Up to all Physics Courses for 2021-22 Show Filters

Physics (Ph) Graduate Courses (2021-22)

Ph 101. Order-of-Magnitude Physics. 9 units (3-0-6): third term. Emphasis will be on using basic physics to understand complicated systems. Examples will be selected from properties of materials, geophysics, weather, planetary science, astrophysics, cosmology, biomechanics, etc. Offered in alternate years. Not offered 2021-22.
Ay/Ph 104. Relativistic Astrophysics. 9 units (3-0-6): third term. Prerequisites: Ph 1, Ph 2 ab. This course is designed primarily for junior and senior undergraduates in astrophysics and physics. It covers the physics of black holes and neutron stars, including accretion, particle acceleration and gravitational waves, as well as their observable consequences: (neutron stars) pulsars, magnetars, X-ray binaries, gamma-ray bursts; (black holes) X-ray transients, tidal disruption and quasars/active galaxies and sources of gravitational waves. Instructor: Kasliwal.
Ph 105. Analog Electronics for Physicists. 9 units: first term. Prerequisites: Ph1abc, Ma2, or equivalent. A laboratory course intended for graduate students, it covers the design, construction, and testing of simple, practical analog and interface circuits useful for signal conditioning and experiment control in the laboratory. No prior experience with electronics is required. Students will use operational amplifiers, analog multipliers, diodes, bipolar transistors, and passive circuit elements. Each week includes a 45 minute lecture/recitation and a 2½ hour laboratory. The course culminates in a two-week project of the student's choosing. Instructors: Rice, Libbrecht.
Ph 106 abc. Topics in Classical Physics. 9 units (4-0-5): first, second, third terms. Prerequisites: Ph 2 ab or Ph 12 abc, Ma 2. An intermediate course in the application of basic principles of classical physics to a wide variety of subjects. Ph106a will be devoted to mechanics, including Lagrangian and Hamiltonian formulations of mechanics, small oscillations and normal modes, central forces, and rigid-body motion. Ph106b will be devoted to fundamentals of electrostatics, magnetostatics, and electrodynamics, including boundary-value problems, multipole expansions, electromagnetic waves, and radiation. It will also cover special relativity. Ph106c will cover advanced topics in electromagnetism and an introduction to classical optics. Instructors: Fuller, Golwala.
APh/Ph 112 ab. Noise and Stochastic Resonance. 9 units (3-0-6): second, third terms. Prerequisites: Ph 12 abc, ACM 95/100 ab and Ph 106 abc, equivalent background, or instructor's permission. The presence of noise in experimental systems is often regarded as a nuisance since it diminishes the signal to noise ratio thereby obfuscating weak signals or patterns. From a theoretical perspective, noise is also problematic since its influence cannot be elicited from deterministic equations but requires stochastic-based modeling which incorporates various types of noise and correlation functions. In general, extraction of embedded information requires that a threshold be overcome in order to outweigh concealment by noise. However, even below threshold, it has been demonstrated in numerous systems that external forcing coupled with noise can actually boost very weak signatures beyond threshold by a phenomenon known as stochastic resonance. Although it was originally demonstrated in nonlinear systems, more recent studies have revealed this phenomenon can occur in linear systems subject, for example, to color-based noise. Techniques for optimizing stochastic resonance are now revolutionizing modeling and measurement theory in many fields ranging from nonlinear optics and electrical systems to condensed matter physics, neurophysiology, hydrodynamics, climate research and even finance. This course will be conducted in survey and seminar style and is expected to appeal to theorists and experimentalists alike. Review of the current literature will be complimented by background readings and lectures on statistical physics and stochastic processes as needed. Instructor: Troian.
APh/Ph 115. Physics of Momentum Transport in Hydrodynamic Systems. 9 units (3-0-6): second term. Prerequisites: ACM 95 or equivalent. Contemporary research in many areas of physics requires some knowledge of the principles governing hydrodynamic phenomena such as nonlinear wave propagation, symmetry breaking in pattern forming systems, phase transitions in fluids, Langevin dynamics, micro- and optofluidic control, and biological transport at low Reynolds number. This course offers students of pure and applied physics a self-contained treatment of the fundamentals of momentum transport in hydrodynamic systems. Mathematical techniques will include formalized dimensional analysis and rescaling, asymptotic analysis to identify dominant force balances, similitude, self-similarity and perturbation analysis for examining unidirectional and Stokes flow, pulsatile flows, capillary phenomena, spreading films, oscillatory flows, and linearly unstable flows leading to pattern formation. Students must have working knowledge of vector calculus, ODEs, PDEs, complex variables and basic tensor analysis. Advanced solution methods will be taught in class as needed. Not offered 2021-2022. Instructor: Troian.
APh/Ph/Ae 116. Physics of Thermal and Mass Transport in Hydrodynamic Systems. 9 units (3-0-6): third term. Prerequisites: ACM 95 or equivalent and APh/Ph 115 or equivalent. Contemporary research in many areas of physics requires some knowledge of how momentum transport in fluids couples to diffusive phenomena driven by thermal or concentration gradients. This course will first examine processes driven purely by diffusion and progress toward description of systems governed by steady and unsteady convection-diffusion and reaction-diffusion. Topics will include Fickian dynamics, thermal transfer in Peltier devices, Lifshitz-Slyozov growth during phase separation, thermocouple measurements of oscillatory fields, reaction-diffusion phenomena in biophysical systems, buoyancy driven flows, and boundary layer formation. Students must have working knowledge of vector calculus, ODEs, PDEs, complex variables and basic tensor analysis. Advanced solution methods such as singular perturbation, Sturm-Liouville and Green's function analysis will be taught in class as needed. Not offered 2021-2022. Instructor: Troian.
Ph/APh/EE/BE 118 ab. Physics of Measurement. 9 units (3-0-6): second, third terms. Prerequisites: Ph 127, APh 105, or equivalent, or permission from instructor. This course explores the fundamental underpinnings of experimental measurements from the perspectives of coupling, responsivity, noise, backaction, and information. Its overarching goal is to enable students to develop intuition about, and to critically evaluate, a diversity of real measurement systems - and to provide a framework for estimating the ultimate and practical limits to information that can be extracted from them. Topics will include physical signal transduction and responsivity, fundamental noise processes, modulation, frequency conversion, synchronous detection, signal-sampling techniques, digitization, signal transforms, spectral analyses, and correlation methods. The first term will cover the essential fundamental underpinnings, while topics in second term will focus their application to high frequency, microwave, and fast time-domain measurements where distributed approaches become imperative. The second term (in alternate years) may focus on topics that include either measurements at the quantum limit, biosensing and biological interfaces, of functional brain imaging. Not offered 2021-22. Instructor: Roukes.
CS/Ph 120. Quantum Cryptography. 9 units (3-0-6): first term. Prerequisites: Ma 1b, Ph 2b or Ph 12b, CS 21, CS 38 or equivalent recommended (or instructor's permission). This course is an introduction to quantum cryptography: how to use quantum effects, such as quantum entanglement and uncertainty, to implement cryptographic tasks with levels of security that are impossible to achieve classically. The course covers the fundamental ideas of quantum information that form the basis for quantum cryptography, such as entanglement and quantifying quantum knowledge. We will introduce the security definition for quantum key distribution and see protocols and proofs of security for this task. We will also discuss the basics of device-independent quantum cryptography as well as other cryptographic tasks and protocols, such as bit commitment or position-based cryptography. Not offered 2021-2022
Ph 121 abc. Computational Physics Lab. 6 units (0-6-0): first, second, third terms. Many of the recent advances in physics are attributed to progress in computational power. In the advanced computational lab, students will hone their computational skills bu working through projects inspired by junior level classes (such as classical mechanics and E, statistical mechanics, quantum mechanics and quantum many-body physics). This course will primarily be in Python and Mathematica. This course is offered pass/fail. Instructors: Simmons-Duffin, Refael.
Ph 125 abc. Quantum Mechanics. 9 units (4-0-5): first, second, third terms. Prerequisites: Ma 2 ab, Ph 12 abc or Ph 2 ab, or equivalents. A one-year course in quantum mechanics and its applications, for students who have completed Ph 12 or Ph 2. Wave mechanics in 3-D, scattering theory, Hilbert spaces, matrix mechanics, angular momentum, symmetries, spin-1/2 systems, approximation methods, identical particles, and selected topics in atomic, solid-state, nuclear, and particle physics. Chen. Instructors: Wise, Porter, Y.
Ph 127 ab. Statistical Physics of Interacting Systems, Phases, and Phase Transitions. 9 units (4-0-5): first, second terms. Prerequisites: Ph 12 c or equivalent; quantum mechanics at the level of Ph 125 ab is required for Ph 127 b; may be taken concurrently. An advanced course in statistical physics that focuses on systems of interacting particles. Part a will cover interacting gases and spin models of magnetism, phase transitions and broken symmetries, classical field theories, and renormalization group approach to collective phenomena. Part b will introduce the path-integral based quantum to classical statistical mechanics mapping, as well as dualities and topological-defects descriptions, with applications to magnets, superfluids, and gauge field theories. Instructor: Motrunich.
Ph 129 abc. Mathematical Methods of Physics. 9 units (4-0-5): first, second terms. Prerequisites: Ma 2 and Ph 2 abc, or equivalent. Mathematical methods and their application in physics. First term focuses on group theoretic methods in physics. Second term includes analytic methods such as complex analysis, differential equations, integral equations and transforms, and other applications of real analysis. Third term covers probability and statistics in physics. Each part may be taken independently. Part c not offered 2021-2022. Chen, Chatziioannou. Instructor: X.
Ph 135. Introduction to Condensed Matter. 9 units (3-0-6): first term. Prerequisites: Ph 125 ab or equivalent or instructor's permission. This course is an introduction to condensed matter which covers electronic properties of solids, including band structures, and transport. In addition, the course will introduce topological band-structure effects, covering Berry phase, the Thouless pump, and topological insulators. Ph 135 is continued by Ph/APh 223 ab in the winter and spring terms. Instructor: Refael.
Ph 136 abc. Applications of Classical Physics. 9 units (3-0-6): first, second, third terms. Prerequisites: Ph 106 ab or equivalent. Applications of classical physics to topics of interest in contemporary "macroscopic'' physics. Continuum physics and classical field theory; elasticity and hydrodynamics; plasma physics; magnetohydrodynamics; thermodynamics and statistical mechanics; gravitation theory, including general relativity and cosmology; modern optics. Content will vary from year to year, depending on the instructor. An attempt will be made to organize the material so that the terms may be taken independently. Ph 136a will focus on thermodynamics, statistical mechanics, random processes, and optics. Ph136b will focus on fluid dynamics, MHD, turbulence, and plasma physics. Ph 136c will cover an introduction to general relativity. Offered in alternate years. Not offered 2021-22.
Ph/APh 137 abc. Atoms and Photons. 9 units (3-0-6): first, second terms. Prerequisites: Ph 125 ab or equivalent, or instructor's permission. This course will provide an introduction to the interaction of atomic systems with photons. The main emphasis is on laying the foundation for understanding current research that utilizes cold atoms and molecules as well as quantized light fields. First term: resonance phenomena, atomic/molecular structure, and the semi-classical interaction of atoms/molecules with static and oscillating electromagnetic fields. Techniques such as laser cooling/trapping, coherent manipulation and control of atomic systems. Second term: quantization of light fields, quantized light matter interaction, open system dynamics, entanglement, master equations, quantum jump formalism. Applications to cavity QED, optical lattices, and Rydberg arrays. Third term [not offered 2021-2022]: Topics in contemporary research. Possible areas include introduction to ultracold atoms, atomic clocks, searches for fundamental symmetry violations, synthetic quantum matter, and solid state quantum optics platforms. The emphasis will be on reading primary and contemporary literature to understand ongoing experiments. Instructors: Hutzler, Endres.
APh/Ph 138 ab. Quantum Hardware and Techniques. 9 units (3-0-6): third term, a and b offered in alternating years. Prerequisites: Ph 125abc or Ph 127ab or Ph137ab or instructor's permission. This class covers multiple quantum technology platforms and related theoretical techniques, and will provide students with broad knowledge in quantum science and engineering. It will be split into three-week modules covering: applications of near-term quantum computers, superconducting qubits, trapped atoms and ions, topological quantum matter, solid state quantum bits, tensor-product states. Instructors: Faraon, Minnich.
Ph 139. Introduction to Elementary Particle Physics. 9 units (3-0-6): second term. Prerequisites: Ph 125 ab or equivalent, or instructor's permission. This course provides an introduction to particle physics which includes Standard Model, Feynman diagrams, matrix elements, electroweak theory, QCD, gauge theories, the Higgs mechanism, neutrino mixing, astro-particle physics/cosmology, accelerators, experimental techniques, important historical and recent results, physics beyond the Standard Model, and major open questions in the field. Instructor: Weinstein.
Ph 171. Reading and Independent Study. Units in accordance with work accomplished: . Occasionally, advanced work involving reading, special problems, or independent study is carried out under the supervision of an instructor. Approval of the instructor and of the student's departmental adviser must be obtained before registering. The instructor will complete a student evaluation at the end of the term. Graded pass/fail.
Ph 172. Research in Physics. Units in accordance with work accomplished: . Undergraduate students registering for 6 or more units of Ph 172 must provide a brief written summary of their work, not to exceed 3 pages, to the option rep at the end of the term. Approval of the student's research supervisor and departmental adviser must be obtained before registering. Graded pass/fail.
Ph 177. Advanced Experimental Physics. 9 units (0-4-5): second, third terms. Prerequisites: Ph 6, Ph 106 a, Ph 125 a or equivalents. A one-term laboratory course which will require students to design, assemble, calibrate, and use an apparatus to conduct a nontrivial experiment involving quantum optics or other current research area of physics. Students will work as part of a small team to reproduce the results of a published research paper. Each team will be guided by an instructor who will meet weekly with the students; the students are each expected to spend an average of 4 hours/week in the laboratory and the remainder for study and design. Enrollment is limited. Permission of the instructors required. Instructors: Rice, Hutzler.
CNS/Bi/Ph/CS/NB 187. Neural Computation. 9 units (3-0-6): third term. Prerequisites: introductory neuroscience (Bi 150 or equivalent); mathematical methods (Bi 195 or equivalent); scientific programming. This course aims at a quantitative understanding of how the nervous system computes. The goal is to link phenomena across scales from membrane proteins to cells, circuits, brain systems, and behavior. We will learn how to formulate these connections in terms of mathematical models, how to test these models experimentally, and how to interpret experimental data quantitatively. The concepts will be developed with motivation from some of the fascinating phenomena of animal behavior, such as: aerobatic control of insect flight, precise localization of sounds, sensing of single photons, reliable navigation and homing, rapid decision-making during escape, one-shot learning, and large-capacity recognition memory. Instructors: Meister, Rutishauser.
Ph 198. Special Topics in Physics. Units in accordance with work accomplished: . Topics will vary year to year and may include hands-on laboratory work, team projects and a survey of modern physics research. Instructor: Staff.
Ph 199. Frontiers of Fundamental Physics. 9 units (3-0-6): third term. Prerequisites: Ph 125 ab, Ph 106 ab, or equivalent. This course will explore the frontiers of research in particle physics and cosmology, focusing on the physics at the Large Hadron Collider. Topics include the Standard Model of particle physics in light of the discovery of the Higgs boson, work towards the characterization and measurements of the new particle's quantum properties, its implications on physics beyond the standard model, and its connection with the standard model of cosmology focusing on the dark matter challenge. The course is geared toward seniors and first-year graduate students who are not in particle physics, although students in particle physics are welcome to attend. Not offered 2021-2022.
Ph 201. Candidacy Physics Fitness. 9 units (3-0-6): third term. The course will review problem solving techniques and physics applications from the undergraduate physics college curriculum. In particular, we will touch on the main topics covered in the written candidacy exam: classical mechanics, electromagnetism, statistical mechanics and quantum physics, optics, basic mathematical methods of physics, and the physical origin of everyday phenomena. Instructor: Endres.
Ph 203. Nuclear Physics. 9 units (3-0-6): third term. Prerequisites: Ph 125 or equivalent. An introduction and overview of modern topics in nuclear physics, including models and structure of nucleons, nuclei and nuclear matter, the electroweak interaction of nuclei, and nuclear/neutrino astrophysics. Not offered 2021-2022. Instructor: Filippone.
Ph 205 abc. Relativistic Quantum Field Theory. 9 units (3-0-6): first, second, third terms. Prerequisites: Ph 125. Topics: the Dirac equation, second quantization, quantum electrodynamics, scattering theory, Feynman diagrams, non-Abelian gauge theories, Higgs symmetry-breaking, the Weinberg-Salam model, and renormalization. Instructors: Kapustin, Zurek, Wise.
Ph/CS 219 abc. Quantum Computation. 9 units (3-0-6): first, second, third terms. Prerequisites: Ph 125 ab or equivalent. The theory of quantum information and quantum computation. Overview of classical information theory, compression of quantum information, transmission of quantum information through noisy channels, quantum error-correcting codes, quantum cryptography and teleportation. Overview of classical complexity theory, quantum complexity, efficient quantum algorithms, fault-tolerant quantum computation, physical implementations of quantum computation. Instructors: Preskill, Kitaev.
Ph/APh 223 ab. Advanced Condensed-Matter Physics. 9 units (3-0-6): second, third terms. Prerequisites: Ph 135 or equivalent, or instructor's permission. Advanced topics in condensed-matter physics, with emphasis on the effects of interactions, symmetry, and topology in many-body systems. Ph/APh 223a covers second quantization, Hartree-Fock theory of the electron gas, Mott insulators and quantum magnetism, spin liquids, bosonization, and the integer and fractional quantum Hall effect. Ph/APh 223b will continue with BCS theory of superconductivity, Ginzburg-Landau theory, elements of unconventional and topological superconductors, theory of superfluidity, Bose-Hubbard model and bosonic Mott insulators, and some aspects of quantum systems with randomness. Instructor: Alicea.
Ph 229 abc. Advanced Mathematical Methods of Physics. 9 units (3-0-6): first, second terms. Prerequisites: Ph 129 abc or equivalent. Advanced topics in geometry and topology that are widely used in modern theoretical physics. Emphasis will be on understanding and applications more than on rigor and proofs. First term will cover basic concepts in topology and manifold theory. Second term will include Riemannian geometry, fiber bundles, characteristic classes, and index theorems. Third term will include anomalies in gauge-field theories and the theory of Riemann surfaces, with emphasis on applications to string theory. Part c will not be offered in 2021-2022. Instructors: Ooguri, Kapustin.
Ph 230 abc. Elementary Particle Theory. 9 units (3-0-6): first, third terms. Prerequisites: Ph 205 abc or equivalent. First term: Standard model, including electroweak and strong interactions, symmetries and symmetry breaking (including the Higgs mechanism), parton model and quark confinement, anomalies. Second and third terms: more on nonperturbative phenomena, including chiral symmetry breaking, instantons, the 1/N expansion, lattice gauge theories, and topological solitons. Other topics include topological field theory, precision electroweak, flavor physics, conformal field theory and the AdS/CFT correspondence, supersymmetry, Grand Unified Theories, and Physics Beyond the Standard Model. Part c will not be offered in 2021-2022. Instructors: Zurek, Gukov.
Ph 232. Introduction to Topological Field Theory. 9 units (3-0-6): first term. Prerequisites: Ph 205. Topological field theories are the simplest examples of quantum field theories which, in a sense, are exactly solvable and generally covariant. During the past twenty years they have been the main source of interaction between physics and mathematics. Thus, ideas from gauge theory led to the discovery of new topological invariants for 3-manifolds and 4-manifolds. By now, topological quantum field theory (TQFT) has evolved into a vast subject, and the main goal of this course is to give an accessible introduction to this elegant subject. Instructor: Gukov.
Ph 235 ab. Theoretical Cosmology and Astroparticle Physics. 9 units (3-0-6): first term. Prerequisites: General Relativity at the level of Ph 236a, and Quantum Field Theory at the level of Ph 205a. Cosmology in an expanding universe, inflation, big bang nucleosynthesis, baryogenesis, neutrino and nuclear astrophysics. Second term: Cosmological perturbation theory and the cosmic microwave background, structure formation, theories of dark matter. Not offered 2021-2022. Instructor: Zurek.
Ph 236 abc. General Relativity. 9 units (3-0-6): first, second terms. Prerequisites: a mastery of special relativity at the level of Goldstein's Classical Mechanics, or of Jackson's Classical Electrodynamics. A systematic exposition of Einstein's general theory of relativity and its applications to gravitational waves, black holes, relativistic stars, causal structure of space-time, cosmology and brane worlds. Offered in alternate years. Part c will not be offered in 2021-2022. Instructors: Chatziioannou, Teukolsky.
Ph 237. Gravitational Radiation. 9 units (3-0-6): third term. Prerequisites: Ph 106 b, Ph 12 b or equivalents. Special topics in Gravitational-wave Detection. Physics of interferometers, limits of measurement, coherent quantum feedback, noise, data analysis. Chen. Instructor: Y.
Ph 242 ab. Physics Seminar. 4 units (2-0-2): first, second terms. An introduction to independent research, including training in relevant professional skills and discussion of current Caltech research areas with Caltech faculty, postdocs, and students. One meeting per week plus student projects. Registration restricted to first-year graduate students in physics. Instructor: Patterson.
Ph 250. Introduction to String Theory. 9 units (3-0-6): second term. Prerequisites: Ph 205 or equivalent. This year, we offer a lighter version of the course. It will cover a condensed version of the world-sheet formulation, then basic elements of the target space physics, after which we will discuss interesting phenomena/applications, such as T-duality, D-branes, anomalies, building semi-realistic models of particle physics from string compactifications, etc. Not offered 2021-2022. Instructor: Gukov.
Ph 300. Thesis Research. Units in accordance with work accomplished: . Ph 300 is elected in place of Ph 172 when the student has progressed to the point where research leads directly toward the thesis for the degree of Doctor of Philosophy. Approval of the student's research supervisor and department adviser or registration representative must be obtained before registering. Graded pass/fail.

Please Note

The online version of the Caltech Catalog is provided as a convenience; however, the printed version is the only authoritative source of information about course offerings, option requirements, graduation requirements, and other important topics.