Bioengineering research at Caltech focuses on the application of engineering principles to the design, analysis, construction, and manipulation of biological systems, and on the discovery and application of new engineering principles inspired by the properties of biological systems.
Areas of Research
- Bioimaging (Cai, Dickinson, Gharib, Lester, Meyerowitz, Pierce, Shapiro, Yang)
Biophotonics, advanced imaging technologies, computational image analysis, noninvasive biomedical imaging, single-molecule technologies, flow-field imaging technologies, in situ amplification. - Bioinspired Design (Gharib, Greer, Hajimiri, Ismagilov, Murray, Shapiro, Tirrell, Winfree)
Engineering physiological machines, engineering self-powered technologies, control systems, synthetic heteropolymers, and self-healing circuits and systems. - Biomechanics (Bhattacharya, Dickinson, Gharib, Greer, Meyerowitz, Phillips, Roukes)
Molecular and cellular biophysics, cardiovascular mechanics, muscle and membrane mechanics, physiology and mechanics offlapping flight, multicellular morphodynamics, cell-biomaterial interactions. - Biomedical Devices (Burdick, Emami, Gharib, Hajimiri, Heath, Ismagilov, Meister, Roukes, Shapiro, Siapas, Tai, Yang)
BioNEMS, BioMEMS, laboratories-on-a-chip including microfluidic systems, neural networks, microscopes and diagnostics, novel measurement principles, neural interfaces and prostheses, locomotion rehabilitation, molecular imaging during surgery. - Cell and Tissue Engineering (Arnold, Elowitz, Gharib, Gradinaru, Ismagilov, Shapiro, Tirrell)
Multicellular morphodynamics, principles of feedback between tissue mechanics and genetic expression, non-natural protein biomaterials, cell-biomaterial interactions, developmental patterning. - Molecular Medicine (Baltimore, Bjorkman, Davis, Deshaies, Gradinaru, Hay, Ismagilov, Lester, Mazmanian, Pierce)
Engineering immunity, cancer vaccines, AIDS vaccine, novel anti-cancer therapeutics, Parkinson’s disease, schizophrenia, Huntington’s disease, nicotine addiction, microbiome perturbations in disease, molecular basis of autism, programmable chemotherapies, conditional chemotherapies, nanoparticle drug delivery. - Molecular Programming (Aravin, Murray, Pierce, Qian, Rothemund, Winfree)
Abstractions, languages, algorithms, and compilers for programming nucleic acid function, molecular information processing, molecular complexity theory, free-energy landscapes, metastable systems, self-assembly across length scales, algorithmic self-assembly, synthetic molecular motors, in vitro and in vivo nucleic acid circuits. - Synthetic Biology (Aravin, Arnold, Elowitz, Gradinaru, Ismagilov, Murray, Pierce, Qian, Rothemund, Shapiro, Tirrell, Winfree)
Principles of biological circuit design, genetic circuits, protein engineering, noncanonical amino acids, nucleic acid engineering, rational design, directed evolution, metabolic engineering, biofuels, biocatalysts, elucidation of systems biology principles using synthetic systems. - Systems Biology (Aravin, Cai, Doyle, Elowitz, Goentoro, Heath, Ismagilov, Lester, Meister, Meyerowitz, Murray, Phillips, Sternberg, Winfree)
Roles of circuit architecture and stochasticity in cellular decision making, feedback, control, and complexity in biological networks, multicellular morphodynamics, principles of developmental circuitry including signal integration and coordination, spatial patterning and organ formation, principles of feedback between tissue mechanics and genetic expression, neural development, and disease.
Published Date:
Aug. 4, 2022