EE/ME 7
Introduction to Mechatronics
6 units (2-3-1)
|
second term
Mechatronics is the multi-disciplinary design of electro-mechanical systems. This course is intended to give the student a basic introduction to such systems. The course will focus on the implementations of sensor and actuator systems, the mechanical devices involved and the electrical circuits needed to interface with them. The class will consist of lectures and short labs where the student will be able to investigate the concepts discussed in lecture. Topics covered include motors, piezoelectric devices, light sensors, ultrasonic transducers, and navigational sensors such as accelerometers and gyroscopes. Graded pass/fail.
Instructor:
George
ME 8
Thinking Like an Engineer
6 units (3-0-3)
|
second term
An introduction to principles and techniques useful for Mechanical Engineering. Units and dimensional analysis; order-of-magnitude estimation; prototyping and model-scale experiments; visualization and computer-aided design. Case studies will be presented by weekly guest lecturers by practicing engineers in industry and academia.
Instructor:
Mello
ME 11 abc
Thermal Science
9 units (3-0-6)
|
first, second, third terms
Prerequisites: Sophomore standing required.
An introduction to classical thermodynamics and transport with engineering applications. First and second laws; closed and open systems; properties of a pure substance; availability and irreversibility; generalized thermodynamic relations; gas and vapor power cycles; propulsion; mixtures; combustion and thermochemistry; chemical equilibrium; momentum and heat transfer including boundary layers with applications to internal and external flows. Not offered on a pass/fail basis.
Instructors:
Minnich, Hunt, Colonius
ME 12 abc
Mechanics
9 units (3-0-6)
|
first, second, third terms
Prerequisites: Sophomore standing required.
An introduction to statics and dynamics of rigid bodies, deformable bodies, and fluids. Equilibrium of force systems, principle of virtual work, distributed force systems, friction, static analysis of rigid and deformable structures, hydrostatics, kinematics, particle dynamics, rigid-body dynamics, Euler's equations, ideal flow, vorticity, viscous stresses in fluids, dynamics of deformable systems, waves in fluids and solids. Not offered on a pass/fail basis.
Instructors:
Hall, Andrade
ME 13/130
Introduction to Mechanical Prototyping
4 units (0-4-0)
|
first, second, summer terms
Enrollment is limited and is based on responses to a questionnaire available in the Registrar's Office during registration. Introduction to the technologies and practices needed to fabricate mechanical prototypes. Students will be introduced to both manual and computer-aided machining techniques, as well as computer-controlled prototyping technologies, such as three-dimensional printing and water jet cutting. Students will receive safety training, instruction on the theories underlying different machining methods, and hands-on demonstrations of machining and mechanical assembly methods. Several prototypes will be constructed using the various technologies available in the mechanical engineering machine shop. Experience with computer-aided drafting tools is helpful but not essential.
Instructor:
Van Deusen
ME 14
Design and Fabrication
9 units (3-5-1)
|
third term
Prerequisites: ME 12ab, ME 13. Enrollment is limited and will be based on responses to a questionnaire available in the Registrar's office.
Introduction to mechanical engineering design, fabrication, and visual communication. Concepts are taught through a series of short design projects and design competitions emphasizing physical concepts. Many class projects will involve substantial use of the shop facilities, and construction of working prototypes. Not offered on a pass/fail basis.
Instructors:
Mello, Van Deusen
ME 19 ab
Fluid Mechanics
9 units (3-0-6)
|
second, third terms
Prerequisites: Ma 2, Ph 1 abc.
Properties of fluids, basic equations of fluid mechanics, theorems of energy, linear and angular momentum. Euler's equations, inviscid potential flow, surface waves, airfoil theory. Navier-Stokes equations, vorticity and vorticity transport. Flow of real fluids, similarity parameters, flow in ducts. Boundary layer theory for laminar and turbulent flow, transition to turbulence. Drag, lift, and propulsion. Not offered after 2014-2015.
Instructor:
Colonius
ME 50 ab
Experiments and Modeling in Mechanical Engineering
9 units (0-6-3)
|
first, second terms
Prerequisites: ME 11abc, ME 12 abc, ME 13, ME 14, and programming skills at the level of CS 1 and ACM 11.
Laboratory experiments and modeling of systems relevant to Mechanical Engineering. First offered 2015-2016.
ME 65
Mechanics of Materials
9 units (3-0-6)
|
first term
Prerequisites: ME 35 abc, Ma 2 ab.
Introduction to continuum mechanics, principles of elasticity, plane stress, plane strain, axisymmetric problems, stress concentrations, thin films, fracture mechanics, variational principles, frame structures, finite element methods, composites, and plasticity. Taught concurrently with Ae/AM/CE/ME 102.
Instructors:
Ravichandran, Bhattacharya
ME 66
Vibration
9 units (3-0-6)
|
first term
Prerequisites: ME 35 abc, Ma 2 ab.
Introduction to vibration and wave propagation in continuous and discrete multi-degree-of-freedom systems. Strings, mass-spring systems, mechanical devices, elastic continua. Equations of motion, Lagrange's equations, Hamilton's principle, and time-integration schemes. Taught concurrently with AM/CE 151 a.
Instructor:
Heaton
ME 72 ab
Engineering Design Laboratory
9 units (3-4-2 a), (1-8-0 b)
|
first, second terms
Prerequisites: ME 14. Enrollment is limited.
A project-based course in which teams of students design, fabricate, analyze, test, and operate an electromechanical device to compete against devices designed by other student teams. The class lectures and the projects stress the integration of mechanical design, sensing, engineering analysis, and computation to solve problems in engineering system design. The laboratory units of ME 72 can be used to fulfill a portion of the laboratory requirement for the ME or EAS option. Not offered on a pass/fail basis.
Instructors:
Mello, Van Duesen
CS/EE/ME 75 abc
Introduction to Multidisciplinary Systems Engineering
3 units (2-0-1) , 6 units (2-0-4), or 9 units (2-0-7) first term; 6 units (2-3-1), 9 units (2-6-1), or 12 units (2-9-1) second term; 12 units (2-9-1), 15 units (2-12-1), or 18 units (2-15-1), with instructor’s permission, third term. This course presents the fundamentals of modern multidisciplinary systems engineering in the context of a substantial design project. Students from a variety of disciplines will conceive, design, implement, and operate a system involving electrical, information, and mechanical engineering components. Specific tools will be provided for setting project goals and objectives, managing interfaces between component subsystems, working in design teams, and tracking progress against tasks. Students will be expected to apply knowledge from other courses at Caltech in designing and implementing specific subsystems. During the first two terms of the course, students will attend project meetings and learn some basic tools for project design, while taking courses in CS, EE, and ME that are related to the course project. During the third term, the entire team will build, document, and demonstrate the course design project, which will differ from year to year. Freshmen must receive permission from the lead instructor to enroll. Not offered 2014-15.
ME 90 abc
Senior Thesis, Experimental
9 units (0-0-9)
|
first term
Prerequisites: senior status; instructor's permission.
Experimental research supervised by an engineering faculty member. The topic selection is determined by the adviser and the student and is subject to approval by the Mechanical Engineering Undergraduate Committee. First and second terms: midterm progress report and oral presentation during finals week. Third term: completion of thesis and final presentation. The second and third terms may be used to fulfill laboratory credit for EAS. Not offered on a pass/fail basis.
Instructor:
Colonius
ME 96
Mechanical Engineering Laboratory
9 units (0-9-0)
|
third term
Prerequisites: ME 18 ab, ME 19 ab, ME 35 ab.
A laboratory course with experiments drawn from diverse areas of mechanical engineering, including heat transfer, control, fluid mechanics, solid mechanics, atomic force microscopy, materials, combustion, turbomachinery, and dynamics. Not offered after 2015-2016.
Instructor:
Mello
ME 100
Advanced Work in Mechanical Engineering
The faculty in mechanical engineering will arrange special courses on problems to meet the needs of qualified undergraduate students. Graded pass/fail for research and reading. A written report is required for each term.
Ae/APh/CE/ME 101 abc
Fluid Mechanics
9 units (3-0-6)
|
first, second, third terms
Prerequisites: APh 17 or ME 11 abc, and ME 12 or equivalent, ACM 95/100 or equivalent (may be taken concurrently).
Fundamentals of fluid mechanics. Microscopic and macroscopic properties of liquids and gases; the continuum hypothesis; review of thermodynamics; general equations of motion; kinematics; stresses; constitutive relations; vorticity, circulation; Bernoulli's equation; potential flow; thin-airfoil theory; surface gravity waves; buoyancy-driven flows; rotating flows; viscous creeping flow; viscous boundary layers; introduction to stability and turbulence; quasi one-dimensional compressible flow; shock waves; unsteady compressible flow; and acoustics.
Instructor:
Shepherd
Ae/AM/CE/ME 102 abc
Mechanics of Structures and Solids
9 units (3-0-6)
|
first, second, third terms
Prerequisites: ME 35 abc or equivalent.
Static and dynamic stress analysis. Two- and three-dimensional theory of stressed elastic solids. Analysis of structural elements with applications in a variety of fields. Variational theorems and approximate solutions, finite elements. A variety of special topics will be discussed in the third term such as, but not limited to, elastic stability, wave propagation, and introductory fracture mechanics.
Instructors:
Ortiz, Pellegrino
E/ME 103
Management of Technology
9 units (3-0-6)
|
third term
A course intended for students interested in learning how rapidly evolving technologies are harnessed to produce useful products. Students will work through Harvard Business School case studies, supplemented by lectures to elucidate the key issues. There will be a term project. The course is team-based and designed for students considering working in companies (any size, including start-ups) or eventually going to business school. Topics include technology as a growth agent, financial fundamentals, integration into other business processes, product development pipeline and portfolio management, learning curves, risk assessment, technology trend methodologies (scenarios, projections), motivation, rewards and recognition. Industries considered will include electronics (hardware and software), aerospace, medical, biotech, etc. E 102 and E/ME 105 are useful but not required precursors.
Instructor:
Pickar
E/ME 105 ab
Product Design for the Developing World
9 units (3-2-4)
|
first, second terms
This course emphasizes products for the Developing World - for those people at the bottom of the pyramid. The current focus is on India. The class teaches product design methodologies informed by the special circumstances of the customers. Technologies are often indigenous or local and not "high tech". Issues of sustainability in the business sense as well as the engineering sense are included, as are cultural concerns. We particularly emphasize ultra-low cost manufacturing as well as ergonomic design. Prototyping is an important part of the course with the second quarter devoted to building and testing engineering prototypes in India. The class is characterized by mixed international teams in collaboration with St Gits University in Kerala, India. All lectures are teleconferenced between both locations. To further broaden the experience, students from Art Center College of Design also participate. Some students will go on a pre-trip to India in early September to meet their future teammates and perform research on peoples' needs, choosing potential issues to address when the class commences, though this is not a requirement.
Instructor:
Pickar
EST/EE/ME 109
Energy Technology and Policy
9 units (3-0-6)
|
first term
Prerequisites: Ph 1 abc, Ch 1 ab and Ma 1 abc.
A discussion of how energy technology interacts with government policy. Renewable sources and the electricity grid. The shale gas revolution and fracking impacts. Electric vehicles and car mileage standards. Coal mining by mountaintop removal and pollution. Peak oil and the debate on limits to growth. Resource models and climate-change policy.
Instructor:
Rutledge
ME 110
Special Laboratory Work in Mechanical Engineering
3-9 units per term
|
maximum two terms
Special laboratory work or experimental research projects may be arranged by members of the faculty to meet the needs of individual students as appropriate. A written report is required for each term of work.
Instructor:
Staff
CE/ME 112 ab
Hydraulic Engineering
9 units (3-0-6)
|
second, third terms
Prerequisites: ME 19 or equivalent; ACM 95/100 or equivalent (may be taken concurrently).
A survey of topics in hydraulic engineering: open channel and pipe flow, subcritical/critical flow and the hydraulic jump, hydraulic structures (weirs, inlet and outlet works, dams), hydraulic machinery, hydrology, river and flood modeling, solute transport, sediment mechanics, groundwater flow. Not offered 2014-2015.
ME 115 ab
Introduction to Kinematics and Robotics
9 units (3-0-6)
|
second, third terms
Prerequisites: Ma 2, ACM 95/100 ab recommended.
Introduction to the study of planar, rotational, and spatial motions with applications to robotics, computers, computer graphics, and mechanics. Topics in kinematic analysis will include screw theory, rotational representations, matrix groups, and Lie algebras. Applications include robot kinematics, mobility in mechanisms, and kinematics of open and closed chain mechanisms. Additional topics in robotics include path planning for robot manipulators, dynamics and control, and assembly. Course work will include laboratory demonstrations using simple robot manipulators. Not offered 2014-15.
ME 117
Nano-to-Macro Transport Processes
9 units (3-0-6)
|
second term
Prerequisites: ME 18ab, ME 19ab, ME 20, ACM 95 or equivalent.
This course provides a parallel treatment of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from the nanoscale continuously to the macroscale. Topics include energy transport in the form of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at the nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.
Instructor:
Minnich
Ae/ME 118
Classical Thermodynamics
9 units (3-0-6)
|
first term
Prerequisites: ME 11 abc, ME 12, or equivalent.
Fundamentals of classical thermodynamics. Basic postulates and laws of thermodynamics, work and heat, entropy and available work, and thermal systems. Equations of state, compressibility functions, and the Law of Corresponding States. Thermodynamic potentials, chemical and phase equilibrium, phase transitions, and thermodynamic properties of solids, liquids, and gases. Examples will be drawn from fluid dynamics, solid mechanics, and thermal science applications.
Instructor:
Dimotakis
ME 119 ab
Heat and Mass Transfer
9 units (3-0-6)
|
second, third terms
Prerequisites: ME 18 ab, ME 19 ab, ACM 95/100 (may be taken concurrently).
Transport properties, conservation equations, conduction heat transfer, convective heat and mass transport in laminar and turbulent flows, phase change processes, thermal radiation. Not offered 2014-15.
Ae/ME 120 ab
Combustion Fundamentals
9 units (3-0-6)
|
second, third terms
Prerequisites: ME 119 a or equivalent.
The course will cover thermodynamics of pure substances and mixtures, equations of state, chemical equilibrium, chemical kinetics, combustion chemistry, transport phenomena, and the governing equations for multicomponent gas mixtures. Topics will be chosen from non-premixed and premixed flames, the fluid mechanics of laminar flames, flame mechanisms of combustion-generated pollutants, and numerical simulations of multicomponent reacting flows.
Instructor:
Blanquart
ME 131
Advanced Robotics: Manipulation and Sensing
9 units (3-6-0)
|
third term
Prerequisites: ME 115 ab.
The course focuses on current topics in robotics research in the area of robotic manipulation and sensing. Past topics have included advanced manipulator kinematics, grasping and dextrous manipulation using multifingered hands, and advanced obstacle avoidance and motion planning algorithms. The lectures will be divided between a review of the appropriate analytical techniques and a survey of the current research literature. Course work will focus on an independent research project chosen by the student. Not offered 2014-15.
ME/CS 132 ab
Advanced Robotics: Navigation and Vision
9 units (3-6-0)
|
second, third terms
Prerequisites: ME 115 ab.
The course focuses on current topics in robotics research in the area of autonomous navigation and vision. Topics will include mobile robots, multilegged walking machines, use of vision in navigation systems. The lectures will be divided between a review of the appropriate analytical techniques and a survey of the current research literature. Course work will focus on an independent research project chosen by the student.
Instructor:
Staff
AM/CE/ME 150 abc
Graduate Engineering Seminar
1 unit
|
each term
Students attend a graduate seminar each week of each term and submit a report about the attended seminars. At least four of the attended seminars each term should be from the Mechanical and Civil Engineering seminar series. Students not registered for the M.S. and Ph.D. degrees must receive the instructor's permission. Graded pass/fail.
Instructor:
Staff
Ae/Ge/ME 160 ab
Continuum Mechanics of Fluids and Solids
9 units (3-0-6)
|
first, second terms
Elements of Cartesian tensors. Configurations and motions of a body. Kinematics-study of deformations, rotations and stretches, polar decomposition. Lagrangian and Eulerian strain velocity and spin tensor fields. Irrotational motions, rigid motions. Kinetics-balance laws. Linear and angular momentum, force, traction stress. Cauchy's theorem, properties of Cauchy's stress. Equations of motion, equilibrium equations. Power theorem, nominal (Piola-Kirchoff) stress. Thermodynamics of bodies. Internal energy, heat flux, heat supply. Laws of thermodynamics, notions of entropy, absolute temperature. Entropy inequality (Clausius-Duhem). Examples of special classes of constitutive laws for materials without memory. Objective rates, corotational, convected rates. Principles of materials frame indifference. Examples: the isotropic Navier-Stokes fluid, the isotropic thermoelastic solid. Basics of finite differences, finite elements, and boundary integral methods, and their applications to continuum mechanics problems illustrating a variety of classes of constitutive laws.
Instructor:
Ortiz
MS/ME 161
Imperfections in Crystals
9 units (3-0-6)
|
third term
Prerequisites: graduate standing or MS 115.
The relation of lattice defects to the physical and mechanical properties of crystalline solids. Introduction to point imperfections and their relationships to transport properties in metallic, covalent, and ionic crystals. Kroeger-Vink notation. Introduction to dislocations: geometric, crystallographic, elastic, and energetic properties of dislocations. Dislocation reactions and interactions including formation of locks, stacking faults, and surface effects. Relations between collective dislocation behavior and mechanical properties of crystals. Introduction to computer simulations of dislocations. Grain boundaries. The structure and properties of interfaces in solids. Emphasis on materials science aspects of role of defects in electrical, morphological, optical, and mechanical properties of solids. Not offered 2014-15.
MS/ME 162
Mechanical Behavior of Materials
9 units (3-0-6)
|
second term
Introduction to the mechanical behavior of solids, emphasizing the relationships between microstructure, defects, and mechanical properties. Elastic, anelastic, and plastic properties of crystalline and amorphous materials. Polymer and glass properties: viscoelasticity, flow, and strain-rate dependence. The relationships between stress, strain, strain rate, and temperature for deformable solids. Application of dislocation theory to strengthening mechanisms in crystalline solids. The phenomena of creep, fracture, and fatigue, and their controlling mechanisms.
Instructor:
Greer
ME/CE 163
Mechanics and Rheology of Fluid-Infiltrated Porous Media
9 units (3-0-6)
|
third term
Prerequisites: Continuum Mechanics - Ae/Ge/ME 160ab.
This course will focus on the physics of porous materials (e.g., geomaterials, biological tissue) and their intimate interaction with interstitial fluids (e.g., water, oil, blood). The course will be split into two parts: Part 1 will focus on the continuum mechanics (balance laws) of multi-phase solids, with particular attention to fluid diffusion-solid deformation coupling. Part 2 will introduce the concept of effective stresses and state of the art rheology available in modeling the constitutive response of representative porous materials. Emphasis will be placed on poro-elasticity and poro-plasticity. Not offered 2014-15.
AM/ME 165 ab
Elasticity
9 units (3-0-6)
|
second, third terms
Prerequisites: Ae/Ge/ME 160 a and registered in Ae/Ge/ME 160 b.
Fundamental concepts and equations of elasticity. Linearized theory of elastostatics and elastodynamics: basic theorems and special solutions. Finite theory of elasticity: constitutive theory, semi-inverse methods. Variational methods. Applications to problems of current interest. Not offered 2014-15.
EST/MS/ME 199
Special Topics in Energy Science and Technology
Units to be arranged
Subject matter will change from term to term depending upon staff and student interest, but will generally center on modes of energy storage and conversion.
Instructor:
Staff
ME 200
Advanced Work in Mechanical Engineering
The faculty in mechanical engineering will arrange special courses on problems to meet the needs of graduate students. Graded pass/fail; a written report is required for each term of work.
ME 202 abc
Engineering Two-Phase Flows
9 units (3-0-6)
Prerequisites: ACM 95/100 abc, Ae/APh/CE/ME 101 abc, or equivalents.
Selected topics in engineering two-phase flows with emphasis on practical problems in modern hydro-systems. Fundamental fluid mechanics and heat, mass, and energy transport in multiphase flows. Liquid/vapor/gas (LVG) flows, nucleation, bubble dynamics, cavitating and boiling flows, models of LVG flows; instabilities, dynamics, and wave propagation; fluid/structure interactions. Discussion of two-phase flow problems in conventional, nuclear, and geothermal power plants, marine hydrofoils, and other hydraulic systems. Not offered 2014-15.
Ae/AM/MS/ME 213
Mechanics and Materials Aspects of Fracture
9 units (3-0-6)
|
first term
Prerequisites: Ae/AM/CE/ME 102 abc (concurrently) or equivalent and instructor's permission.
Analytical and experimental techniques in the study of fracture in metallic and nonmetallic solids. Mechanics of brittle and ductile fracture; connections between the continuum descriptions of fracture and micromechanisms. Discussion of elastic-plastic fracture analysis and fracture criteria. Special topics include fracture by cleavage, void growth, rate sensitivity, crack deflection and toughening mechanisms, as well as fracture of nontraditional materials. Fatigue crack growth and life prediction techniques will also be discussed. In addition, "dynamic" stress wave dominated, failure initiation growth and arrest phenomena will be covered. This will include traditional dynamic fracture considerations as well as discussions of failure by adiabatic shear localization. Not offered 2014-15.
Ae/AM/CE/ME 214 abc
Computational Solid Mechanics
9 units (3-0-6)
|
first, second, third terms
Prerequisites: AM 125 abc or equivalent; ACM 100 abc or equivalent; CE/AM/Ae 108 abc or equivalent or instructor's permission; Ae/AM/CE/ME 102 abc or equivalent; Ae/Ge/ME 160 ab desirable or taken concurrently.
Introduction to the use of numerical methods in the solution of solid mechanics and materials problems. First term: geometrical representation of solids. Automatic meshing. Approximation theory. Interpolation error estimation. Optimal and adaptive meshing. Second term: variational principles in linear elasticity. Finite element analysis. Error estimation. Convergence. Singularities. Adaptive strategies. Constrained problems. Mixed methods. Stability and convergence. Variational problems in nonlinear elasticity. Consistent linearization. The Newton-Rahpson method. Bifurcation analysis. Adaptive strategies in nonlinear elasticity. Constrained finite deformation problems. Contact and friction. Third term: time integration. Algorithm analysis. Accuracy, stability, and convergence. Operator splitting and product formulas. Coupled problems. Impact and friction. Subcycling. Space-time methods. Inelastic solids. Constitutive updates. Stability and convergence. Consistent linearization. Applications to finite deformation viscoplasticity, viscoelasticity, and Lagrangian modeling of fluid flows. Not offered 2014-15.
Ae/AM/ME 215
Dynamic Behavior of Materials
9 units (3-0-6)
|
second term
Prerequisites: ACM 100 abc or AM 125 abc; Ae/AM/CE/ME 102 abc.
Fundamentals of theory of wave propagation; plane waves, wave guides, dispersion relations; dynamic plasticity, adiabatic shear banding; dynamic fracture; shock waves, equation of state. Not offered 2014-15.
Ae/ME 218
Statistical Mechanics
9 units (3-0-6)
|
second term
Prerequisites: Ae/ME118, or equivalent.
Overview of probability and statistics, and the Maxwell-Boltzmann distribution. Overview and elements of Quantum Mechanics, degenerate energy states, particles in a box, and energy-state phase space. Statistics of indistinguishable elementary particles, Fermi-Dirac and Bose-Einstein statistics, partition functions, connections with classical thermodynamics, and the Law of Equipartition. Examples from equilibrium in fluids, solid-state physics, and others.
Instructor:
Dimotakis
CE/Ge/ME 222
Earthquake Source Processes, Debris Flows, and Soil Liquefaction: Physics-based Modeling of Failure in Granular Media
6 units (2-0-4)
|
third term
A seminar-style course focusing on granular dynamics and instabilities as they relate to geophysical hazards such as fault mechanics, debris flows, and liquefaction. The course will consist of student-led presentations of active research at Caltech and discussions of recent literature. No offered 2014-2015.
Ae/AM/ME 223
Plasticity
9 units (3-0-6)
|
second term
Prerequisites: Ae/AM/CE/ME 102 abc or instructor's permission.
Theory of dislocations in crystalline media. Characteristics of dislocations and their influence on the mechanical behavior in various crystal structures. Application of dislocation theory to single and polycrystal plasticity. Theory of the inelastic behavior of materials with negligible time effects. Experimental background for metals and fundamental postulates for plastic stress-strain relations. Variational principles for incremental elastic-plastic problems, uniqueness. Upper and lower bound theorems of limit analysis and shakedown. Slip line theory and applications. Additional topics may include soils, creep and rate-sensitive effects in metals, the thermodynamics of plastic deformation, and experimental methods in plasticity.
Instructor:
Andrade
Ae/AM/ME 225
Special Topics in Solid Mechanics
Units to be arranged
|
first, second, third terms
Subject matter changes depending upon staff and student interest. (1) Stress Waves in Solids. 9 units (3-0-6); second term. Stress waves will be introduced by considering plane waves which allow the principal features of stress wave propagation to be explored without introducing the geometric complexities of waves in 3D. Formulation will include elastic materials and dissipative materials that are modeled as viscoelastic or viscoplastic. For elastic materials, we will consider waves in unbounded anisotropic media, refraction at plane boundaries, surface waves, wave guides, phase velocity and group velocity, waves in periodic media, energy transport, and diffraction. For dissipative materials, we will consider frequency- dependent attenuation, elastic precursor decay, and nonlinear waves in 1D. Examples, and opportunities to explore more advanced topics, will be chosen to try to respond to student interests.
Instructor:
Clifton
Ae/ACM/ME 232 ab
Computational Fluid Dynamics
9 units (3-0-6)
|
first, second terms
Prerequisites: Ae/APh/CE/ME 101 abc or equivalent; ACM 100 abc or equivalent.
Development and analysis of algorithms used in the solution of fluid mechanics problems. Numerical analysis of discretization schemes for partial differential equations including interpolation, integration, spatial discretization, systems of ordinary differential equations; stability, accuracy, aliasing, Gibbs and Runge phenomena, numerical dissipation and dispersion; boundary conditions. Survey of finite difference, finite element, finite volume and spectral approximations for the numerical solution of the incompressible and compressible Euler and Navier-Stokes equations, including shock-capturing methods.
Instructors:
Pullin, Meiron
Ae/CDS/ME 251 ab
Closed Loop Flow Control
9 units (3-0-6 a, 1-6-1- b)
|
second, third terms
Prerequisites: ACM 100abc, Ae/APh/CE/ME 101abc or equivalent.
This course seeks to introduce students to recent developments in theoretical and practical aspects of applying control to flow phenomena and fluid systems. Lecture topics in the second term drawn from: the objectives of flow control; a review of relevant concepts from classical and modern control theory; high-fidelity and reduced-order modeling; principles and design of actuators and sensors. Third term: laboratory work in open- and closed-loop control of boundary layers, turbulence, aerodynamic forces, bluff body drag, combustion oscillations and flow-acoustic oscillations. Not offered 2014-15.
ME/MS 260 ab
Micromechanics
12 units (3-0-9)
|
second, third terms
Prerequisites: ACM 95/100 or equivalent, and Ae/AM/CE/ME 102 abc or Ae 160 abc or instructor's permission.
The course gives a broad overview of micromechanics, emphasizing the microstructure of materials, its connection to molecular structure, and its consequences on macroscopic properties. Topics include phase transformations in crystalline solids, including martensitic, ferroelectric, and diffusional phase transformations, twinning and domain patterns, active materials; effective properties of composites and polycrystals, linear and nonlinear homogenization; defects, including dislocations, surface steps, and domain walls; thin films, asymptotic methods, morphological instabilities, self-organization; selected applications to microactuation, thin-film processing, composite materials, mechanical properties, and materials design. Open to undergraduates with instructor's permission. Not offered 2014-15.
ME/Ge/Ae 266 ab
Dynamic Fracture and Frictional Faulting
9 units (3-0-6)
|
second, third terms
Prerequisites: Ae/AM/CE/ME 102 abc or Ae/Ge/ME 160 ab or instructor's permission.
Introduction to elastodynamics and waves in solids. Dynamic fracture theory, energy concepts, cohesive zone models. Friction laws, nucleation of frictional instabilities, dynamic rupture of frictional interfaces. Radiation from moving cracks. Thermal effects during dynamic fracture and faulting. Crack branching and faulting along nonplanar interfaces. Related dynamic phenomena, such as adiabatic shear localization. Applications to engineering phenomena and physics and mechanics of earthquakes.
Instructor:
Lapusta
ME 300
Research in Mechanical Engineering
Hours and units by arrangement
Research in the field of mechanical engineering. By arrangement with members of the faculty, properly qualified graduate students are directed in research.
Published Date:
July 28, 2022