The Evolution of Information Systems: From Life to Artificial Intelligence
What is life? What is special about the human brain? How did the invention of writing enable the transition from human intelligence to artificial intelligence? We will argue that life is an information system that has memory stored in syntax (DNA) that is enriched by an innovation process (mutation and selection) that leads to new species. Also, we will argue that the human brain is an information system that has memory (enabled by natural languages) that is enriched by an innovation process (learning) that leads to new ideas. The emergence of life and the human brain served as the backdrop to the information (r)evolution that we are witnessing today!
First-Year Seminar: Automating Discovering the Universe
Powerful new instruments enable astronomers to collect huge volumes of data on billions of objects. As a result, astronomy is changing dramatically: by the end of this decade, most astronomers will probably be analyzing data collected in large surveys, and only a few will still be visiting observatories to collect their own data. The tool chest of future astronomers will involve facility with "big data", developing clever queries, algorithms (some based on machine learning) and statistics, and combining multiple databases. This course will introduce students to some of these tools. After "recovering" known objects, students will be unleashed to make their own astronomical discoveries in new data sets. Limited enrollment.
Introduction to Waves
This course is an intuitive introduction to waves. Have you ever wanted to break a wineglass with sound? Or make your own hologram? Or stand under a powerline with a fluorescent light tube? Ever wondered what a soliton wave or a vortex is? Come do this and more, as we dissect various types of wave phenomena mathematically and then see them in action with your own experiments.
First-Year Seminar: The Science of Music
This course will focus on the physics of sound, how musical instruments make it, and how we hear it, including readings, discussions, demonstrations, and student observations using sound analysis software. In parallel we will consider what differentiates music from other sounds, and its role psychically and culturally. Students will do a final project of their choice and design, with possibilities including analysis of recordings of actual musical instruments, instrument construction and analysis, and tests or surveys of people's abilities or preferences. First-year (undergraduate) only; limited enrollment.
First-Year Seminar: Beyond Physics
First-year students are offered the opportunity to enroll in this class by submitting potential solutions to problems posed in the fall term. A small number of solutions will be selected as winners, granting those students permission to register. This course demonstrates how research ideas arise, are evaluated, and tested and how the ideas that survive are developed. Weekly group discussions and one-on-one meetings with faculty allow students to delve into cutting edge scientific research. Ideas from physics are used to think about a huge swath of problems ranging from how to detect life on extrasolar planets to exploring the scientific underpinnings of science fiction in Hollywood films to considering the efficiency of molecular machines. Support for summer research at Caltech between an undergraduate's first and sophomore years will be automatic for students making satisfactory progress. Graded pass/fail. First-year (undergraduates) only; limited enrollment.
First-Year Seminar: The Mathematics of Enzyme Kinetics
Enzymes are at the heart of biochemistry. We will begin with a down to earth discussion of how, as catalysts, they are used to convert substrate to product. Then we will model their activity by using explicit equations. Under ideal conditions, their dynamics are described by a system of first order differential equations. The difficulty will be seen to stem from them being non-linear. However, under a steady state hypothesis, they reduce to a simpler equation, whose solution can describe the late time behavior. The students will apply it to some specially chosen, real examples. Not offered 2022-23.
First-year Seminar: Earthquakes
Earthquakes and volcanic eruptions constitute some of the world's major natural hazards. What is the science behind prediction and/or rapid response to these events? We will review the current understanding of the science, the efforts that have been made in earthquake and volcano forecasting, and real-time response to these events. We will learn about advances in earthquake preparation in Southern California, and volcanic eruption forecasting and hazard mitigation elsewhere. There is a required field trip to visit faults and volcanoes somewhere in southern California. First-year (undergraduates) only; limited enrollment.
First-Year Seminar: The Unseen Microbial World in Plain Sight
To paraphrase a Caltech engineering colleague: "In terms of Earth and the Environment, our species had been nothing more than the hood ornament on a really interesting car. We should be studying what's under the hood, the microbial world, if we want to understand the engine". We will spend the term examining striking examples of microbes and microbial activities in the environment. First-year (undergraduates) only; limited enrollment.
First-Year Seminar: Thinking like an Economist
Economics is a way of analyzing the world in which scarcity requires tradeoffs and creates constraints which are expressed as mathematical optimization. Theories are tested with both controlled experiments and analysis of field data. Motivating clever theories and evidence is a folk concept of "thinking like an economist" (or "economic intuition"). We will develop economic intuition about topics which include: Unintended consequences, how to show causality, partial and general equilibrium, game theory, the effect of institutional systems, price bubbles, pricing risk, drug addiction, and more. First-year (undergraduate) only, limited enrollment. Not offered 2022-23.