### Introduction to Computational Science and Engineering

This course is intended to serve as a practical introduction to the methods of computational science and engineering for students in all majors. The goal is to provide students exposure to and hands-on experience with commonly-used computational methods in science and engineering, with theoretical considerations confined to a level appropriate for first-year undergraduate students. Topics covered include computational simulation by discretization in space and time, numerical solution of linear and nonlinear equations, optimization, uncertainty quantification, and function approximation via interpolation and regression. Emphasis is on understanding trade-offs between computational effort and accuracy, and on developing working knowledge of how these tools can be used to solve a wide range of problems arising in applied math, science, and engineering. Assignments and in-class activities use MATLAB. No prior experience with MATLAB expected.

### Undergraduate Thesis

Individual research project, carried out under the supervision of a member of the ACM faculty (or other faculty as approved by the ACM undergraduate option representative). Projects must include significant design effort. Written report required. Open only to upper class students. Not offered on a pass/fail basis.

### Undergraduate Projects in Applied and Computational Mathematics

Supervised research or development in ACM by undergraduates. The topic must be approved by the project supervisor, and a formal final report must be presented on completion of research. Graded pass/fail.

### Introductory Methods of Applied Mathematics for the Physical Sciences

Complex analysis: analyticity, Laurent series, contour integration, residue calculus. Ordinary differential equations: linear initial value problems, linear boundary value problems, Sturm-Liouville theory, eigenfunction expansions, transform methods, Green's functions. Linear partial differential equations: heat equation, separation of variables, Laplace equation, transform methods, wave equation, method of characteristics, Green's functions.

### Methods of Applied Mathematics

First term: Brief review of the elements of complex analysis and complex-variable methods. Asymptotic expansions, asymptotic evaluation of integrals (Laplace method, stationary phase, steepest descents), perturbation methods, WKB theory, boundary-layer theory, matched asymptotic expansions with first-order and high-order matching. Method of multiple scales for oscillatory systems. Second term: Applied spectral theory, special functions, generalized eigenfunction expansions, convergence theory. Gibbs and Runge phenomena and their resolution. Chebyshev expansion and Fourier Continuation methods. Review of numerical stability theory for time evolution. Fast spectrally-accurate PDE solvers for linear and nonlinear Partial Differential Equations in general domains. Integral-equations methods for linear partial differential equation in general domains (Laplace, Helmholtz, Schroedinger, Maxwell, Stokes). Homework problems in both 101 a and 101 b include theoretical questions as well as programming implementations of the mathematical and numerical methods studied in class.

### Applied Linear Algebra

This is an intermediate linear algebra course aimed at a diverse group of students, including junior and senior majors in applied mathematics, sciences and engineering. The focus is on applications. Matrix factorizations play a central role. Topics covered include linear systems, vector spaces and bases, inner products, norms, minimization, the Cholesky factorization, least squares approximation, data fitting, interpolation, orthogonality, the QR factorization, ill-conditioned systems, discrete Fourier series and the fast Fourier transform, eigenvalues and eigenvectors, the spectral theorem, optimization principles for eigenvalues, singular value decomposition, condition number, principal component analysis, the Schur decomposition, methods for computing eigenvalues, non-negative matrices, graphs, networks, random walks, the Perron-Frobenius theorem, PageRank algorithm.

### Applied Real and Functional Analysis

This course is about the fundamental concepts in real and functional analysis that are vital for many topics and applications in mathematics, physics, computing and engineering. The aim of this course is to provide a working knowledge of functional analysis with an eye especially for aspects that lend themselves to applications. The course gives an overview of the interplay between different functional spaces and focuses on the following three key concepts: Hahn-Banach theorem, open mapping and closed graph theorem, uniform boundedness principle. Other core concepts include: normed linear spaces and behavior of linear maps, completeness, Banach spaces, Hilbert spaces, Lp spaces, duality of normed spaces and dual operators, dense subspaces and approximations, hyperplanes, compactness, weak and weak* convergence. More advanced topics include: spectral theory, compact operators, theory of distributions (generalized functions), Fourier analysis, calculus of variations, Sobolev spaces with applications to PDEs, weak solvability theory of boundary value problems.

### Introductory Methods of Computational Mathematics

The sequence covers the introductory methods in both theory and implementation of numerical linear algebra, approximation theory, ordinary differential equations, and partial differential equations. The linear algebra parts cover basic methods such as direct and iterative solution of large linear systems, including LU decomposition, splitting method (Jacobi iteration, Gauss-Seidel iteration); eigenvalue and vector computations including the power method, QR iteration and Lanczos iteration; nonlinear algebraic solvers. The approximation theory includes data fitting; interpolation using Fourier transform, orthogonal polynomials and splines; least square method, and numerical quadrature. The ODE parts include initial and boundary value problems. The PDE parts include finite difference and finite element for elliptic/parabolic/hyperbolic equations. Study of numerical PDE will include stability analysis. Programming is a significant part of the course.

### Linear Analysis with Applications

Covers the basic algebraic, geometric, and topological properties of normed linear spaces, inner-product spaces, and linear maps. Emphasis is placed both on rigorous mathematical development and on applications to control theory, data analysis and partial differential equations.

### Mathematical Modelling

Prerequisites ACM 95/100 ab or equivalent. This course gives an overview of different mathematical models used to describe a variety of phenomena arising in the biological, engineering, physical and social sciences. Emphasis will be placed on the principles used to develop these models, and on the unity and cross-cutting nature of the mathematical and computational tools used to study them. Applications will include quantum, atomistic and continuum modeling of materials; epidemics, reacting-diffusing systems; crowd modeling and opinion formation. Mathematical tools will include ordinary, partial and stochastic differential equations, as well as Markov chains and other stochastic processes. Not offered 2022-23.

### Bayesian Statistics

This course provides an introduction to Bayesian Statistics and its applications to data analysis in various fields. Topics include: discrete models, regression models, hierarchical models, model comparison, and MCMC methods. The course combines an introduction to basic theory with a hands-on emphasis on learning how to use these methods in practice so that students can apply them in their own work. Previous familiarity with frequentist statistics is useful but not required.

### Mathematical Optimization

### Introduction to Probability Models

This course introduces students to the fundamental concepts, methods, and models of applied probability and stochastic processes. The course is application oriented and focuses on the development of probabilistic thinking and intuitive feel of the subject rather than on a more traditional formal approach based on measure theory. The main goal is to equip science and engineering students with necessary probabilistic tools they can use in future studies and research. Topics covered include sample spaces, events, probabilities of events, discrete and continuous random variables, expectation, variance, correlation, joint and marginal distributions, independence, moment generating functions, law of large numbers, central limit theorem, random vectors and matrices, random graphs, Gaussian vectors, branching, Poisson, and counting processes, general discrete- and continuous-timed processes, auto- and cross-correlation functions, stationary processes, power spectral densities.

### Probability Theory and Stochastic Processes

This course offers a rigorous introduction to probability and stochastic processes. Emphasis is placed on the interaction between inequalities and limit theorems, as well as contemporary applications in computing and mathematical sciences. Topics include probability measures, random variables and expectation, independence, concentration inequalities, distances between probability measures, modes of convergence, laws of large numbers and central limit theorem, Gaussian and Poisson approximation, conditional expectation and conditional distributions, filtrations, and discrete-time martingales.

### Stochastic Processes and Regression

Stochastic processes: Branching processes, Poisson point processes, Determinantal point processes, Dirichlet processes and Gaussian processes (including the Brownian motion). Regression: Gaussian vectors, spaces, conditioning, processes, fields and measures will be presented with an emphasis on linear regression. Kernel and variational methods in numerical approximation, signal processing and learning will also be covered through their connections with Gaussian process regression.

### Mathematical Optimization

This class studies mathematical optimization from the viewpoint of convexity. Topics covered include duality and representation of convex sets; linear and semidefinite programming; connections to discrete, network, and robust optimization; relaxation methods for intractable problems; as well as applications to problems arising in graphs and networks, information theory, control, signal processing, and other engineering disciplines.

### Calculus of Variations

First and second variations; Euler-Lagrange equation; Hamiltonian formalism; action principle; Hamilton-Jacobi theory; stability; local and global minima; direct methods and relaxation; isoperimetric inequality; asymptotic methods and gamma convergence; selected applications to mechanics, materials science, control theory and numerical methods. Not offered 2022-23.

### Probability

Overview of measure theory. Random walks and the Strong law of large numbers via the theory of martingales and Markov chains. Characteristic functions and the central limit theorem. Poisson process and Brownian motion. Topics in statistics.

### Ordinary and Partial Differential Equations

The mathematical theory of ordinary and partial differential equations, including a discussion of elliptic regularity, maximal principles, solubility of equations. The method of characteristics. Not offered 2022-23.

### Inverse Problems and Data Assimilation

Models in applied mathematics often have input parameters that are uncertain; observed data can be used to learn about these parameters and thereby to improve predictive capability. The purpose of the course is to describe the mathematical and algorithmic principles of this area. The topic lies at the intersection of fields including inverse problems, differential equations, machine learning and uncertainty quantification. Applications will be drawn from the physical, biological and data sciences. Not offered 2022-23.

### Statistical Inference

Statistical Inference is a branch of mathematical engineering that studies ways of extracting reliable information from limited data for learning, prediction, and decision making in the presence of uncertainty. This is an introductory course on statistical inference. The main goals are: develop statistical thinking and intuitive feel for the subject; introduce the most fundamental ideas, concepts, and methods of statistical inference; and explain how and why they work, and when they don't. Topics covered include summarizing data, fundamentals of survey sampling, statistical functionals, jackknife, bootstrap, methods of moments and maximum likelihood, hypothesis testing, p-values, the Wald, Student's t-, permutation, and likelihood ratio tests, multiple testing, scatterplots, simple linear regression, ordinary least squares, interval estimation, prediction, graphical residual analysis.

### Fundamentals of Statistical Learning

The main goal of the course is to provide an introduction to the central concepts and core methods of statistical learning, an interdisciplinary field at the intersection of statistics, machine learning, information and data sciences. The course focuses on the mathematics and statistics of methods developed for learning from data. Students will learn what methods for statistical learning exist, how and why they work (not just what tasks they solve and in what built-in functions they are implemented), and when they are expected to perform poorly. The course is oriented for upper level undergraduate students in IDS, ACM, and CS and graduate students from other disciplines who have sufficient background in probability and statistics. The course can be viewed as a statistical analog of CMS/CS/CNS/EE/IDS 155. Topics covered include supervised and unsupervised learning, regression and classification problems, linear regression, subset selection, shrinkage methods, logistic regression, linear discriminant analysis, resampling techniques, tree-based methods, support-vector machines, and clustering methods. Not offered 2022-23.

### Mathematics of Signal Processing

This course covers classical and modern approaches to problems in signal processing. Problems may include denoising, deconvolution, spectral estimation, direction-of-arrival estimation, array processing, independent component analysis, system identification, filter design, and transform coding. Methods rely heavily on linear algebra, convex optimization, and stochastic modeling. In particular, the class will cover techniques based on least-squares and on sparse modeling. Throughout the course, a computational viewpoint will be emphasized.

### Discrete Differential Geometry: Theory and Applications

Working knowledge of multivariate calculus and linear algebra as well as fluency in some implementation language is expected. Subject matter covered: differential geometry of curves and surfaces, classical exterior calculus, discrete exterior calculus, sampling and reconstruction of differential forms, low dimensional algebraic and computational topology, Morse theory, Noether's theorem, Helmholtz-Hodge decomposition, structure preserving time integration, connections and their curvatures on complex line bundles. Applications include elastica and rods, surface parameterization, conformal surface deformations, computation of geodesics, tangent vector field design, connections, discrete thin shells, fluids, electromagnetism, and elasticity. Part b not offered 2022-23.

### Multiscale Modeling

Part a: Multiscale methodology for partial differential equations (PDEs) and for stochastic differential equations (SDEs). Basic theory of underlying PDEs; basic theory of Gaussian processes; basic theory of SDEs; multiscale expansions. Part b: Transition from quantum to continuum modeling of materials. Schrodinger equation and semi-classical limit; molecular dynamics and kinetic theory; kinetic theory, Boltzmann equation and continuum mechanics. Part b not offered 2022-23.

### Reading and Independent Study

Graded pass/fail only.

### Partial Differential Equations

This course offers an introduction to the theory of Partial Differential Equations (PDEs) commonly encountered across mathematics, engineering and science. The goal of the course is to study properties of different classes of linear and nonlinear PDEs (elliptic, parabolic and hyperbolic) and the behavior of their solutions using tools from functional analysis with an emphasis on applications. We will discuss representative models from different areas such as: heat equation, wave equation, advection-reaction-diffusion equation, conservation laws, shocks, predator prey models, Burger's equation, kinetic equations, gradient flows, transport equations, integral equations, Helmholtz and Schrödinger equations and Stoke's flow. In this course you will use analytical tools such as Gauss's theorem, Green's functions, weak solutions, existence and uniqueness theory, Sobolev spaces, well-posedness theory, asymptotic analysis, Fredholm theory, Fourier transforms and spectral theory. More advanced topics include: Perron's method, applications to irrotational flow, elasticity, electrostatics, special solutions, vibrations, Huygens' principle, Eikonal equations, spherical means, retarded potentials, water waves, various approximations, dispersion relations, Maxwell equations, gas dynamics, Riemann problems, single- and double-layer potentials, Navier-Stokes equations, Reynolds number, potential flow, boundary layer theory, subsonic, supersonic and transonic flow. Not offered 2022-23.

### Topics in Linear Algebra and Convexity

Topic varies by year. 2022-23: Matrix Analysis. This class develops some foundational results about matrices that have wide application in computational mathematics, statistics, engineering, and related fields. Tools from analysis (real, complex, functional, convex) play a key role. Topics may include multilinear algebra, majorization and doubly stochastic matrices, variational principles for eigenvalues, eigenvalue localization regions, unitarily invariant norms, operator monotonicity and convexity, convexity of matrix functions, matrix means, matrix inequalities, perturbation theory, tensor products and linear matrix equations, Hadamard products, nonnegative matrices, positive and completely positive linear maps, positive-definite functions. Not offered 2022-23.

### Topics in Computational Mathematics

This course provides an introduction to Monte Carlo methods with applications in Bayesian computing and rare event sampling. Topics include Markov chain Monte Carlo (MCMC), Gibbs samplers, Langevin samplers, MCMC for infinite-dimensional problems, convergence of MCMC, parallel tempering, umbrella sampling, forward flux sampling, and sequential Monte Carlo. Emphasis is placed both on rigorous mathematical development and on practical coding experience.

### Numerical Methods for PDEs

Finite difference and finite volume methods for hyperbolic problems. Stability and error analysis of nonoscillatory numerical schemes: i) linear convection: Lax equivalence theorem, consistency, stability, convergence, truncation error, CFL condition, Fourier stability analysis, von Neumann condition, maximum principle, amplitude and phase errors, group velocity, modified equation analysis, Fourier and eigenvalue stability of systems, spectra and pseudospectra of nonnormal matrices, Kreiss matrix theorem, boundary condition analysis, group velocity and GKS normal mode analysis; ii) conservation laws: weak solutions, entropy conditions, Riemann problems, shocks, contacts, rarefactions, discrete conservation, Lax-Wendroff theorem, Godunov's method, Roe's linearization, TVD schemes, high-resolution schemes, flux and slope limiters, systems and multiple dimensions, characteristic boundary conditions; iii) adjoint equations: sensitivity analysis, boundary conditions, optimal shape design, error analysis. Interface problems, level set methods for multiphase flows, boundary integral methods, fast summation algorithms, stability issues. Spectral methods: Fourier spectral methods on infinite and periodic domains. Chebyshev spectral methods on finite domains. Spectral element methods and h-p refinement. Multiscale finite element methods for elliptic problems with multiscale coefficients. Not offered 2022-23.

### Topics in Optimization

Material varies year-to-year. Example topics include discrete optimization, convex and computational algebraic geometry, numerical methods for large-scale optimization, and convex geometry. Not offered 2022-23.

### Markov Chains, Discrete Stochastic Processes and Applications

Stable laws, Markov chains, classification of states, ergodicity, von Neumann ergodic theorem, mixing rate, stationary/equilibrium distributions and convergence of Markov chains, Markov chain Monte Carlo and its applications to scientific computing, Metropolis Hastings algorithm, coupling from the past, martingale theory and discrete time martingales, rare events, law of large deviations, Chernoff bounds.

### Advanced Topics in Probability

The topic of this course changes from year to year and is expected to cover areas such as stochastic differential equations, stochastic control, high-dimensional probability, concentration inequalities, empirical process theory, and random matrix theory.

### Computational Fluid Dynamics

Development and analysis of algorithms used in the solution of fluid mechanics problems. Numerical analysis of discretization schemes for partial differential equations including interpolation, integration, spatial discretization, systems of ordinary differential equations; stability, accuracy, aliasing, Gibbs and Runge phenomena, numerical dissipation and dispersion; boundary conditions. Survey of finite difference, finite element, finite volume and spectral approximations for the numerical solution of the incompressible and compressible Euler and Navier-Stokes equations, including shock-capturing methods.

### Special Topics in Applied Mathematics

Measure transport is a rich mathematical topic at the intersection of analysis, probability and optimization. The core idea behind this theory is to rearrange the mass of a reference measure to match a target measure. In particular, optimal transport seeks a rearrangement that transports mass with minimal cost. The theory of optimal transport dates back to Monge in 1781, with significant advancements by Kantorovich in 1942 and later in the '90s, e.g. by Brenier. In recent years, measure transport has become an indispensable tool for representing probability distributions and for defining measures of similarity between distributions. These methods enjoy applications in image retrieval, signal and image representation, inverse problems, cancer detection, texture and color modelling, shape and image registration, and machine learning, to name a few. This class will introduce the foundations of measure transport, present its connections and applications in various fields, and lastly explore modern computational methods for finding discrete and continuous transport maps, e.g. Sinkhorn's algorithm and normalizing flows.

### Special Topics in Financial Mathematics

A basic knowledge of probability and statistics as well as transform methods for solving PDEs is assumed. This course develops some of the techniques of stochastic calculus and applies them to the theory of financial asset modeling. The mathematical concepts/tools developed will include introductions to random walks, Brownian motion, quadratic variation, and Ito-calculus. Connections to PDEs will be made by Feynman-Kac theorems. Concepts of risk-neutral pricing and martingale representation are introduced in the pricing of options. Topics covered will be selected from standard options, exotic options, American derivative securities, term-structure models, and jump processes. Not offered 2022-23.

### Advanced Topics in Applied and Computational Mathematics

Advanced topics in applied and computational mathematics that will vary according to student and instructor interest. May be repeated for credit.