associate in Physics
B.S., Stanford University, 1982; M.S., Harvard University, 1984; Ph.D., 1990. Research Fellow, Caltech, 1990–93; Senior Research Fellow, 1994–99; Senior Research Associate, 1999–.

R. David Middlebrook, Ph.D., Professor of Electrical Engineering, Emeritus

Robin Canup Mihm, Ph.D., Visiting Professor of Planetary Science
B.S., Duke University, 1990; M.S., University of Colorado (Boulder), 1992; Ph.D., 1995. Assistant Director, Department of Space Studies, Southwest Research Institute, 1999–. Caltech, 2005.

Andrei Yuryevich Mikhailov, Ph.D., Sherman Fairchild Senior Research Fellow in Physics
B.A., Mount Holyoke College, 1961; M.D., Jefferson Medical College, 1965. Professor, University of Southern California School of Medicine, 1990–; Chief, Caja Laboratory of Neuropathology, University of Southern California Medical Center, 1982–. Caltech, 1982–2003; 2005–06.

Feng-Ying Ming, Ph.D., Lecturer in Chemistry

Valery P. Mitrofanov, Kandidat, Visiting Associate in Physics

Eric Mjolsness, Ph.D., Visiting Associate in Biology
A.B., Washington University, 1980; Ph.D., Caltech, 1986. Principal Computer Scientist, Jet Propulsion Laboratory, 1998–; Associate Professor, University of California (Irvine), 2002–. Faculty Associate, 2000–02; Visiting Associate, 2002–03.

Darius Modarress, Ph.D., Visiting Associate in Astronomy

Elena Montovan, Ph.D., Assistant Professor of Mathematics

Carmella Caracci Moore, Ph.D., Lecturer in Anthropology

James John Morgan, Ph.D., D.Sc.h.c., Marvin L. Goldberger Professor of Environmental Engineering Science, Emeritus

John Abbott Moss, Ph.D., Visiting Associate in Environmental Science and Engineering

Duane Owen Muhlemann, Ph.D., Professor of Planetary Science, Emeritus
B.S., University of Toledo, 1953; Ph.D., Harvard University, 1963. Associate Professor, Caltech, 1967–71; Professor, 1971–97; Professor Emeritus, 1997–.

Edwin Stanton Munger, Ph.D., Professor of Geography, Emeritus
M.S., University of Chicago, 1948; Ph.D., 1951. Visiting Lecturer, Amherst Universities Field Staff, Caltech, 1954; 1957; Professor, 1960–88; Professor Emeritus, 1988–.

Dominic Murphy, Ph.D., Assistant Professor of Planetary Science

Bruce Churchill Murray, Ph.D., Professor of Planetary Science and Geology, Emeritus

Richard Martin Murray, Ph.D., Professor of Control and Dynamical Systems
B.S., Caltech, 1985; M.S., University of California, 1988; Ph.D., 1990. Assistant Professor of Mechanical Engineering, Caltech, 1991–97; Associate Professor, 1997–2000; Professor, 2000–05; Professor of Control and Dynamical Systems, 2005–. Chair, Division of Engineering and Applied Science, 2000–05.

Jonathan Nagler, Ph.D., Visiting Associate in Political Science

Ramin Naimi, Ph.D., Visiting Associate in Mathematics

 Ehud Nakar, Ph.D., Sherman Fairchild Senior Research Fellow in Astrophysics

Thomas A. Neenan, M.F.A., Lecturer in Music

Zoran Nenadic, Ph.D., Visiting Associate in Mechanical Engineering
B.S., University of Belgrade, 1995; M.S., Washington University, 1998; Ph.D., 2001. Assistant Professor, University of California (Irvine), 2005–. Caltech, 2005–06.

Gerry Neugebauer, Ph.D., Robert Andrews Millikan Professor of Physics, Emeritus

Dianne K. Newman, Ph.D., Associate Professor of Geobiology and Environmental Science
Harvey B. Newman, Sc.D., Professor of Physics
B.S., Massachusetts Institute of Technology, 1968; Sc.D., 1973. Associate Professor, Caltech, 1982–90; Professor, 1990–.

Marc-Aurele Niclot, Ph.D., Professor of Electrical Engineering and Applied Physics, Emeritus
Ph.D., University of Basel, 1958. Assistant Professor of Electrical Engineering, Caltech, 1959–65; Associate Professor, 1965–73; Professor, 1973–88; Professor of Electrical Engineering and Applied Physics, 1988–98; Professor Emeritus, 1998–.

Julian Nida-Rumelin, Ph.D., Habil., Visiting Associate in Philosophy

Yoshio Nikawa, Ph.D., Visiting Associate in Electrical Engineering

Mika Nystroem, Ph.D., Visiting Associate in Computer Science

John P. O'Doherty, D.Phil., Assistant Professor of Psychology

Hirosi Ooguri, Ph.D., Professor of Theoretical Physics
B.A., Kyoto University (Japan), 1984; M.A., 1986; Ph.D., University of Tokyo, 1989. Visiting Associate, Caltech, 1999–2000; Professor, 2000–.

Hee Oh, Ph.D., Associate Professor of Mathematics
B.S., Yonsei National University, 1992; Ph.D., Yale University, 1997. Caltech, 2003–

Koichi Okamoto, Ph.D., Senior Research Fellow in Physics

Mitcho Okumura, Ph.D., Professor of Chemical Physics
B.S., Yale University, 1979; M.S., 1979; C.P.G.S., University of Cambridge, 1980; Ph.D., University of California, 1986. Assistant Professor, Caltech, 1988–94; Associate Professor, 1994–2003; Professor, 2003–.

Christopher M. O'Leary, Ph.D., Lecturer in Anthropology

Reza Olfati-Saber, Ph.D., Visiting Associate in Control and Dynamical Systems

Christiane H. Orcel, Ph.D., Lecturer in French

Peter C. Ordeshook, Ph.D., Professor of Political Science

Victoria Orphan, Ph.D., Assistant Professor of Geobiology

Michael Ortiz, Ph.D., Dotty and Dick Hayman Professor of Aeronautics and Mechanical Engineering

Ray David Owen, Ph.D., Sc.D.h.c., Professor of Biology, Emeritus
B.S., Carroll College, 1937; Ph.D., University of Wisconsin, 1938; Ph.D., 1941; Sc.D.h.c., Carroll College; University of the Pacific. Gossen Fellow, Caltech, 1946–47; Associate Professor, 1947–55; Professor, 1955–83; Professor Emeritus, 1983–. Chairman, Division of Biology, 1961–88; Vice President for Student Affairs and Dean of Students, 1972–80.

Houman Owhadi, Ph.D., Assistant Professor of Applied and Computational Mathematics and Control and Dynamical Systems

Oskar J. Painter, Ph.D., Assistant Professor of Applied Physics
B.S., University of British Columbia, 1994; M.S., Caltech, 1993; Ph.D., 2001. Visiting Associate, 2001–02; Assistant Professor, 2002–.

Anna Pandolfi, M.S., Visiting Associate in Aeronautics

Carlos Pantano, Ph.D., Senior Research Fellow in Aeronautics

Dimitri A. Papassavas, Ph.D., Faculty Associate in Geosciences

Charles Herach Papas, Ph.D., Professor of Electrical Engineering, Emeritus
B.S., Massachusetts Institute of Technology, 1941; M.S., Harvard University, 1946; Ph.D., 1948. Lecturer, Caltech, 1952–54; Associate Professor, 1949–52; Professor, 1952–59; Professor Emeritus, 1988–.

Changmoon Park, Ph.D., Visiting Associate in Chemistry

Carl Stevens Parker, Ph.D., Professor of Biochemistry
B.A., University of Rochester, 1973; Ph.D., Washington University (St. Louis), 1977. Assistant Professor of Chemistry, Caltech, 1981–87; Associate Professor, 1987–92; Professor, 1992–99; Professor of Biochemistry, 1999–. Executive Officer for Biochemistry and Molecular Biophysics, 2000–04.

Claudia Pasquerio, Ph.D., Senior Research Fellow in Oceanography

Paul H. Patterson, Ph.D., Anne P. and Benjamin F. Bieganski Professor of Biological Sciences

Lynn K. Paul, Ph.D., Visiting Associate in Psychology

Michael G. Paulin, Ph.D., Visiting Associate in Mechanical Engineering
B.S., University of Otago, 1976; Ph.D., University of Auckland, 1985. Senior Lecturer, University of Otago, 1985–90; Research Fellow in Biology, 1987–89; Visiting Associate in Mechanical Engineering, 2005.

Timothy John Pearson, Ph.D., Senior Research Associate in Radio Astronomy

Charles William Peck, Ph.D., Professor of Physics, Emeritus
B.S., New Mexico College of Agricultural and Mechanical Arts, 1956; Ph.D., Caltech, 1964. Research Fellow, 1964–65; Assistant Professor, 1966–69; Associate Professor, 1969–77; Professor, 1977–2004; Professor Emeritus, 2004–. Executive Officer for Physics, 1983–86; Chair, Division of Physics, Mathematics and Astronomy, 1993–98.

Richard L. Pederson, Ph.D., Visiting Associate in Chemistry

Jose S. Penalva Zuasti, Ph.D., Visiting Associate in Economics
Roy Periana, Ph.D., Visiting Associate in Chemistry
B.S., University of Michigan (Ann Arbor), 1979; Ph.D., University of California, 1985. Associate Professor, University of Southern California, 2000–. Caltech, 2003–06.

Pietro Perona, D.Eng., Ph.D., Professor of Electrical Engineering

Eduard Persikov, Ph.D., Visiting Associate in Geochemistry

Jonas C. Peters, Ph.D., Associate Professor of Chemistry
B.S., University of Chicago, 1991; Ph.D., Massachusetts Institute of Technology, 1998. Assistant Professor, Caltech, 1999–2004; Associate Professor, 2004–.

Danny Petrasek, M.D., Ph.D., Senior Research Fellow in Applied and Computational Mathematics and Bioengineering
Lecturer in Bioengineering

Robert Phillips, Ph.D., Professor of Applied Physics and Mechanical Engineering
B.S., University of Minnesota, 1986; Ph.D., 1992. Associate Professor, University of Michigan, 1992–95; Washington University, 1995–98; Clark Millikin Visiting Assistant Professor, Caltech, 1997; Professor, 2000–.

Thomas G. Phillips, D.Phil., Affair Professor of Physics, Director, Caltech Submillimeter Observatory

E. Sterl Phinney III, Ph.D., Professor of Theoretical Astrophysics
B.S., Caltech, 1980; Ph.D., University of Cambridge, 1983. Assistant Professor, Caltech, 1985–91; Associate Professor, 1991–97; Professor, 1997–.

Kenneth A. Pickar, Ph.D., Visiting Professor of Mechanical Engineering

Niles A. Pierce, D.Phil., Assistant Professor of Applied and Computational Mathematics and Bioengineering
B.S.E., Princeton University, 1993; D.Phil., University of Oxford, 1997. Assistant Professor of Applied Mathematics, Caltech, 2000; Assistant Professor of Applied and Computational Mathematics, 2000–04; Assistant Professor of Applied and Computational Mathematics and Bioengineering, 2004–.

Elena Pierpaoli, Ph.D., Senior Research Fellow in Astrophysics

George Wood Pigman, Ph.D., Professor of English, Executive Officer for the Humanities
A.B., Harvard College, 1971; M.Phil., Yale University, 1973; Ph.D., 1977. Assistant Professor of English, Caltech, 1977–80; Assistant Professor of Literature, 1980–83; Associate Professor, 1983–90; Professor, 1993–2004; Professor of English, 2004–. Executive Officer, 2003–.

Jerome Pine, Ph.D., Professor of Physics
A.B., Princeton University, 1949; M.S., Cornell University, 1952; Ph.D., 1959. Associate Professor, Caltech, 1963–67; Professor, 1967–.

Tsvi Piran, Ph.D., Maurice Distinguished Scholar

Charles Raymond Plof, Ph.D., D.Lit.h.c., D.h.c., Edward S. Harkness Professor of Economics and Political Science
B.S., Oklahoma State University, 1961; M.S., 1964; Ph.D., University of Virginia, 1969; D.Lit.h.c., Purdue University; D.h.c., Université Pierre Mendes. Professor of Economics, Caltech, 1971–87; Harkness Professor, 1987–.

Hugh David Politzer, Ph.D., Nobel Laureate, Richard Chau Tolman Professor of Theoretical Physics

Adrian Ponce, Ph.D., Visiting Associate in Chemistry

Frank Clifford Porter, Ph.D., Professor of Physics
B.S., Caltech, 1972; Ph.D., University of California, 1977. Research Fellow, Caltech, 1977–78; Weizmann Research Fellow, 1978–80; Senior Research Fellow, 1980–82; Assistant Professor, 1982–88; Associate Professor, 1988–94; Professor, 1994–.

Gregory A. Poskrebyshev, Ph.D., Visiting Associate in Environmental and Engineering Sciences

Malabika Pramanik, Ph.D., Senior Research Fellow in Mathematics

John P. Preskill, Ph.D., John D. MacArthur Professor of Theoretical Physics

Thomas Allen Prince, Ph.D., Professor of Physics
B.S., Villanova University, 1970; M.S., University of Chicago, 1972; Ph.D., 1978. Research Fellow, Caltech, 1976–90; Robert A. Millikan Research Fellow, 1980–82; Senior Research Fellow, 1982–88; Assistant Professor, 1983–86; Associate Professor, 1986–92; Professor, 1992–. Associate Director, for Advanced Computer Research, 1995–2001; Chief Scientist, Jet Propulsion Laboratory, 2001–.

Demetri Psaltis, Ph.D., Thomas G. Myers Professor of Electrical Engineering

Dale Ian Pullin, Ph.D., Professor of Aeronautics
B.S., University of Melbourne, 1966, B.E., University of Sydney, 1968; Ph.D., University of London (Imperial College), 1974. Visiting Associate, Caltech, 1990; Professor, 1991–.

Alexander Pushnitski, Ph.D., Visiting Associate in Mathematics

Stephen R. Quake, D.Phil., Thomas E. and Doris Everhart Professor and Professor of Applied Physics and Physics
B.S., Stanford University, 1991; M.S., 1991; D.Phil., University of Oxford, 1994. Assistant Professor of Applied Physics and Physics, 1996–99; Associate Professor, 1999–2002; Associate Professor of Applied Physics and Physics, 2002–03; Professor, 2003–04; Everhart Professor, 2004–.

Steven R. Quartz, Ph.D., Associate Professor of Philosophy
B.A., University of Western Ontario (Huron College), 1986; M.A., 1988; Ph.D., University of California (San Diego), 1993. Instructor, Caltech, 1998–99; Assistant Professor, 1999–2002; Associate Professor, 2002–.

Rodrigo Cesar Quian Quiroga, Ph.D., Visiting Associate in Biology
M.S., University of Buenos Aires, 1993; Ph.D., University of Lubeck, 1998. Lecturer, University of Leicester, 2004–. Caltech, 2004–05.

Fredric Raichlen, Sc.D., Professor of Civil and Mechanical Engineering, Emeritus
B.E., Johns Hopkins University, 1951; S.M., Massachusetts Institute of Technology, 1955; Sc.D., 1962. Assistant Professor of Civil Engineering, Caltech, 1962–67; Associate Professor, 1967–72; Professor, 1972–97; Professor of Civil and Mechanical Engineering, 1997–2001; Professor Emeritus, 2001–.
Anthony C. S. Readhead, Ph.D., Barbara and Stanley R. Razin, Jr., Professor of Astronomy

Christopher Reddy, Ph.D., Visiting Associate in Geology

Douglas C. Rees, Ph.D., Rocío Gómez Dickson Professor of Chemistry, Full Investigator, Howard Hughes Medical Institute; Executive Officer for Chemistry
B.S., Yale University, 1974; Ph.D., Harvard University, 1980. Professor, Caltech, 1989–2004; Dickinson Professor, 2004–. Investigator, 1997–2001; Full Investigator, 2002–. Executive Officer, 2002–.

Gil Refael, Ph.D., Assistant Professor of Theoretical Physics
B.S., Tel Aviv University, 1997; M.S., 1998; Ph.D., Harvard University, 2003. Caltech, 2005–.

Allan L. Reiss, M.D., Visiting Associate in Biology
B.A., Swarthmore College, 1977; M.D. George Washington University School of Medicine, 1981. Associate Chair, Stanford University School of Medicine, 2000–. Caltech, 2004–05.

Paul Renteln, Ph.D., Visiting Associate in Mathematics
A.B., University of California, 1981, Ph.D., Harvard University, 1988. Assistant Professor, California State Polytechnic University, 1996–. Adjunct Professor, Claremont Graduate University, 1996–. Caltech, 2001–05.

Guruswami Ravichandran, Ph.D., John E. Goode, Jr., Professor of Aeronautics and Mechanical Engineering
B.E., University of Madras (Regional Engineering College), 1981; Sc.M. (Solid Mechanics and Structures), Brown University, 1981; Sc.M. (Applied Mathematics), 1984; Ph.D., 1986. Assistant Professor of Aeronautics, Caltech, 1990–95; Associate Professor, 1995–99; Professor, 1999–2006; Professor of Aeronautics and Mechanical Engineering, 2000–05; Goode Professor, 2005–.

Anthony S. Readhead, Ph.D., Barbara and Stanley R. Razin, Jr., Professor of Astronomy

Christopher Reddy, Ph.D., Visiting Associate in Geology

Douglas C. Rees, Ph.D., Rocío Gómez Dickson Professor of Chemistry, Full Investigator, Howard Hughes Medical Institute; Executive Officer for Chemistry
B.S., Yale University, 1974; Ph.D., Harvard University, 1980. Professor, Caltech, 1989–2004; Dickinson Professor, 2004–. Investigator, 1997–2001; Full Investigator, 2002–. Executive Officer, 2002–.

Gil Refael, Ph.D., Assistant Professor of Theoretical Physics
B.S., Tel Aviv University, 1997; M.S., 1998; Ph.D., Harvard University, 2003. Caltech, 2005–.

Allan L. Reiss, M.D., Visiting Associate in Biology
B.A., Swarthmore College, 1977; M.D. George Washington University School of Medicine, 1981. Associate Chair, Stanford University School of Medicine, 2000–. Caltech, 2004–05.

Paul Renteln, Ph.D., Visiting Associate in Mathematics
A.B., University of California, 1981, Ph.D., Harvard University, 1988. Assistant Professor, California State Polytechnic University, 1996–. Adjunct Professor, Claremont Graduate University, 1996–. Caltech, 2001–05.

Guruswami Ravichandran, Ph.D., John E. Goode, Jr., Professor of Aeronautics and Mechanical Engineering
B.E., University of Madras (Regional Engineering College), 1981; Sc.M. (Solid Mechanics and Structures), Brown University, 1981; Sc.M. (Applied Mathematics), 1984; Ph.D., 1986. Assistant Professor of Aeronautics, Caltech, 1990–95; Associate Professor, 1995–99; Professor, 1999–2006; Professor of Aeronautics and Mechanical Engineering, 2000–05; Goode Professor, 2005–.

Edward Carroll Stone, Jr., Ph.D., D.Sc.h.c., David Morrison Professor of Physics; Vice President for Special Projects S.M., University of Chicago, 1939; Ph.D., 1940; D.Sc.h.c., Harvard University, Washington University, University of Chicago, University of Southern California. Research Fellow, Caltech, 1964–66; Senior Research Fellow, 1967; Assistant Professor, 1967–71; Associate Professor, 1971–76; Professor, 1976–94. Morrison Professor, 1994–. Chairman, Division of Physics, Mathematics and Astronomy, 1988–88; Vice Provost for Astronomical Facilities, 1988–90; Vice President and Director of the Jet Propulsion Laboratory, 1991–2001; Vice Provost, 2001–.

Ellen Glowacki Strauss, Ph.D., Senior Research Associate in Biology B.A., Swarthmore College, 1960; Ph.D., California Institute of Technology, 1966; Research Fellow, 1969–73. Senior Research Fellow, 1973–84; Senior Research Associate, 1984–.

James Henry Strauss, Ph.D., Ethel Wilson Bowles and Robert Bowles Professor of Biology B.S. (Phys.), 1965; Ph.D., California Institute of Technology, 1966; Postdoc, 1966–67. Senior Research Fellow, 1973–84; Senior Research Associate, 1984–.

John Suppe, Ph.D., Visiting Professor of Tectonics B.A., University of California (Riverside), 1965; Ph.D., Yale University, 1969. Blair Professor, Princeton University, 1988–. Visiting Professor of Geology, Caltech, 1988–89; Visiting Professor of Tectonics, 2005–06.

Yu-Chong Tai, Ph.D., Professor of Electrical Engineering B.S., National Taiwan University, 1981; M.S., University of California, 1986; Ph.D., Assistant Professor, Caltech, 1989–95; Associate Professor, 1995–2000; Professor, 2000–

Hung Tien, Ph.D., Visiting Associate in Chemistry B.S., National Taiwan University, 1974; M.S., National Tsing Hua University, 1976; Ph.D., University of California, 1981. Professor, National Tsing Hua University, 2003–. Caltech, 2003–05.

Shaoqiang Tang, Ph.D., Visiting Associate Professor of Applied and Computational Mathematics B.S., University of Science and Technology of China, 1990; B.Eng., 1990, M.S., Hong Kong University of Science and Technology, 1995; Ph.D., 1995. Associate Professor, Peking University, 1997–. Visiting Associate, Caltech, 2004–05; Visiting Associate Professor, 2005.

David J. Thompson, Ph.D., Senior Research Fellow in Physics B.S., California State Polytechnic University (Pomona), 1968; Ph.D., Caltech, 1994. Senior Research Fellow, 2001–03.

Malek Jacques Tilouine, Ph.D., Visiting Professor of Mathematics B.S., University of Paris (D’Orsay), 1979; Ph.D., 1989. Professor, University of Paris VIII, 1993–. Visiting Associate Professor, Caltech, 1993; Visiting Professor, 2004–05.

David A. Tirrell, Ph.D., D.h.c., Russ McCollum–William H. Corcoran Professor and Professor of Chemistry and Chemical Engineering, Chair, Division of Chemistry and Chemical Engineering B.S., Massachusetts Institute of Technology, 1974; M.S., University of Massachusetts, 1976; Ph.D., 1978. Eidenbohn Technical University. McCollum–Corcoran Professor and Professor, Caltech, 1998–. Chair, 1999–.

John Todd, B.Sc., Professor of Mathematics, Emeritus, B.Sc., Queen’s University (Ireland), 1931. Professor, Caltech, 1957–81; Professor Emeritus, 1981–.

Claire J. Tomlin, Ph.D., Visiting Associate in Control and Dynamical Systems B.S., University of Waterloo (Canada), 1992; M.S., Imperial College (London), 1993; Ph.D., University of California, 1998. Assistant Professor, Stanford University, 1998–. Caltech, 2003–05.
Paul O. Wernberg, Ph.D., Associate Professor of Atmospheric Chemistry and Environmental Science and Engineering B.A., Oberlin College, 1985; Ph.D., Harvard University, 1994. Associate Professor of Atmospheric Chemistry and Environmental Science and Engineering, Caltech, 1998–2003; Professor, 2003–05; Professor of Atmospheric Chemistry and Environmental Science and Engineering, 2003–04; Avery Professor, 2004–.

Brian R. Wernicke, Ph.D., Chandler Family Professor of Geology B.S., University of Southern California, 1978; Ph.D., Massachusetts Institute of Technology, 1982. Visiting Professor, Caltech, 1990; Professor of Geology, 1992–2001; Chandler Professor, 2001–.

Ward Whaling, Ph.D., Professor of Physics, Emeritus B.S., Rice University, 1944, M.A., Ph.D., 1949. Research Fellow, Caltech, 1949–52; Assistant Professor, 1952–58; Associate Professor, 1958–62; Professor, 1962–93; Professor Emeritus, 1993–.

John Whelan, Ph.D., Visiting Associate in Physics B.A., Cornell University, 1991; Ph.D., University of California (Santa Barbara), 1996. Senior Lecturer, University of Texas (Brownsville), 2000–. Caltech, 2001–06.

Philip Wigen, Ph.D., Visiting Associate in Physics B.A., Pacific Lutheran University, 1955; Ph.D., Michigan State University, 1960; Professor, Ohio State University, 1971–74; Caltech, 1999–2006.

Claus O. Wilke, Dr. rer. nat., Visiting Associate in Computation and Neural Systems Dipl., Ruhr-Universität Bochum (Germany), 1996, Dr. rer. nat., 1999. Research Assistant Professor, Keck Graduate Institute, 2004–. Caltech, 2004–06.

Daniel Paul Weitekamp, Ph.D., Associate Professor of Chemical Physics B.A., Harvard College, 1974; Ph.D., University of California, 1982. Assistant Professor of Chemistry, Caltech, 1985–91; Associate Professor of Chemical Physics, 1991–.
Maria C. Yang, Ph.D., Visiting Associate in Mechanical Engineering
B.S., Massachusetts Institute of Technology, 1991; M.S., Stanford University, 1994; Ph.D., 2000. Assistant Professor, University of Southern California, 2003–; Instructor, Caltech, 2002–03; Visiting Associate, 2003–05.

Shule Yang, Ph.D., Visiting Associate in Chemistry
B.S., Zhongshan University (China), 1982; M.A., Rice University, 1987; Ph.D., 1988. Associate Professor, Hong Kong University of Science and Technology, 2002–. Caltech, 2005.

Annon Yariv, Ph.D., Martin and Eileen Summerfield Professor of Applied Physics and Professor of Electrical Engineering
B.S., University of California, 1954; M.S., 1956; Ph.D., 1958. Associate Professor of Electrical Engineering, Caltech, 1964–68; Professor, 1966–74; Professor of Electrical Engineering and Applied Physics, 1974–79; Thomas G. Myers Professor of Electrical Engineering and Professor of Applied Physics, 1979–86. Summerfield Professor and Professor of Electrical Engineering, 1996–.

Leeat Yariv, Ph.D., Associate Professor of Economics
B.Sc., Tel Aviv University, 1992; M.Sc., 1995; M.A., Harvard University, 2001; Ph.D., 2003. Visiting Assistant Professor, Caltech, 2004–05; Associate Professor, 2005–.

Yoshihumi Yasuoka, Ph.D., Visiting Associate in Electrical Engineering

Ido Yavetz, Ph.D., Hurt Visiting Professor of History

Rachid Yezami, Ph.D., Visiting Associate in Materials Science

Nai-Chang Yeh, Ph.D., Professor of Physics
B.S., National Taiwan University, 1983; Ph.D., Massachusetts Institute of Technology, 1988. Assistant Professor, Caltech, 1989–95; Associate Professor, 1995–97; Professor, 1997–.

Sanichiro Yoshida, Ph.D., Visiting Associate in Physics

Darron K. H. Young, Ph.D., Visiting Associate in Electrical Engineering

Steven J. Yorza, Ph.D., Faculty Associate in the Humanities
A.B., University of Michigan, 1971; M.A., University of Rochester, 1973; Ph.D., Cornell University, 1983. Faculty Associate, Caltech, 2001–05. Director, Hixon Writng Center, 2001–.

Mary An-yuan Yui, Ph.D., Senior Research Fellow in Biology
B.S., University of California (Santa Barbara), 1977; M.S., Oregon State University, 1982; Ph.D., Florida University, 1995. Lecturer, Caltech, 2001; Senior Research Fellow, 2005.

Yuk Ling Yung, Ph.D., Professor of Planetary Science
B.S., University of California, 1969; Ph.D., Harvard University, 1974. Visiting Associate, Caltech, 1976; Assistant Professor, 1977–82; Associate Professor, 1982–86; Professor, 1986–.

William R. Zame, Ph.D., Visiting Associate in Economics

Ahmed H. Zewail, Ph.D., D.Sc.h.c., D.h.c., D.Univ.h.c., D.Phil.h.c., LL.D.h.c., M.D.h.c., Nobel Laureate,
Lawrence P. Pauling Professor of Chemical Physics and Professor of Physics
B.Sc., Alexandria University, 1967; Ph.D., University of Pennsylvania, 1974; D.Sc.h.c., American University of Cairo, 1986; D.Univ.h.c., University of New Brunswick, Jadanpur University (India); University of Oxford; D.h.c., University of Pennsylvania; Katholieke Universiteit Leuven, University of Lausanne; University of Liege (Belgium); University of Rome; Arab Academy for Science and Technology; D.Univ.h.c., Swinburne University of Technology (Australia); D.Phil.h.c., University of Alexandria; LL.D.h.c., Concordia University (Canada); M.D.h.c., Pusan National University (Korea); Assistant Professor, Caltech, 1976–78; Associate Professor, 1978–82; Professor, 1982–89; Pauling Professor, 1990–; Professor of Physics, 1995–.

Jin E. Zhang, Ph.D., Visiting Associate in Engineering Sciences
B.S., Tsinghua University, 1987; M.S., 1988; Ph.D., Caltech, 1996. Assistant Professor, Hong Kong University of Science and Technology, 2001–. Visiting Associate, Caltech, 2003–06.

Youxue Zhang, Ph.D., Visiting Associate in Geochemistry

Leonid E. Zhukov, Ph.D., Visiting Associate in Computer Science

Hans Peter Zima, Ph.D., Visiting Associate in the Center for Advanced Computing Research

Kai Zinn, Ph.D., Professor of Biology
B.A., University of California (San Diego), 1977; Ph.D., Harvard University, 1981. Assistant Professor, Caltech, 1989–95; Associate Professor, 1995–99; Professor, 1999–.

Harold Zirin, Ph.D., Professor of Astrophysics

Jonas Zusimszinas, Ph.D., Professor of Physics
B.S., Caltech, 1981; Ph.D., University of California, 1987. Assistant Professor, Caltech, 1989–95; Associate Professor, 1995–2000; Professor, 2000–.

Natalia Zotov, Ph.D., Visiting Associate in Physics
Ph.D., University of Otago (New Zealand), 1974. Associate Professor, Louisiana Tech University, 1990–; Caltech, 2001–05.

Steven Zwicker, Ph.D., Visiting Professor of English
A

- abbreviations of courses, 325
- academic calendar, 4–5
- academic divisions, 227
- academic standards, 134, 154, 248
- accreditation, 47
- administrative officers, 509
- admission, 121, 228
- admission to candidacy, 137, 237, 238, 241
- advanced placement, 123
- advisers, 29, 135, 233
- aeronautics
 - aeronautical engineer degree, 256
 - instructional and research staff, graduate option, 263
 - courses, 326
 - graduate option, 253
 - instructional and research staff, 523–531
 - option representative, 227
 - study and research, 77
 - undergraduate concentration, 202, 204
- Air Force ROTC, 130
- alcohol on campus, 53
- Alumni Association, 37
- Americans with Disabilities Act (ADA), 53
- anthropology courses, 333
- applied and computational mathematics
 - courses, 334
 - graduate option, 258
 - instructional and research staff, 523–531
 - option representative, 227
 - study and research, 80
 - undergraduate option, 178
- applied computation minor, 261, 291
- applied mechanics
 - courses, 339
 - graduate option, 261
 - instructional and research staff, 523–531
 - option representative, 227
 - study and research, 81
- applied physics
 - courses, 340
 - graduate option, 263
 - instructional and research staff, 523–531
 - option representative, 227
 - study and research, 82, 117
 - undergraduate option, 179
 - applying for admission, 121, 228
 - applying for financial aid, 145
 - applying for graduate standing, 228
 - archives, 546
 - Army ROTC, 131
- art history courses, 345
- astronomy
 - astronomical observatories, 84–85
 - astrophysics
 - courses, 348
 - graduate option, 265
 - instructional and research staff, 538–546
 - option representative, 227
 - study and research, 83
 - undergraduate option, 181
 - athletics, 29
- Associated Students of Caltech, 30
 - assistantships, 246
 - Associated Students of Caltech (ASCIT), 30
- biochemistry and molecular biology
 - courses, 354
 - graduate option, 272
 - instructional and research staff, 514–518
 - option representative, 227
 - study and research, 88
 - undergraduate option, 183
- biophysics
 - courses, 352
 - graduate option, 269
 - instructional and research staff, 518–522
 - option representative, 227
 - study and research, 85
- biology
 - advanced placement/college credit, 123
 - courses, 354
 - graduate option, 272
 - instructional and research and staff, 514–518
 - option representative, 227
 - study and research, 88
 - undergraduate option, 183
- biolunch, 274
- biotechnology, 89, 275
- board of trustees, 505
- books, 33
- bookstores, 33
- board of governors, 505
- board of trustees, 505
- board of visitors, 505
- board of visitors, 505
- building and facilities
 - cafe, 33
 - calendar, 4–5
 - Cal Grants, 148–149
 - Caltech-UCLA Medical Scientist Training Program, 276
 - Caltech-USC M.D./Ph.D. Program, 277
 - Center for Advanced Computing Research (CACR), 24, 546
 - Center for Innovative Technologies, 24
 - career development, 35–37
 - Cambridge Scholars program, 128
 - campus directory, 7
 - undergraduate option, 193
 - campus directory, 7
 - career development, 35–37
 - Center for Advanced Computing Research (CACR), 24, 546
 - center for innovative technologies, 24
 - career development, 35–37
 -冲突 resolution, 32
 - board of trustees, 505
 - board of visitors, 505
 - board of visitors, 505
 - board of governors, 505
 - board of trustees, 505
 - board of visitors, 505
Control and dynamical systems courses, 397
graduate option, 291
instructional and research staff, 523–531
option representative, 227
study and research, 98
undergraduate minor, 195
controlled substances, 53
Copenhagen Scholars program, 128
core curriculum requirements, 174–177
counseling service, 34
course loads. See overloads; underloads
courses, 325–503. See also under specific option
first-year schedule, 177
required for graduation, 174–178
Crafoord laureates, 17
credit, transfer of, 126, 138
credits, 41, 123, 138

D
deferral of entrance, 123
degree
aeronautical engineer, 256
bachelor of science, 137, 173, 217. See also under specific option
civil engineer, 285
doctor of philosophy, 239. See also under specific option
electrical engineer, 293
engineer, 237
joint B.S./M.S., 237
master of science, 236. See also under specific option
mechanical engineer, 310
departmental and option regulations, 135, 178–224, 253–323
detached duty, 232
dining facilities, 245
Direct Loan Programs, 154–164
directory of campus, 7
disputes, 32, 42. See also grievances
doctor of philosophy degree, 239.
See also under specific option
dropping courses, 40, 142
drugs on campus, 53, 56
dual degree (3/2) plan, 127
dual major in biotechnology, 275

Eearly action application plan, 121
economics
courses, 400
undergraduate option, 196
electrical and computer engineering
undergraduate option, 197
electrical engineering
courses, 403
graduate option, 293
instructional and research staff, 523–531
option representative, 227
study and research, 100
undergraduate option, 197
electrical engineer's degree, 293
electronic information resources policy, 51
employment, 35, 36, 37, 59, 149–150
engineering and applied science
instructional and research staff, 523–531
undergraduate option, 200
engineering courses (general), 411
engineer's degree, 237
English
courses, 413
undergraduate option, 205
English as a second language, 229, 418
English requirements for international students, 126, 229, 238, 241
environmental science and engineering
courses, 419
graduate option, 295
instructional and research staff, 523–531
option representative, 228
study and research, 105
undergraduate concentration, 202, 204
Equal Employment Opportunity, 59
essays for undergraduate admission, 122
examinations. See admission; placement examinations
exchange programs, 127, 236. See also study abroad
expenses, 139, 243. See also registration; tuition

Ffacades, 17–26
faculty advisers, 29, 233
faculty and officer listings, 549
faculty officers and committees, 511–513
faculty option representatives, 227
faculty–student relations, 29
FAFSA, 144, 145, 148, 155
federal/state grants and loans, 148–151, 155–164. See also financial aid; repayments
firearm, 59
first-year course schedule, 177
foreign students, 38
French. See language courses
freshman advisers, 29

GALCIT, 79
general deposit, 139, 140, 143, 243, 244
genealogy. See geological and planetary sciences
genetics. See geological and planetary sciences
geochemistry. See geological and planetary sciences
geonotology and planetary sciences
courses, 423
graduate option, 298
instructional and research staff, 532–535
option representative, 228
study and research, 107
undergraduate option, 206
geology. See geological and planetary sciences
global geology summer field course, 143, 208
geophysics. See geological and planetary sciences
German. See language courses
grade appeals, 42
grade-point average, 41
grades, 39–43
graduate degrees, 227, 236, 237, 239
graduate program, 10
admission to, 228–230
career development advising, 35
expenses, 243
faculty advisers, 233
financial assistance, 246
housing, 245
option representatives, 227
options, 253–323
policies and procedures, 228–236
residency requirements, 230
graduate record examination, 228
graduate student council, 30
graduates, employment experience of, 37
graduate studies committee, 227
graduation requirements, 126, 137, 173–178
grants, 148–149
grievances, 32, 48
L
- Laboratories, special, 235
- Laboratory of chemical synthesis, 93. See also buildings and facilities
- Laboratory requirements, 174
- Language courses, 453
- Late registration fees, 143, 245
- Law courses, 457
- Leave, 133. See also sabbaticals

M
- Major fields of study. See options
- Map of campus, 6
- Marine biology laboratory, 23, 89
- Master of science degree, 236. See also under specific option
- Materials science
 - Courses, 457
 - Graduate option, 304
 - Instructional and research staff, 523–531
 - Option representative, 228
 - Study and research, 112
 - Undergraduate concentration, 203, 205
- Mathematics
 - Advanced placement/college credit, 123
 - Courses, 460
 - Graduate option, 306
 - Instructional and research staff, 538–546
 - Option representative, 228
 - Study and research, 112
 - Undergraduate option, 215
- Mechanical engineering
 - Courses, 470
 - Graduate option, 308
 - Instructional and research staff, 523–531
 - Option representative, 228
 - Study and research, 113
 - Undergraduate option, 217
- Mechanical engineer's degree, 310

medical examination, 33. See also health services
- Medical school, 35, 276–277. See also premedical program
 - Merit awards, 152
 - Moore Distinguished Visitors, 11
 - M.S. degree, 236. See also under specific option
 - Music, 31, 475

N
- New student orientation, 124
- Nobel laureates, 16
- Nondegree programs, 234
- Nondiscrimination policy, 59

O
- Off-campus facilities, 23
- Office of Public Events, 33
 - Officers and faculty listings, 549
- Officers of Caltech, 505, 509, 511
- Ombuds office, 32, 547
- On-campus recruiting program, 35
- Option advisers, 29, 135
- Option representatives, 227
- Options, 9, 10
 - Change of, 136
 - Selection of, 135
- Overloads, 138
- Owens Valley Radio Observatory, 23, 83, 85, 110, 118
- Off-campus facilities, 23
- Office of Public Events, 33
- Officers and faculty listings, 549
- Officers of Caltech, 505, 509, 511
- Ombuds office, 32, 547
- On-campus recruiting program, 35
- Option advisers, 29, 135
- Option representatives, 227
- Options, 9, 10
 - Change of, 136
 - Selection of, 135
- Overloads, 138
- Owens Valley Radio Observatory, 23, 83, 85, 110, 118
- Palomar Observatory, 23, 84, 116, 118
 - Part-time graduate study programs, 234
 - Pass/fail grading, 41
 - Patent agreement, 49
- Pell grants, 148, 155
- Performance courses, 477
- Ph.D. degree, 239. See also under specific option

R
- Recesses, 4–5
- Records and transcripts, 43, 44–47
- Refunds, 140, 249
- Registration
 - General deposit, 139, 140, 143, 243, 244
 - Graduate students, 231
 - Summer research, 132, 232
 - Undergraduate students, 131–135
- Religious practice, 32
- Repayments, 140, 154–164, 249
- Research
 - Areas of, 77–119
 - Funds, 247
 - Summer, 26, 132, 232
 - Undergraduate, 26, 132
Index

researchers, visiting, 230
residency requirements, 230
résumés, 36
retention rates, 50
ROTC, 130

S
sabbaticals, 133, 232
SAT exams, 121, 122, 125
scholarships, 147, 152, 153, 165, 247
scholastic requirements, 134
scientific writing, 176
Scripps Institution of
Oceanography, 236
seismological laboratory, 23, 109
senior postdoctoral scholars, 10
sexual assault policy, 60
social science
core Institute requirements,
174–176
courses, 499
graduate option, 318
instructional and research staff,
535–538
option representative, 228
study and research, 119
undergraduate option, 223
Spanish. See language courses
special students, 229
Spitzer Science Center, 22, 83, 119
Staff/Faculty Consultation Center,
547
staff of instruction and research,
514–546
Stafford Loan, 155
state and federal grants, 148–151,
155–164
stipends, 246–247
structural mechanics, 203, 205
Student Activities Center, 28
Student Affairs, 547
student life, 27–33
alcohol use, 53
clubs, publications, and soci-
eties, 31
employment, 35, 36, 37,
149–150
grievance procedures, 48
health, 33
housing, 27
Student Patent and Computer
Software Agreement, 49
student records and transcripts, 43,
44–47
study abroad, 128, 152
Submillimeter Observatory, 24, 83,
85, 116
substance abuse, 53
summer research, 26, 132, 232
Summer Undergraduate Research
Fellowships (SURF), 26
teaching assistantships, 246–247
tests. See admission; placement
examinations
theses, 239, 242
3/2 dual degree plan, 127
transcripts, 43, 47, 143, 244
transfer admissions, 124
transfer of credit, 126, 138
trustees, 505
tuition, 139, 140, 243, 244
UCLA-Caltech Medical Scientist
Training Program, 276
undergraduate program, 9
admission, 121
expenses, 139
housing, 27
options, 178–224
requirements, 173–178
research, 26, 132
underloads, 138, 154
units, 41, 138
University College London
Scholars program, 129
University of Edinburgh Scholars
program, 130
unpaid bills policy, 143, 244
USC-Caltech M.D./Ph.D.
Program, 277

V
vacations. See recesses
veterans, 43
visas, 38
visiting student researchers, 230

W
withdrawal, 133, 140–141, 142–143,
249
work-study, 36, 150

Y
Y, Caltech, 32

Index