# Mechanical Engineering (ME) Undergraduate Courses (2020-21)

EE/ME 7.
Introduction to Mechatronics.
6 units (2-3-1):
first term.
Mechatronics is the multi-disciplinary design of electro-mechanical systems. This course is intended to give the student a basic introduction to such systems. The course will focus on the implementations of sensor and actuator systems, the mechanical devices involved and the electrical circuits needed to interface with them. The class will consist of lectures and short labs where the student will be able to investigate the concepts discussed in lecture. Topics covered include motors, piezoelectric devices, light sensors, ultrasonic transducers, and navigational sensors such as accelerometers and gyroscopes. Graded pass/fail. Not Offered 2020-21.
Instructor: George.

ME 10.
Thinking Like an Engineer.
1 unit:
first term.
A series of weekly seminars by practicing engineers in industry and academia to introduce students to principles and techniques useful for Mechanical Engineering. The course can be used to learn more about the different areas of study within Mechanical Engineering. Topics will be presented at an informal, introductory level. Required for ME undergraduates. Graded pass/fail.
Instructor: Andrade.

ME 11 abc.
Thermal Science.
9 units (3-0-6):
first, second, third terms.
Prerequisites: Sophomore standing required; ME 12 abc, may be taken concurrently.
An introduction to classical thermodynamics and transport with engineering applications. First and second laws; closed and open systems; properties of a pure substance; availability and irreversibility; generalized thermodynamic relations; gas and vapor power cycles; propulsion; mixtures; combustion and thermochemistry; chemical equilibrium; momentum and heat transfer including boundary layers with applications to internal and external flows. Not offered on a pass/fail basis.
Instructors: Minnich, Hunt, Colonius.

ME 12 abc.
Mechanics.
9 units (3-0-6):
first, second, third terms.
Prerequisites: Sophomore standing required; ME 11 abc, may be taken concurrently.
An introduction to statics and dynamics of rigid bodies, deformable bodies, and fluids. Equilibrium of force systems, principle of virtual work, distributed force systems, friction, static analysis of rigid and deformable structures, hydrostatics, kinematics, particle dynamics, rigid-body dynamics, Euler's equations, ideal flow, vorticity, viscous stresses in fluids, dynamics of deformable systems, waves in fluids and solids. Not offered on a pass/fail basis.
Instructors: Mello, Daraio, Fu.

ME 13/113.
Mechanical Prototyping.
4 units (0-4-0):
second, summer terms.
Prerequisites: Enrollment is limited and is based on responses to a questionnaire available in the Registrar's Office.
Introduction to the technologies and practices needed to fabricate mechanical prototypes. Students will acquire the fundamental skills necessary to begin using 3D Computer-Aided Design (CAD) software. Students will learn how to build parametric models of parts and assemblies and learn how to generate detailed drawings of their designs. Students will also be introduced to manual machining techniques, as well as computer-controlled prototyping technologies, such as three-dimensional printing, laser cutting, and water jet cutting. Students will receive safety-training, instruction on the theories underlying different machining methods, and hands-on demonstrations of machining and mechanical assembly methods. Several prototypes will be constructed using the various technologies available in the Mechanical Engineering Machine Shop.
Instructors: Van Deusen, Stovall.

ME 14.
Design and Fabrication.
9 units (3-5-1):
third term.
Prerequisites: ME 12 ab, ME 13.
Enrollment is limited and is based on responses to a questionnaire available in the Registrar's office. Introduction to mechanical engineering design, fabrication, and visual communication. Principles of mechanical engineering design are taught through a series of lectures and short group-based design projects with an emphasis on formal design reviews and team competitions. Course lectures address the strength properties of engineering materials, statistical descriptions of stress and strength, design safety factors, static and variable loading design criteria, engineering case studies, and the design of mechanical elements. Group-based projects include formal design reviews and involve substantial use of the machine shop and maker-space facilities, for the construction of working prototypes. Not offered on a pass/fail basis.
Instructors: Mello, Van Deusen.

ME 23/123.
CNC Machining.
4 units (0-4-0):
third, summer terms.
Prerequisites: ME 13/113.
Enrollment is limited and is based on responses to a questionnaire available in the Registrar's office. Introduction to computer numerical control machining. Students will learn to create Gcode and Mcode using Computer-Aided Manufacturing (CAM) software; they will be instructed on how to safely prepare and operate the machine's functions; and will be taught how to implement programmed data into several different types of CNC equipment. The class will cover the parts and terminology of the equipment, fixturing materials, setting workpiece, and tool offsets. Weekly assignments will include the use of CAM software, machine operation demonstrations, and machining projects.
Instructors: Stovall, Van Deusen.

ME 40.
Dimensional and Data Analyses in Engineering.
9 units (3-0-6):
first term.
Prerequisites: Ma 1 abc.
The first part of this course covers the application of symmetry and dimensional homogeneity (Buckingham Pi theorem) to engineering analysis of systems. The important role of dimensional analysis in developing empirical theories, designing experiments and computer models, and analyzing data are stressed. The second part of the course focuses on quantitative data analysis including linear regression, least-squares, principle components, Fourier analysis, and Bayesian methods. The underlying theory is briefly covered, but the focus is on application to real-world problems encountered by mechanical engineers. Applications to uncertainty analysis and quantification are discussed. Homework will include implementation of techniques in Matlab.
Instructor: Colonius.

ME 50 ab.
Experiments and Modeling in Mechanical Engineering.
9 units (0-6-3):
second, third terms.
Prerequisites: ME 11 abc, ME 12 abc, ME 13, ME 14, and programming skills at the level of ACM 11.
Two-quarter course sequence covers the general theory and methods of computational fluid dynamics (CFD) and finite element analysis (FEA) with experimental laboratory methods applied to complementary engineering problems in solid, structural, and fluid mechanics. Computational procedures are discussed and applied to the analysis of steady-state, transient, and dynamic problems using a commercial software. CFD and FEA topics covered include meshing, types of elements, steady and unsteady solvers, inviscid and viscous flow, internal and external flow, drag and lift, static and dynamic mechanical loading, elastic and plastic behavior, and vibrational (modal) analysis. Fluid mechanics laboratory experiments introduce students to the operation of a water tunnel combined with laser particle image velocimetry (PIV) for quantified flow field visualization of velocity and vorticity. Solid mechanics experiments introduce students to the operation of a mechanical (axial/torsional) load frame combined with digital image correlation (DIC) and strain gage transducers for quantification and full field visualization of displacement and strain. Technical writing skills are emphasized through the generation of detailed full-length lab reports using a scientific journal format.
Instructor: Mello.

ME 72 ab.
Engineering Design Laboratory.
9 units (3-4-2) first term, (1-8-0) second term:
first, second terms.
Prerequisites: ME 14.
Enrollment is limited. A project-based course in which teams of students are challenged to design, test, analyze, and fabricate a robotic device to compete against devices designed by other student teams. The class lectures and team projects stress the integration of mechanical design, electronics, mechatronics, engineering analysis, and computation to solve problems in engineering system design. Critical feedback is provided through a series of formal design reviews scheduled throughout the ME 72 ab course sequence. The laboratory units of ME 72 can be used to fulfill a portion of the laboratory requirement for the EAS option. Not offered on a pass/fail basis.
Instructors: Mello, Van Deusen.

CS/EE/ME 75 abc.
Multidisciplinary Systems Engineering.
3 units (2-0-1), 6 units (2-0-4), or 9 units (2-0-7) first term; 6 units (2-3-1), 9 units (2-6-1), or 12 units (2-9-1) second and third terms; units according to project selected:
first, second, third terms.
This course presents the fundamentals of modern multidisciplinary systems engineering in the context of a substantial design project. Students from a variety of disciplines will conceive, design, implement, and operate a system involving electrical, information, and mechanical engineering components. Specific tools will be provided for setting project goals and objectives, managing interfaces between component subsystems, working in design teams, and tracking progress against tasks. Students will be expected to apply knowledge from other courses at Caltech in designing and implementing specific subsystems. During the first two terms of the course, students will attend project meetings and learn some basic tools for project design, while taking courses in CS, EE, and ME that are related to the course project. During the third term, the entire team will build, document, and demonstrate the course design project, which will differ from year to year. Freshmen must receive permission from the lead instructor to enroll. Not offered 2020-21.

ME 90 abc.
Senior Thesis, Experimental.
9 units; (0-0-9) first term; (0-9-0) second, third terms:
first, second, third terms.
Prerequisites: senior status; instructor's permission.
Experimental research supervised by an engineering faculty member. The topic selection is determined by the adviser and the student and is subject to approval by the Mechanical Engineering Undergraduate Committee. First and second terms: midterm progress report and oral presentation during finals week. Third term: completion of thesis and final presentation. The second and third terms may be used to fulfill laboratory credit for EAS. Not offered on a pass/fail basis.
Instructor: Minnich.

ME 100.
Independent Studies in Mechanical Engineering.
Units are assigned in accordance with work accomplished:
.
A faculty mentor will oversee a student proposed, independent research or study project to meet the needs of undergraduate students. Graded pass/fail. The consent of a faculty mentor and a written report is required for each term of work.

Ae/APh/CE/ME 101 abc.
Fluid Mechanics.
9 units (3-0-6):
first, second, third terms.
Prerequisites: APh 17 or ME 11 abc, and ME 12 or equivalent, ACM 95/100 or equivalent (may be taken concurrently).
Fundamentals of fluid mechanics. Microscopic and macroscopic properties of liquids and gases; the continuum hypothesis; review of thermodynamics; general equations of motion; kinematics; stresses; constitutive relations; vorticity, circulation; Bernoulli's equation; potential flow; thin-airfoil theory; surface gravity waves; buoyancy-driven flows; rotating flows; viscous creeping flow; viscous boundary layers; introduction to stability and turbulence; quasi one-dimensional compressible flow; shock waves; unsteady compressible flow; and acoustics.
Instructors: Dimotakis, Pullin.

Ae/AM/CE/ME 102 abc.
Mechanics of Structures and Solids.
9 units (3-0-6):
first, second, third terms.
Prerequisites: ME 12 abc.
Introduction to continuum mechanics: kinematics, balance laws, constitutive laws with an emphasis on solids. Static and dynamic stress analysis. Two- and three-dimensional theory of stressed elastic solids. Wave propagation. Analysis of rods, plates and shells with applications in a variety of fields. Variational theorems and approximate solutions. Elastic stability.
Instructors: Lapusta, Rosakis, Ravichandran.

E/ME/MedE 105 ab.
Design for Freedom from Disability.
9 units (3-0-6):
terms to be arranged.
This Product Design class focuses on people with Disabilities and is done in collaboration with Rancho Los Amigos National Rehabilitation Center. Students visit the Center to define products based upon actual stated and observed needs. Designs and testing are done in collaboration with Rancho associates. Speakers include people with assistive needs, therapists and researchers. Classes teach normative design methodologies as adapted for this special area. Not offered 2020-21.
Instructor: TBD.

ME 110.
Special Laboratory Work in Mechanical Engineering.
3-9 units per term:
maximum two terms.
Special laboratory work or experimental research projects may be arranged by members of the faculty to meet the needs of individual students as appropriate. A written report is required for each term of work.
Instructor: Staff.

CE/ME 112 ab.
Hydraulic Engineering.
9 units (3-0-6):
second, third terms.
Prerequisites: ME 11 abc, ME 12 abc; ACM 95/100 or equivalent (may be taken concurrently).
A survey of topics in hydraulic engineering: open channel and pipe flow, subcritical/critical flow and the hydraulic jump, hydraulic structures (weirs, inlet and outlet works, dams), hydraulic machinery, hydrology, river and flood modeling, solute transport, sediment mechanics, groundwater flow. Not offered 2020-2021.

ME 115 ab.
Introduction to Kinematics and Robotics.
9 units (3-0-6):
second, third terms.
Prerequisites: Ma 2, ACM 95/100 ab recommended.
Introduction to the study of planar, rotational, and spatial motions with applications to robotics, computers, computer graphics, and mechanics. Topics in kinematic analysis will include screw theory, rotational representations, matrix groups, and Lie algebras. Applications include robot kinematics, mobility in mechanisms, and kinematics of open and closed chain mechanisms. Additional topics in robotics include path planning for robot manipulators, dynamics and control, and assembly. Course work will include laboratory demonstrations using simple robot manipulators. Not offered 2020-21.

MS/ME/MedE 116.
Mechanical Behavior of Materials.
9 units (3-0-6):
second term.
Introduction to the mechanical behavior of solids, emphasizing the relationships between microstructure, architecture, defects, and mechanical properties. Elastic, inelastic, and plastic properties of crystalline and amorphous materials. Relations between stress and strains for different types of materials. Introduction to dislocation theory, motion and forces on dislocations, strengthening mechanisms in crystalline solids. Nanomaterials: properties, fabrication, and mechanics. Architected solids: fabrication, deformation, failure, and energy absorption. Biomaterials: mechanical properties of composites, multi-scale microstructure, biological vs. synthetic, shear lag model. Fracture in brittle solids and linear elastic fracture mechanics.
Instructor: Greer.

ME/EE/EST 117.
Energy Technology and Policy.
9 units (3-0-6):
first term.
Prerequisites: Ph 1 abc, Ch 1 ab and Ma 1 abc.
Energy technologies and the impact of government policy. Fossil fuels, nuclear power, and renewables for electricity production and transportation. Resource models and climate change policies. New and emerging technologies.
Instructor: Blanquart.

Ae/ME 118.
Classical Thermodynamics.
9 units (3-0-6):
second term.
Prerequisites: ME 11 abc, ME 12, or equivalent.
Fundamentals of classical thermodynamics. Basic postulates and laws of thermodynamics, work and heat, entropy and available work, and thermal systems. Equations of state, compressibility functions, and the Law of Corresponding States. Thermodynamic potentials, chemical and phase equilibrium, phase transitions, and thermodynamic properties of solids, liquids, and gases. Examples will be drawn from fluid dynamics, solid mechanics, and thermal science applications.
Instructor: Minnich.

ME 119.
Heat and Mass Transfer.
9 units (3-0-6):
first term.
Prerequisites: ME 11 abc, ME 12 abc, ACM 95/100 (may be taken concurrently).
Transport properties, conservation equations, conduction heat transfer, convective heat and mass transport in laminar and turbulent flows, phase change processes, thermal radiation.
Instructor: Hunt.

Ae/ME 120.
Combustion Fundamentals.
9 units (3-0-6):
third term.
Prerequisites: Recommended: ME 118 and 119 or equivalent.
The course will cover chemical equilibrium, chemical kinetics, combustion chemistry, transport phenomena, and the governing equations for multicomponent gas mixtures. Topics will be chosen from non-premixed and premixed flames, laminar and turbulent flames, combustion-generated pollutants, and numerical simulations of reacting flows.
Instructor: Blanquart.

ME/CS/EE 129.
Experimental Robotics.
9 units (3-6-0):
first term.
This course covers the foundations of experimental realization on robotic systems. This includes software infrastructures, e.g., robotic operating systems (ROS), sensor integration, and implementation on hardware platforms. The ideas developed will be integrated onto robotic systems and tested experimentally in the context of class projects. Not offered 2020-2021.

ME/CS/EE 133 abc.
Robotics.
9 units (3-3-3):
first, second, third terms.
Prerequisites: ME/CS/EE 129, may be taken concurrently, or with permission of instructor.
The course develops the core concepts of robotics. The first quarter focuses on classical robotic manipulation, including topics in rigid body kinematics and dynamics. It develops planar and 3D kinematic formulations and algorithms for forward and inverse computations, Jacobians, and manipulability. The second quarter transitions to planning, navigation, and perception. Topics include configuration space, sample-based planners, A* and D* algorithms, to achieve collision-free motions. The third quarter discusses advanced material, for example grasping and dexterous manipulation using multi-fingered hands, or autonomous behaviors, or human-robot interactions. The lectures will review appropriate analytical techniques and may survey the current research literature. Course work will focus on an independent research project chosen by the student.
Instructor: Niemeyer.

ME/CS/EE 134.
Robotic Systems.
9 units (3-6-0):
second term.
Prerequisites: ME/CS/EE 129, may be taken concurrently, or with permission of instructor.
This course builds up, and brings to practice, the elements of robotic systems at the intersection of hardware, kinematics and control, computer vision, and autonomous behaviors. It presents selected topics from these domains, focusing on their integration into a full sense-think-act robot. The lectures will drive team-based projects, progressing from building custom robots to writing software and implementing all necessary aspects. Working systems will autonomously operate and complete their tasks during final demonstrations.
Instructor: Niemeyer.

AM/CE/ME 150 abc.
Graduate Engineering Seminar.
1 unit:
each term; first, second, third terms.
Students attend a graduate seminar each week of each term and submit a report about the attended seminars. At least four of the attended seminars each term should be from the Mechanical and Civil Engineering seminar series. Students not registered for the M.S. and Ph.D. degrees must receive the instructor's permission. Graded pass/fail.
Instructor: Staff.

Ae/Ge/ME 160 ab.
Continuum Mechanics of Fluids and Solids.
9 units (3-0-6):
first, second terms.
Elements of Cartesian tensors. Configurations and motions of a body. Kinematics-study of deformations, rotations and stretches, polar decomposition. Lagrangian and Eulerian strain velocity and spin tensor fields. Irrotational motions, rigid motions. Kinetics-balance laws. Linear and angular momentum, force, traction stress. Cauchy's theorem, properties of Cauchy's stress. Equations of motion, equilibrium equations. Power theorem, nominal (Piola-Kirchoff) stress. Thermodynamics of bodies. Internal energy, heat flux, heat supply. Laws of thermodynamics, notions of entropy, absolute temperature. Entropy inequality (Clausius-Duhem). Examples of special classes of constitutive laws for materials without memory. Objective rates, corotational, convected rates. Principles of materials frame indifference. Examples: the isotropic Navier-Stokes fluid, the isotropic thermoelastic solid. Basics of finite differences, finite elements, and boundary integral methods, and their applications to continuum mechanics problems illustrating a variety of classes of constitutive laws. Part a will be offered in 2020-21.
Instructor: Lapusta.

MS/ME 161.
Imperfections in Crystals.
9 units (3-0-6):
third term.
Prerequisites: graduate standing or MS 115.
The relation of lattice defects to the physical and mechanical properties of crystalline solids. Introduction to point imperfections and their relationships to transport properties in metallic, covalent, and ionic crystals. Kroeger-Vink notation. Introduction to dislocations: geometric, crystallographic, elastic, and energetic properties of dislocations. Dislocation reactions and interactions including formation of locks, stacking faults, and surface effects. Relations between collective dislocation behavior and mechanical properties of crystals. Introduction to computer simulations of dislocations. Grain boundaries. The structure and properties of interfaces in solids. Emphasis on materials science aspects of role of defects in electrical, morphological, optical, and mechanical properties of solids.
Instructor: Greer.

ME/CE 163.
Mechanics and Rheology of Fluid-Infiltrated Porous Media.
9 units (3-0-6):
third term.
Prerequisites: Continuum Mechanics-Ae/Ge/ME 160 ab.
This course will focus on the physics of porous materials (e.g., geomaterials, biological tissue) and their intimate interaction with interstitial fluids (e.g., water, oil, blood). The course will be split into two parts: Part 1 will focus on the continuum mechanics (balance laws) of multi-phase solids, with particular attention to fluid diffusion-solid deformation coupling. Part 2 will introduce the concept of effective stresses and state of the art rheology available in modeling the constitutive response of representative porous materials. Emphasis will be placed on poro-elasticity and poro-plasticity. Not offered 2020-21.

AM/ME 165.
Finite Elasticity.
9 units (3-0-6):
third term.
Prerequisites: Ae/Ge/ME 160 a.
Finite theory of elasticity: constitutive theory, semi-inverse methods. Variational methods. Applications to problems of current interest. Not offered 2020-21.

MS/ME 166.
Fracture of Brittle Solids.
9 units (3-0-6):
third term.
Prerequisites: MS 115a (or equivalent).
The mechanical response of brittle materials (ceramics, glasses and some network polymers) will be treated using classical elasticity, energy criteria, and fracture mechanics. The influence of environment and microstructure on mechanical behavior will be explored. Transformation toughened systems, large-grain crack-bridging systems, nanostructured ceramics, porous ceramics, anomolous glasses, and the role of residual stresses will be highlighted. Strength, flaw statistics and reliability will be discussed. Not offered 2020-21.

CE/ME/Ge 173.
Mechanics of Soils.
9 units (3-0-6):
third term.
Prerequisites: Continuum Mechanics-Ae/Ge/ME 160 a.
Basic principles of stiffness, deformation, effective stress and strength of soils, including sands, clays and silts. Elements of soil behavior such as stress-strain-strength behavior of clays, effects of sample disturbance, anisotropy, and strain rate; strength and compression of granular soils; consolidation theory and settlement analysis; and critical state soil mechanics.
Instructor: Asimaki.

ME/CE/Ge 174.
Mechanics of Rocks.
9 units (3-0-6):
second term.
Prerequisites: Ae/Ge/ME 160 a.
Basic principles of deformation, strength, and stressing of rocks. Elastic behavior, plasticity, viscoelasticity, viscoplasticity, creep, damage, friction, failure mechanisms, shear localization, and interaction of deformation processes with fluids. Engineering and geological applications.
Instructor: Lapusta.

### Please Note

The online version of the Caltech Catalog is provided as a convenience; however, the printed version is the only authoritative source of information about course offerings, option requirements, graduation requirements, and other important topics.