Up to all Biology Courses for 2020-21 Show Filters

Biology (Bi) Undergraduate Courses (2020-21)

Bi 1. Principles of Biology-The great theories of biology and their influence in the modern world. 9 units (4-0-5): third term. There are three overarching theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Each of them has had major impacts on our lives-for example the concept of the gene has led to treatments for inherited diseases, personalized and genomic medicine, forensic DNA testing, and modern agriculture. Each theory will be discussed from its 19th century origin to its standing in the 21st century, and the scientific understanding and societal impact of each will be sampled. The course will also ask if there is yet a theory of the brain, and if not, how one might be framed. The course is designed to teach what technically adept members of society should know about biology. Instructor: Staff.
Bi 1 x. The Great Ideas of Biology: Exploration through Experimentation. 9 units (0-6-3): third term. Introduction to concepts and laboratory methods in biology. Molecular biology techniques and advanced microscopy will be combined to explore the great ideas of biology. This course is intended for nonbiology majors and will satisfy the freshman biology course requirement. Limited enrollment. Instructor: Bois.
Bi 2. Current Research in Biology. 3 units (1-0-2): first term. Intended for students considering the biology option; open to freshmen. Current research in biology will be discussed, on the basis of reading assigned in advance of the discussions, with members of the divisional faculty. Graded pass/fail. Instructor: Elowitz.
Bi 8. Introduction to Molecular Biology: Regulation of Gene Expression. 9 units (3-0-6): second term. This course and its sequel, Bi 9, cover biology at the molecular and cellular levels. Bi 8 emphasizes genomic structure and mechanisms involved in the organization and regulated expression of genetic information. The focus is on the ways that the information content of the genome is translated into distinctive, cell type specific patterns of gene expression and protein function. Assignments will include critical dissections of papers from classical and current research literature and problem sets. Instructors: Guttman, Hong.
Bi 9. Cell Biology. 9 units (3-0-6): third term. Prerequisites: Bi 8. Continues coverage of biology at the cellular level, begun in Bi 8. Topics: cytoplasmic structure, membrane structure and function, cell motility, and cell-cell recognition. Emphasis on both the ultrastructural and biochemical approaches to these topics. Instructors: Chan, Prober.
Bi 10. Introductory Biology Laboratory. 6 units (1-3-2): third term. Prerequisites: Bi 8; designed to be taken concurrently with Bi 9. An introduction to molecular, cellular, and biochemical techniques that are commonly used in studies of biological systems at the molecular level. Instructor: Staff.
Bi 21. Undergraduate Research with Presentation. Minimum 12 units per term (0-11-1): first, second, third terms. Special problems involving laboratory research in biology; to be arranged with instructors before registration. Must give a public presentation reporting results of work. May be counted as advanced lab credit. May be repeated for credit. Instructor: Staff.
Bi 22. Undergraduate Research. Units to be arranged: first, second, third terms. Special problems involving laboratory research in biology; to be arranged with instructors before registration. Graded pass/fail. Instructor: Staff.
Bi 23. Biology Tutorials. 3 or 6 units: second term. Small group study and discussion in depth of special areas or problems in biology or biological engineering, involving regular tutorial sections with instructors drawn from the divisional postdoctoral staff and others. Usually given winter term. To be arranged with instructors before registration. Graded pass/fail. Instructor: Huang.
Bi/BE 24. Scientific Communication for Biological Scientists and Engineers. 6 units (3-0-3): third term. This course offers instruction and practice in writing and speaking relevant to professional biological scientists and engineers working in research, teaching, and/or medical careers. Students will write a paper for a scientific or engineering journal, either based on their previous research or written as a review paper of current work in their field. A Caltech faculty member, a postdoctoral scholar, or a technical staff member serves as a technical mentor for each student, to provide feedback on the content and style of the paper. Oral presentations will be based on selected scientific topics, with feedback from instructors and peers. Fulfills the Institute scientific writing requirement. Instructor: MacLean.
Bi 90 abc. Undergraduate Thesis. 12 or more units per term: first, second, third terms. Prerequisites: 18 units of Bi 22 (or equivalent research experience) in the research area proposed for the thesis, and instructor's permission. Intended to extend opportunities for research provided by Bi 22 into a coherent individual research project, carried out under the supervision of a member of the biology faculty. Normally involves three or more consecutive terms of work in the junior and senior years. The student will formulate a research problem based in part on work already carried out, evaluate previously published work in the field, and present new results in a thesis format. First two terms graded pass/fail; final term graded by letter on the basis of the completed thesis. Instructor: Bjorkman.
BE/Bi 101. Order of Magnitude Biology. 6 units (3-0-3): third term. Prerequisites: none. In this course, students will develop skills in the art of educated guesswork and apply them to the biological sciences. Building from a few key numbers in biology, students will "size up" biological systems by making inferences and generating hypotheses about phenomena such as the rates and energy budgets of key biological processes. The course will cover the breadth of biological scales: molecular, cellular, organismal, communal, and planetary. Undergraduate and graduate students of all levels are welcome. Not offered 2020-2021. Instructors: Bois, Philips.
CNS/Psy/Bi 102 ab. Brains, Minds, and Society. 9 units (3-0-6): second, third terms. Prerequisites: Bi/CNS/NB/Psy 150 and CNS/Bi/Ph/CS/NB 187, or instructor's permission. Introduction to the computations made by the brain during economic and social decision making and their neural substrates. Part a: Reinforcement learning. Unconscious and conscious processing. Emotion. Behavioral economics. Goal-directed and habit learning. Facial processing in social neuroscience. Part b: History and mechanisms of reinforcement. Associative learning. Mentalizing and strategic thinking. Neural basis of prosociality. Exploration-exploitation tradeoff. Functions of basal ganglia. Instructors: O'Doherty/Adolphs, O'Doherty.
BE/Bi 103 a. Introduction to Data Analysis in the Biological Sciences. 9 units (1-3-5): first term. Prerequisites: Bi 1, Bi 1x, Bi 8, or equivalent; or instructor's permission. This course covers tools needed to analyze quantitative data in biological systems. Students learn basic programming topics, data organization and wrangling, data display and presentation, basic image processing, and resampling-based statistical inference. Students analyze real data in class and in homework. Instructors: Bois, Phillips.
BE/Bi 103 b. Statistical Inference in the Biological Sciences. 9 units (1-3-5): second term. Prerequisites: BE/Bi 103 a or equivalent; Ma 1 abc and Ma 3, or Bi/CNS/NB 195, or equivalent; or instructor's permission. This course introduces students to statistical modeling and inference, primarily taking a Bayesian approach. Topics include generative modeling, parameter estimation, model comparison, hierarchical modeling, Markov chain Monte Carlo, graphical display of inference results, and principled workflows. Other topics may also be included. All techniques are applied to real biological data sets in class and in homework. Instructor: Bois.
Bi/Ge/ESE 105. Evolution. 12 units (3-4-5): second term. Prerequisites: Completion of Core Curriculum Courses. Maximum enrollment: 15, by application only. The theory of evolution is arguably biology's greatest idea and serves as the overarching framework for thinking about the diversity and relationships between organisms. This course will present a broad picture of evolution starting with discussions of the insights of the great naturalists, the study of the genetic basis of variation, and an introduction to the key driving forces of evolution. Following these foundations, we will then focus on a number of case studies including the following: evolution of oxygenic photosynthesis, origin of eukaryotes, multicellularity, influence of symbiosis, the emergence of life from the water (i.e. fins to limbs), the return of life to the water (i.e. limbs to fins), diversity following major extinction events, the discovery of Archaea, insights into evolution that have emerged from sequence analysis, and finally human evolution and the impact of humans on evolution (including examples such as antibiotic resistance). A specific focus for considering these issues will be the island biogeography of the Galapagos. Given in alternate years; not offered 2020-21. Instructors: Phillips, Orphan.
BE/Bi 106. Comparative Biomechanics. 9 units (3-0-6): second term. Have you ever wondered how a penguin swims or why a maple seed spins to the ground? How a flea can jump as high as a kangaroo? If spider silk is really stronger than steel? This class will offer answers to these and other questions related to the physical design of plants and animals. The course will provide a basic introduction to how engineering principles from the fields of solid and fluid mechanics may be applied to the study of biological systems. The course emphasizes the organismal level of complexity, although topics will relate to molecular, cell, and tissue mechanics. The class is explicitly comparative in nature and will not cover medically-related biomechanics. Topics include the physical properties of biological materials, viscoelasticity, muscle mechanics, biological pumps, and animal locomotion. Offered 2020-2021. Instructor: Dickinson.
ChE/Ch/Bi/SEC 107. Social Media for Scientists. 9 units (3-0-6): second term. An introduction to the use of social media for scientific communication. Social media platforms are discussed in the context of their use to professionally engage scientific communities and general audiences. Topics will include ethics, privacy, reputation management, ownership and the law, and will focus on the use and impact of social media for personal and professional career development. Lectures will include presentations by invited experts in various specialties, a number of whom will have worldwide recognition. Instructor: Davis.
Ch/Bi 110. Introduction to Biochemistry. 12 units (4-0-8): first term. Prerequisites: Ch 41 abc or instructor's permission. Lectures and recitation introducing the molecular basis of life processes, with emphasis on the structure and function of proteins. Topics will include the derivation of protein structure from the information inherent in a genome, biological catalysis, and the intermediary metabolism that provides energy to an organism. Instructor: Clemons.
Ch/Bi 111. Biochemistry of Gene Expression. 12 units (4-0-8): second term. Prerequisites: Ch/Bi 110; Bi 8 and Bi 122 recommended. Lectures and recitation on the molecular basis of biological structure and function. Emphasizes the storage, transmission, and expression of genetic information in cells. Specific topics include DNA replication, recombination, repair and mutagenesis, transcription, RNA processing, and protein synthesis. Instructors: Campbell, Parker.
Bi 114. Immunology. 9 units (3-0-6): second term. Prerequisites: Bi 8, Bi 9, Bi 122 or equivalent, and Ch/Bi 110 recommended. The course will cover the molecular and cellular mechanisms that mediate recognition and response in the mammalian immune system. Topics include cellular and humoral immunity, the structural basis of immune recognition, antigen presentation and processing, gene rearrangement of lymphocyte receptors, cytokines and the regulation of cellular responses, T and B cell development, and mechanisms of tolerance. The course will present an integrated view of how the immune system interacts with viral and bacterial pathogens and commensal bacteria. Instructors: Bjorkman, Mazmanian.
Bi/BE/BMB 115. Viruses and Applications to Biological Systems. 9 units (3-2-4): third term. Learn about viruses as fascinating biological machines, focusing on naturally-occurring and evolved variants, in silico viral vector engineering, and computational methods that include structure visualization and machine learning. This course will introduce the fundamentals in the chemistry and biology of viruses, emphasizing their engineerable properties for use in basic research and translational applications. Topics include: viruses by the numbers, mammalian and non-mammalian (plant, bacteria) viruses, enveloped vs. non-enveloped viruses, host-virus interactions, viral life cycles (replication vs. dormancy), immune responses to viruses, zoonosis, diverse mechanisms of entry and replication, the application of viruses as gene-delivery vehicles (with a focus on adeno-associated viruses or AAVs, lentiviruses, and rabies), and how to engineer viral properties for applications in basic research and gene therapy. The lectures will be complemented by short lab exercises in AAV preparation, bioinformatics and machine learning, and structure visualization. Given in alternate years; not offered 2020-21. Instructors: Bjorkman, Gradinaru, Van Valen.
Bi 116. Microbial Genetics. 9 units (3-0-6): second term. Prerequisites: Bi 1, 8, 9 (or equivalent), and ESE/Bi 166. A course on microbial genetics, emphasizing the history of the discipline as well as modern approaches. Students will be exposed to different ways of manipulating microbial genomes (primarily bacterial, but we will also cover archaea and microbial eukaryotes). The power of microbial genetics to shed light on diverse process will be discussed in a variety of contexts, ranging from environmental science to the mammalian microbiome. Given in alternate years; not offered 2020-21. Instructors: Mazmanian, Newman.
Bi 117. Developmental Biology. 9 units (3-0-6): second term. Prerequisites: Bi 8 and Bi 9. A survey of the development of multicellular organisms. Topics will include the beginning of a new organism (fertilization), the creation of multicellularity (cellularization, cleavage), reorganization into germ layers (gastrulation), induction of the nervous system (neurulation), and creation of specific organs (organogenesis). Emphasis will be placed on the molecular mechanisms underlying morphogenetic movements, differentiation, and interactions during development, covering both classical and modern approaches to studying these processes. Instructor: Bronner.
Bi 118. Morphogenesis of Developmental Systems. 9 units (3-0-6): second term. Prerequisites: Bi 8 and Bi 9, or instructor's permission. Lectures on and discussion of how cells, tissues, and organs take shape: the influence of force on cell shape change; cell migration including chemotaxis and collective cell movement; adhesion/deadhesion during migration; the relationship between cell migration and metastasis; and a review/overview of general signaling principles and embryonic development of invertebrate and vertebrate animals. Students will choose term project involving writing a grant proposal or quantitative analysis of available datasets relating to lecture topics. Given in alternate years; offered 2020-21. Instructor: Stathopoulos.
Bi 122. Genetics. 9 units (3-0-6): first term. Prerequisites: Bi 8 or Bi 9, or instructor's permission. Lecture and discussion course covering basic principles of genetics. Not open to freshmen. Instructors: Hay, Sternberg, Staff.
Bi/BE 129. The Biology and Treatment of Cancer. 9 units (3-0-6): second term. The first part of the course will concern the basic biology of cancer, covering oncogenes, tumor suppressors, tumor cell biology, metastasis, tumor angiogenesis, and other topics. The second part will concern newer information on cancer genetics and other topics, taught from the primary research literature. The last part of the course will concern treatments, including chemotherapy, anti-angiogenic therapy, and immunotherapy. Textbook: The Biology of Cancer, 2nd edition, by Robert Weinberg. Given in alternate years; offered 2020-21. Instructors: Zinn, Campbell.
CNS/Psy/Bi 131. The Psychology of Learning and Motivation. 9 units (3-0-6): second term. This course will serve as an introduction to basic concepts, findings, and theory from the field of behavioral psychology, covering areas such as principles of classical conditioning, blocking and conditioned inhibition, models of classical conditioning, instrumental conditioning, reinforcement schedules, punishment and avoidance learning. The course will track the development of ideas from the beginnings of behavioral psychology in the early 20th century to contemporary learning theory. Not offered 2020-21. Instructor: O'Doherty.
Bi 145 a. Tissue and Organ Physiology. 9 units (3-0-6): first term. Prerequisites: Bi 8, 9, Ch/Bi 110. Ch/Bi 110 may be taken concurrently. Reviews of anatomy and histology, as well as in-depth discussion of cellular physiology. Building from cell function to tissues, the course explores human physiology in an organ-based fashion. First term topics include endocrine physiology, the autonomic nervous system, urinary physiology, and the cardiovascular system. Particular emphasis is placed on health issues and pharmaceutical therapy from both a research and a medical perspective. Instructor: Tydell.
Bi 145 b. Tissue and Organ Physiology. 9 units (3-0-6): second term. Prerequisites: Bi 145 a. Building on the foundations of Bi 145 a, Bi 145 b will continue the exploration of human physiology incorporating anatomy and cellular physiology. Topics include muscle physiology, the skeletal system, digestive and hepatic physiology, nutrition, the respiratory system and reproductive physiology. Particular emphasis is placed on health issues and pharmaceutical therapy from both a research and a medical perspective. Instructor: Tydell.
Bi/CNS/NB/Psy 150. Introduction to Neuroscience. 10 units (4-0-6): third term. Prerequisites: Bi 8, 9, or instructor's permission. General principles of the function and organization of nervous systems, providing both an overview of the subject and a foundation for advanced courses. Topics include the physical and chemical bases for action potentials, synaptic transmission, and sensory transduction; anatomy; development; sensory and motor pathways; memory and learning at the molecular, cellular, and systems level; and the neuroscience of brain diseases. Letter grades only. Instructors: Adolphs, Lester.
Bi/CNS/NB 152. Neural Circuits and Physiology of Appetite and Body Homeostasis. 6 units (2-0-4): third term. Prerequisites: Graduate standing or Bi/CNS/NB/Psy 150, or equivalent. An advanced course of lectures, readings, and student presentations focusing on neural basis of appetites such as hunger and thirst. This course will cover the mechanisms that control appetites both at peripheral and central level. These include genetics, neural manipulation, and viral tracing tools with particular emphasis on the logic of how the body and the brain cooperate to maintain homeostasis. Given in alternate years; offered 2020-21. Instructor: Oka.
Bi/CNS/NB 154. Principles of Neuroscience. 9 units (3-0-6): first term. Prerequisites: Bi/CNS/NB/Psy 150 or equivalent. This course aims to distill the fundamental tenets of brain science, unlike the voluminous textbook with a similar title. What are the essential facts and ways of understanding in this discipline? How does neuroscience connect to other parts of life science, physics, and mathematics? Lectures and guided reading will touch on a broad range of phenomena from evolution, development, biophysics, computation, behavior, and psychology. Students will benefit from prior exposure to at least some of these domains. Given in alternate years; offered 2020-21. Instructor: Meister.
Bi/NB/BE 155. Neuropharmacology. 6 units (3-0-3): second term. Prerequisites: Bi/CNS/NB/Psy 150. The neuroscience of drugs for therapy, for prevention, and for recreation. Students learn the prospects for new generations of medications in neurology, psychiatry, aging, and treatment of substance abuse. Topics: Types of drug molecules. Drug receptors. Electrophysiology. Drugs activate ion channels. Drugs block ion channels. Drugs activate and block G protein pathways. Drugs block neurotransmitter transporters. Pharmacokinetics. Recreational drugs. Nicotine Addiction. Opiate Addiction. Drugs for neurodegenerative diseases: Alzheimer's disease, Parkinson's disease. Drugs for epilepsy and migraine. Psychiatric diseases: Nosology and drugs. The course is taught at the research level. Given in alternate years; offered 2020-21. Instructor: Lester.
Bi/CNS/NB 157. Comparative Nervous Systems. 9 units (2-3-4): third term. Prerequisites: instructor's permission. An introduction to the comparative study of the gross and microscopic structure of nervous systems. Emphasis on the vertebrate nervous system; also, the highly developed central nervous systems found in arthropods and cephalopods. Variation in nervous system structure with function and with behavioral and ecological specializations and the evolution of the vertebrate brain. Letter grades only. Given in alternate years; offered 2020-21. Instructor: Allman.
Bi/CNS 158. Vertebrate Evolution. 9 units (3-0-6): third term. Prerequisites: Bi 1, Bi 8, or instructor's permission. An integrative approach to the study of vertebrate evolution combining comparative anatomical, behavioral, embryological, genetic, paleontological, and physiological findings. Special emphasis will be given to: (1) the modification of developmental programs in evolution; (2) homeostatic systems for temperature regulation; (3) changes in the life cycle governing longevity and death; (4) the evolution of brain and behavior. Letter grades only. Given in alternate years; not offered 2020-21. Instructor: Allman.
Bi 160. Molecular Basis of Animal Evolution. 9 units (3-3-3): third term. Prerequisites: Bi 8 and/or Bi 9 recommended. We share the planet with well over 1.5 million other animal species. This course covers how the staggering diversity of the animal kingdom came about through underlying molecular evolutionary phenomena, including gene and protein sequence evolution, gene family and genome evolution, the evolution of developmental processes, neural circuit evolution and behavior, and molecular mechanisms that physiologically adapt animals to their environment. Molecular processes involved in speciation will be explained, together with an analysis of constraints and catalysts on the production of selectable variation that have shaped the evolution of animal life. Participants will undertake a laboratory project on evolutionary genomics, involving fieldwork, genome sequencing and comparative genome analysis. The course focuses on the >99.9% of animals that lack backbones. Instructor: Parker.
Pl/CNS/NB/Bi 161. Consciousness. 9 units (3-0-6): second term. Prerequisites: None, but strongly suggest prior background in philosophy of mind and basic neurobiology (such as Bi 150). One of the last great challenges to our understanding of the world concerns conscious experience. What exactly is it? How is it caused or constituted? And how does it connect with the rest of our science? This course will cover philosophy of mind, cognitive psychology, and cognitive neuroscience in a mixture of lectures and in-class discussion. There are no formal pre-requisites, but background in philosophy (equivalent to Pl 41, Pl 110) and in neuroscience (equivalent to BI/CNS 150) is strongly recommended and students with such background will be preferentially considered. Limited to 20. Instructors: Adolphs, Eberhardt.
Bi/CNS/NB 162. Cellular and Systems Neuroscience Laboratory. 12 units (2-4-6): second term. Prerequisites: Bi/CNS/NB/Psy 150 or instructor's permission. A laboratory-based introduction to experimental methods used for electrophysiological studies of the central nervous system. Through the term, students investigate the physiological response properties of neurons in vertebrate and invertebrate brains, using extra- and intracellular recording techniques. Students are instructed in all aspects of experimental procedures, including proper surgical techniques, electrode fabrication, and data analysis. The class also includes a brain dissection and independent student projects that utilize modern digital neuroscience resources. Not offered 2020-21. Instructor: Bremner.
NB/Bi/CNS 163. The Biological Basis of Neural Disorders. 6 units (3-0-3): second term. Prerequisites: Bi/CNS/NB/Psy 150 or instructor's permission. The neuroscience of psychiatric, neurological, and neurodegenerative disorders and of substance abuse, in humans and in animal models. Students master the biological principles including genetics, cell biology, biochemistry, physiology, and circuits. Topics are taught at the research level and include classical and emerging therapeutic approaches and diagnostic strategies. Given in alternate years; Not offered 2020-21. Instructors: Lester, Lois.
Bi/CNS/NB 164. Tools of Neurobiology. 9 units (3-0-6): first term. Prerequisites: Bi/CNS/NB/Psy 150 or equivalent. Offers a broad survey of methods and approaches to understanding in modern neurobiology. The focus is on understanding the tools of the discipline, and their use will be illustrated with current research results. Topics include: molecular genetics, disease models, transgenic and knock-in technology, virus tools, tracing methods, gene profiling, light and electron microscopy, optogenetics, optical and electrical recording, neural coding, quantitative behavior, modeling and theory. Instructor: Meister.
Bi 165. Microbiology Research: Practice and Proposal. 6 units (2-3-1): first term. The course will serve to introduce graduate students to 1) the process of writing fellowships to train students in preparing effective funding applications; 2) ongoing research projects on campus involving the isolation, culture, and characterization of microbes and microbial communities as well as projects in other fields; and 3) presentation of research and asking questions in research presentations. The first half of the class will involve training in grant writing by drafting an NSF-GRFP proposal. The second half of the class will involve giving chalk talk research presentations. Students can apply from all departments; priority will be given to those in microbiology. Enrollment is limited to instructor approval. Instructor: Hoy.
ESE/Bi 166. Microbial Physiology. 9 units (3-1-5): first term. Prerequisites: one year of general biology recommended. A course on growth and functions in the prokaryotic cell. Topics covered: growth, transport of small molecules, protein excretion, membrane bioenergetics, energy metabolism, motility, chemotaxis, global regulators, and metabolic integration. Instructor: Leadbetter.
ESE/Bi 168. Microbial Metabolic Diversity. 9 units (3-0-6): second term. Prerequisites: ESE 142, ESE/Bi 166. A course on the metabolic diversity of microorganisms. Basic thermodynamic principles governing energy conservation will be discussed, with emphasis placed on photosynthesis and respiration. Students will be exposed to genetic, genomic, and biochemical techniques that can be used to elucidate the mechanisms of cellular electron transfer underlying these metabolisms. Given in alternate years; offered 2020-21. Instructor: Newman.
BMB/Bi/Ch 170. Biochemistry and Biophysics of Macromolecules and Molecular Assemblies. 9 units (3- 0-6): first term. Prerequisites: Ch/Bi 110. Detailed analysis of the structures of the four classes of biological molecules and the forces that shape them. Introduction to molecular biological and visualization techniques. Not offered in 2020-21.
BMB/Bi/Ch 173. Biophysical/Structural Methods. 9 units (3-0-6): second term. Basic principles of modern biophysical and structural methods used to interrogate macromolecules from the atomic to cellular levels, including light and electron microscopy, X-ray crystallography, NMR spectroscopy, single molecule techniques, circular dichroism, surface plasmon resonance, mass spectrometry, and molecular dynamics and systems biological simulations. Not offered 2020-21. Instructors: Jensen, and other guest lecturers.
BMB/Bi/Ch 174. Advanced Topics in Biochemistry and Molecular Biophysics. 6 units (3-0-3): first term. Prerequisites: Ch/Bi 110 or equivalent. Discussion of research fields in biochemistry and molecular biophysics at Caltech. Development of skills in literature analysis and information synthesis. Instructors: Shan, Semlow, and guest lecturers.
CNS/Bi/Psy/NB 176. Cognition. 9 units (4-0-5): third term. The cornerstone of current progress in understanding the mind, the brain, and the relationship between the two is the study of human and animal cognition. This course will provide an in-depth survey and analysis of behavioral observations, theoretical accounts, computational models, patient data, electrophysiological studies, and brain-imaging results on mental capacities such as attention, memory, emotion, object representation, language, and cognitive development. Given in alternate years; Offered 2020-21. Instructor: Shimojo.
Bi/BE 177. Principles of Modern Microscopy. 9 units (3-0-6): second term. Lectures and discussions on the underlying principles behind digital, video, differential interference contrast, phase contrast, confocal, and two-photon microscopy. The course will begin with basic geometric optics and characteristics of lenses and microscopes. Specific attention will be given to how different imaging elements such as filters, detectors, and objective lenses contribute to the final image. Course work will include critical evaluation of published images and design strategies for simple optical systems and the analysis and presentation of two- and three-dimensional images. The role of light microscopy in the history of science will be an underlying theme. No prior knowledge of microscopy will be assumed. Given in alternate years; offered 2020-21. Instructor: Collazo.
Ge/ESE/Bi 178. Microbial Ecology. 9 units (3-2-4): second term. Prerequisites: Either ESE/Bi 166 or ESE/Bi 168. Structural, phylogenetic, and metabolic diversity of microorganisms in nature. The course explores microbial interactions, relationships between diversity and physiology in modern and ancient environments, and influence of microbial community structure on biogeochemical cycles. Introduction to ecological principles and molecular approaches used in microbial ecology and geobiological investigations. Offered in alternate years; offered 2020-21. Instructor: Orphan.
Bi/BE 182. Animal Development and Genomic Regulatory Network Design. 9 units (3-0-6): second term. Prerequisites: Bi 8 and at least one of the following: Ch/Bi 111, Bi 114, or Bi 122 (or equivalents). This course is focused on the genomic control circuitry of the encoded programs that direct developmental processes. The initial module of the course is devoted to general principles of development, with emphasis on transcriptional regulatory control and general properties of gene regulatory networks (GRNs). The second module provides mechanistic analyses of spatial control functions in multiple embryonic systems, and the third treats the explanatory and predictive power of the GRNs that control body plan development in mammalian, sea urchin, and Drosophila systems. Grades or pass/fail. Given in alternate years; not offered 2020-21. Instructors: Stathopoulos, Peter.
Bi/BE/CS 183. Introduction to Computational Biology and Bioinformatics. 9 units (3-0-6): second term. Prerequisites: Bi 8, CS 2, Ma 3; or BE/Bi 103 a; or instructor's permission. Biology is becoming an increasingly data-intensive science. Many of the data challenges in the biological sciences are distinct from other scientific disciplines because of the complexity involved. This course will introduce key computational, probabilistic, and statistical methods that are common in computational biology and bioinformatics. We will integrate these theoretical aspects to discuss solutions to common challenges that reoccur throughout bioinformatics including algorithms and heuristics for tackling DNA sequence alignments, phylogenetic reconstructions, evolutionary analysis, and population and human genetics. We will discuss these topics in conjunction with common applications including the analysis of high throughput DNA sequencing data sets and analysis of gene expression from RNA-Seq data sets. Instructors: Pachter, Thomson.
Bi/CNS/NB 184. The Primate Visual System. 9 units (3-1-5): third term. This class focuses on the primate visual system, investigating it from an experimental, psychophysical, and computational perspective. The course will focus on two essential problems: 3-D vision and object recognition. We will examine how a visual stimulus is represented starting in the retina, and ending in the frontal lobe, with a special emphasis placed on mechanisms for high-level vision in the parietal and temporal lobes. An important aspect of the course is the lab component in which students design and analyze their own fMRI experiment. Given in alternate years; not offered 2020-21. Instructor: Tsao.
Bi/CNS/NB 185. Large Scale Brain Networks. 6 units (2-0-4): third term. This class will focus on understanding what is known about the large-scale organization of the brain, focusing on the mammalian brain. What large scale brain networks exist and what are their principles of function? How is information flexibly routed from one area to another? What is the function of thalamocortical loops? We will examine large scale networks revealed by anatomical tracing, functional connectivity studies, and mRNA expression analyses, and explore the brain circuits mediating complex behaviors such as attention, memory, sleep, multisensory integration, decision making, and object vision. While each of these topics could cover an entire course in itself, our focus will be on understanding the master plan-how the components of each of these systems are put together and function as a whole. A key question we will delve into, from both a biological and a theoretical perspective, is: how is information flexibly routed from one brain area to another? We will discuss the communication through coherence hypothesis, small world networks, and sparse coding. Given in alternate years, not offered 2020-21. Instructor: Tsao.
CNS/Bi/EE/CS/NB 186. Vision: From Computational Theory to Neuronal Mechanisms. 12 units (4-4-4): second term. Lecture, laboratory, and project course aimed at understanding visual information processing, in both machines and the mammalian visual system. The course will emphasize an interdisciplinary approach aimed at understanding vision at several levels: computational theory, algorithms, psychophysics, and hardware (i.e., neuroanatomy and neurophysiology of the mammalian visual system). The course will focus on early vision processes, in particular motion analysis, binocular stereo, brightness, color and texture analysis, visual attention and boundary detection. Students will be required to hand in approximately three homework assignments as well as complete one project integrating aspects of mathematical analysis, modeling, physiology, psychophysics, and engineering. Given in alternate years; Not Offered 2020-21. Instructors: Meister, Perona, Shimojo, Tsao.
CNS/Bi/Ph/CS/NB 187. Neural Computation. 9 units (3-0-6): first term. Prerequisites: familiarity with digital circuits, probability theory, linear algebra, and differential equations. Programming will be required. This course investigates computation by neurons. Of primary concern are models of neural computation and their neurological substrate, as well as the physics of collective computation. Thus, neurobiology is used as a motivating factor to introduce the relevant algorithms. Topics include rate-code neural networks, their differential equations, and equivalent circuits; stochastic models and their energy functions; associative memory; supervised and unsupervised learning; development; spike-based computing; single-cell computation; error and noise tolerance. Not Offered 2020-21. Instructor: Perona.
Bi 188. Human Genetics and Genomics. 6 units (2-0-4): third term. Prerequisites: Bi 122; or graduate standing and instructor's permission. Introduction to the genetics of humans. Subjects covered include human genome structure, genetic diseases and predispositions, the human genome project, forensic use of human genetic markers, human variability, and human evolution. Given in alternate years; not offered 2020-21. Instructor: Wold.
Bi 189. The Cell Cycle. 6 units (2-0-4): third term. Prerequisites: Bi 8 and Bi 9. The course covers the mechanisms by which eukaryotic cells control their duplication. Emphasis will be placed on the biochemical processes that ensure that cells undergo the key events of the cell cycle in a properly regulated manner. Instructor: Dunphy.
Bi 190. Systems Genetics. 6 units (2-0-4): first term. Prerequisites: Bi 122. Lectures covering how genetic and genomic analyses are used to understand biological systems. Emphasis is on genetic and genome-scale approaches used in model organisms such as yeast, flies, worms, and mice to elucidate the function of genes, genetic pathways and genetic networks. Given in alternate years; not offered 2020-21. Instructor: Sternberg.
BE/CS/CNS/Bi 191 ab. Biomolecular Computation. 9 units (3-0-6) second term; (2-4-3) third term: second, third terms. Prerequisites: none. Recommended: ChE/BE 163, CS 21, CS 129 ab, or equivalent. This course investigates computation by molecular systems, emphasizing models of computation based on the underlying physics, chemistry, and organization of biological cells. We will explore programmability, complexity, simulation of, and reasoning about abstract models of chemical reaction networks, molecular folding, molecular self-assembly, and molecular motors, with an emphasis on universal architectures for computation, control, and construction within molecular systems. If time permits, we will also discuss biological example systems such as signal transduction, genetic regulatory networks, and the cytoskeleton. Instructor: Winfree.
Bi 192. Introduction to Systems Biology. 6 units (2-0-4): first term. Prerequisites: Ma 1 abc, and either Bi 8, CS 1, or ACM 95 or instructor's permission. The course will explore what it means to analyze biology from a systems-level point of view. Given what biological systems must do and the constraints they face, what general properties must biological systems have? Students will explore design principles in biology, including plasticity, exploratory behavior, weak-linkage, constrains that deconstrain, robustness, optimality, and evolvability. The class will read the equivalent of 2-3 scientific papers every week. The format will be a seminar with active discussion from all students. Students from multiple backgrounds are welcome: non-biology or biology students interested in learning systems-level questions in biology. Limited enrollment. Not offered 2020-21. Instructor: Goentoro.
Bi/CNS/NB 195. Mathematics in Biology. 9 units (3-0-6): first term. Prerequisites: calculus. This course develops the mathematical methods needed for a quantitative understanding of biological phenomena, including data analysis, formulation of simple models, and the framing of quantitative questions. Topics include: probability and stochastic processes, linear algebra and transforms, dynamical systems, scientific programming. Instructor: Thomson.

Please Note

The online version of the Caltech Catalog is provided as a convenience; however, the printed version is the only authoritative source of information about course offerings, option requirements, graduation requirements, and other important topics.