MedE 99
Undergraduate Research in Medical Engineering
Variable units as arranged with the advising faculty member
|
first, second, third terms
Undergraduate research with a written report at the end of each term; supervised by a Caltech faculty member, or co-advised by a Caltech faculty member and an external researcher. Graded pass/fail.
Instructor:
Staff
MedE 100 abc
Medical Engineering Seminar
1 unit
|
first, second, third terms
All PhD degree candidates in Medical Engineering are required to attend all MedE seminars. If there is no MedE seminar during a week, then the students should go to any other graduate-level seminar that week. Students should broaden their knowledge of the engineering principles and sciences of medical engineering. Students are expected to learn the forefronts of the research and development of medical materials, technologies, devices and systems from the seminars. Graded pass/fail.
Instructors:
Gao, Tai, Wang
MedE 101
Introduction to Clinical Physiology and Pathophysiology for Engineers
9 units (3-0-6)
|
first term
Prerequisites: No Prerequisites, Bi 1 or equivalent recommended.
The goal of this course is to introduce engineering scientists to medical physiological systems: with a special emphasis on the clinical relevance. The design of the course is to present two related lectures each week: An overview of the physiology of a system followed by examples of current clinical medical challenges and research highlighting diagnostic and therapeutic modalities. The final three weeks of the course will be a mini-work shop where the class explores challenging problems in medical physiology. The course ultimately seeks to promote a bridge between relevant clinical problems and engineering scientists who desire to solve them. Graded pass/fail.
Instructor:
Petrasek
E/ME/MedE 105 ab
Design for Freedom from Disability
9 units (3-0-6)
|
terms to be arranged
This Product Design class focuses on people with Disabilities and is done in collaboration with Rancho Los Amigos National Rehabilitation Center. Students visit the Center to define products based upon actual stated and observed needs. Designs and testing are done in collaboration with Rancho associates. Speakers include people with assistive needs, therapists and researchers. Classes teach normative design methodologies as adapted for this special area. Not offered 2021-2022.
Instructor:
TBD
ChE/BE/MedE 112
Creativity and Technological Innovation with Microfluidic Systems
9 units (3-0-6)
|
second term
This course combines three parts. First, it will cover fundamental aspects of kinetics, mass-transport, and fluid physics that are relevant to microfluidic systems. Second, it will provide an understanding of how new technologies are invented and reduced to practice. Finally, students in the course will work together to design microfluidic systems that address challenges in Global Health, with an emphasis on students' inventive contributions and creativity. Students will be encouraged and helped, but not required, to develop their inventions further by working with OTT and entrepreneurial resources on campus. Participants in this course benefit from enrollment of students with diverse backgrounds and interests. For chemical engineers, suggested but not required courses are ChE 101 (Chemical Reaction Engineering) and ChE 103 abc (Transport Phenomena). Students are encouraged to contact the instructor to discuss enrollment.
Instructor:
Ismagilov
EE/MedE 114 ab
Analog Circuit Design
12 units (4-0-8)
|
second, third terms
Prerequisites: EE 44 or equivalent.
Analysis and design of analog circuits at the transistor level. Emphasis on design-oriented analysis, quantitative performance measures, and practical circuit limitations. Circuit performance evaluated by hand calculations and computer simulations. Recommended for juniors, seniors, and graduate students. Topics include: review of physics of bipolar and MOS transistors, low-frequency behavior of single-stage and multistage amplifiers, current sources, active loads, differential amplifiers, operational amplifiers, high-frequency circuit analysis using time- and transfer constants, high-frequency response of amplifiers, feedback in electronic circuits, stability of feedback amplifiers, and noise in electronic circuits, and supply and temperature independent biasing. A number of the following topics will be covered each year: trans-linear circuits, switched capacitor circuits, data conversion circuits (A/D and D/A), continuous-time Gm.C filters, phase locked loops, oscillators, and modulators. Not offered 2021-2022.
Instructor:
Hajimiri
EE/MedE 115
Micro-/Nano-scales Electro-Optics
9 units (3-0-6)
|
first term
Prerequisites: Introductory electromagnetic class and consent of the instructor.
The course will cover various electro-optical phenomena and devices in the micro-/nano-scales. We will discuss basic properties of light, imaging, aberrations, eyes, detectors, lasers, micro-optical components and systems, scalar diffraction theory, interference/interferometers, holography, dielectric/plasmonic waveguides, and various Raman techniques. Topics may vary. Not offered 2021-2022.
MS/ME/MedE 116
Mechanical Behavior of Materials
9 units (3-0-6)
|
second term
Introduction to the mechanical behavior of solids, emphasizing the relationships between microstructure, architecture, defects, and mechanical properties. Elastic, inelastic, and plastic properties of crystalline and amorphous materials. Relations between stress and strains for different types of materials. Introduction to dislocation theory, motion and forces on dislocations, strengthening mechanisms in crystalline solids. Nanomaterials: properties, fabrication, and mechanics. Architected solids: fabrication, deformation, failure, and energy absorption. Biomaterials: mechanical properties of composites, multi-scale microstructure, biological vs. synthetic, shear lag model. Fracture in brittle solids and linear elastic fracture mechanics.
Instructor:
Greer
EE/MedE 124
Mixed-mode Integrated Circuits
9 units (3-0-6)
|
third term
Prerequisites: EE 45 a or equivalent.
Introduction to selected topics in mixed-signal circuits and systems in highly scaled CMOS technologies. Design challenges and limitations in current and future technologies will be discussed through topics such as clocking (PLLs and DLLs), clock distribution networks, sampling circuits, high-speed transceivers, timing recovery techniques, equalization, monitor circuits, power delivery, and converters (A/D and D/A). A design project is an integral part of the course.
Instructor:
Emami
EE/CS/MedE 125
Digital Electronics and Design with FPGAs and VHDL
9 units (3-6-0)
|
third term
Prerequisites: EE/CS 10 or equivalent.
Study of programmable logic devices (CPLDs and FPGAs). Detailed study of the VHDL language, with basic and advanced applications. Review and discussion of digital design principles for combinational-logic, combinational-arithmetic, sequential, and state-machine circuits. Detailed tutorials for synthesis and simulation tools using FPGAs and VHDL. Wide selection of complete, real-world fundamental advanced projects, including theory, design, simulation, and physical implementation. All designs are implemented using state-of-the-art development boards.
Instructor:
Pedroni
MedE/EE/BE 168 abc
Biomedical Optics: Principles and Imaging
9 units (4-0-5) each
|
parts a and b are taught in second and third terms in odd academic years, and part c is taught in second term in even academic years
Prerequisites: instructor's permission.
Part a covers the principles of optical photon transport in biological tissue. Topics include a brief introduction to biomedical optics, single-scatterer theories, Monte Carlo modeling of photon transport, convolution for broad-beam responses, radiative transfer equation and diffusion theory, hybrid Monte Carlo method and diffusion theory, and sensing of optical properties and spectroscopy, (absorption, elastic scattering, Raman scattering, and fluorescence). Part b covers established optical imaging technologies. Topics include ballistic imaging (confocal microscopy, two-photon microscopy, super-resolution microscopy, etc.), optical coherence tomography, Mueller optical coherence tomography, and diffuse optical tomography. Part c covers emerging optical imaging technologies. Topics include photoacoustic tomography, ultrasound-modulated optical tomography, optical time reversal (wavefront shaping/engineering), and ultrafast imaging. MedE/EE/BE 168ab offered 2021-2022. MedE/EE/BE 168c not offered 2021-2022.
Instructor:
Wang
EE/CS/MedE 175
Digital Circuits Analysis and Design with Complete VHDL and RTL Approach
9 units (3-6-0)
|
third term
Prerequisites: medium to advanced knowledge of digital electronics.
A careful balance between synthesis and analysis in the development of digital circuits plus a truly complete coverage of the VHDL language. The RTL (register transfer level) approach. Study of FPGA devices and comparison to ASIC alternatives. Tutorials of software and hardware tools employed in the course. VHDL infrastructure, including lexical elements, data types, operators, attributes, and complex data structures. Detailed review of combinational circuits followed by full VHDL coverage for combinational circuits plus recommended design practices. Detailed review of sequential circuits followed by full VHDL coverage for sequential circuits plus recommended design practices. Detailed review of state machines followed by full VHDL coverage and recommended design practices. Construction of VHDL libraries. Hierarchical design and practice on the hard task of project splitting. Automated simulation using VHDL testbenches. Designs are implemented in state-of-the-art FPGA boards. Offered 2021-2022.
Instructor:
Pedroni
EE/BE/MedE 185
MEMS Technology and Devices
9 units (3-0-6)
|
third term
Prerequisites: APh/EE 9 ab, or instructor's permission.
Micro-electro-mechanical systems (MEMS) have been broadly used for biochemical, medical, RF, and lab-on-a-chip applications. This course will cover both MEMS technologies (e.g., micro- and nanofabrication) and devices. For example, MEMS technologies include anisotropic wet etching, RIE, deep RIE, micro/nano molding and advanced packaging. This course will also cover various MEMS devices used in microsensors and actuators. Examples will include pressure sensors, accelerometers, gyros, FR filters, digital mirrors, microfluidics, micro total-analysis system, biomedical implants, etc. Not offered 2021-2022.
EE/MedE 187
VLSI and ULSI Technology
9 units (3-0-6)
|
third term
Prerequisites: APh/EE 9 ab, EE/APh 180 or instructor's permission.
This course is designed to cover the state-of-the-art micro/nanotechnologies for the fabrication of ULSI including BJT, CMOS, and BiCMOS. Technologies include lithography, diffusion, ion implantation, oxidation, plasma deposition and etching, etc. Topics also include the use of chemistry, thermal dynamics, mechanics, and physics. Not offered 2021-2022.
ChE/BE/MedE 188
Molecular Imaging
9 units (3-0-6)
|
second term
Prerequisites: Ch/Bi 110, ChE 101 and ACM 95 or equivalent.
This course will cover the basic principles of biological and medical imaging technologies including magnetic resonance, ultrasound, nuclear imaging, fluorescence, bioluminescence and photoacoustics, and the design of chemical and biological probes to obtain molecular information about living systems using these modalities. Topics will include nuclear spin behavior, sound wave propagation, radioactive decay, photon absorption and scattering, spatial encoding, image reconstruction, statistical analysis, and molecular contrast mechanisms. The design of molecular imaging agents for biomarker detection, cell tracking, and dynamic imaging of cellular signals will be analyzed in terms of detection limits, kinetics, and biological effects. Participants in the course will develop proposals for new molecular imaging agents for applications such as functional brain imaging, cancer diagnosis, and cell therapy. Not offered 2021-2022.
BE/EE/MedE 189 ab
Design and Construction of Biodevices
189 a, 12 units (3-6-3) offered both first and third terms. 189b, 9 units (0-9-0) offered only third term
Prerequisites: BE/EE/MedE 189 a must be taken before BE/EE/MedE 189 b.
Students will learn to use an Arduino micro-controller to interface sensing and actuation hardware with the computer. Students will learn and practice engineering design principles through a set of projects. In part a, students will design and implement biosensing systems, including a pulse monitor, a pulse oximeter, and a real-time polymerase-chain-reaction incubator. Part b is a student-initiated design project requiring instructor's permission for enrollment. Enrollment is limited to 24 students.
Instructors:
Bois, Yang
MedE 199
Special Topics in Medical Engineering
Units to be arranged, terms to be arranged
Subject matter will change from term to term depending upon staff and student interest, but will generally center on the understanding and applying engineering for medical problems.
Instructor:
Staff
MedE 201 ab
Principles and Design of Medical Devices
9 units (3-0-6)
|
second and third term
Prerequisites: instructor's permission.
This course provides a broad coverage on the frontiers of medical diagnostic and therapeutic technologies and devices based on multidisciplinary engineering principles. 201a topics include FDA regulations, in vitro diagnostics, biosensors, electrograms, medical imaging technologies, medical implants, nanomedicine, cardiovascular engineering & technology, medical electronics, wireless communications through the skin and tissue, and medical robotics. 201b will emphasize medical devices for neural science and engineering, emphasizing the engineering fundamentals specific to neural applications. Topics include biocompatibility, biomaterials, implants and foreign body reaction, medical electronics, neural recording and neural stimulation. Devices include pacemakers/defibrillators, DBS, cochlear implants, retinal implants, spinal implants, footdrop implants, etc. Overall, the course will cover the scientific fundamentals of biology, chemistry, engineering, physics, and materials specific to medical applications. However, both the lectures and assignments will also emphasize the design aspects of the topics as well as up-to-date literature study.
Instructors:
Gao (a), Tai (b)
MedE 202
Sensors in Medicine
9 units (3-0-6)
|
second term
Prerequisites: none.
Sensors play a very important role in all aspect of modern life. This course is an essential introduction to a variety of physical, chemical and biological sensors that are used in medicine and healthcare. The fundamental recognition mechanisms, transduction principles and materials considerations for designing powerful sensing and biosensing devices will be covered. We will also discuss the development of emerging electronic-skin, wearable and soft electronics toward personalized health monitoring. Participants in the course will develop proposals for novel sensing technologies to address the current medical needs.
Instructor:
Gao
MedE 205
New Frontiers in Medical Technologies
6 units (2-0-4)
|
third term
Prerequisites: None but knowledge of semiconductor physics and some system engineering, basic electrical engineering highly recommended.
New Frontiers of Medical Technologies is an introductory graduate level course that describes space technologies, instruments, and engineering techniques with current and potential applications in medicine. These technologies have been originally and mainly developed for space exploration. Spinoff applications to medicine have been explored and proven with various degrees of success and maturity. This class introduces these topics, the basics of the technologies, their intended original space applications, and the medical applications. Topics include but are not limited to multimodal imaging, UV/Visible/NIR imaging, imaging spectrometry, sensors, robotics, and navigation. Graded pass/fail.
Instructor:
Nikzad
MedE/BE/Ae 243
Physiological Mechanics
9 units (3-0-6)
|
second term
Prerequisites: Ae/APh/CE/ME 101 abc or equivalent or ChE 103 a.
Internal flows: steady and pulsatile blood flow in compliant vessels, internal flows in organisms. Fluid dynamics of the human circulatory system: heart, veins, and arteries (microcirculation). Mass and momentum transport across membranes and endothelial layers. Fluid mechanics of the respiratory system. Renal circulation and circulatory system. Biological pumps. Low and High Reynolds number locomotion.
Instructor:
TBD
MedE/EE 268
Medical Imaging
9 units (4-0-5)
|
third term
Medical imaging technologies will be covered. Topics include X-ray radiography, X-ray computed tomography (CT), nuclear imaging (PET & SPECT), ultrasonic imaging, and magnetic resonance imaging (MRI).
Instructor:
Wang
MedE 291
Research in Medical Engineering
Units to be arranged, first, second, third terms
Qualified graduate students are advised in medical engineering research, with the arrangement of MedE staff. Graded pass/fail.
Published Date:
July 28, 2022